1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
ash / fast_ink / fast_ink_points.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "ash/fast_ink/fast_ink_points.h"
#include <algorithm>
#include <array>
#include <limits>
#include "base/containers/adapters.h"
#include "base/containers/circular_deque.h"
#include "base/ranges/algorithm.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
namespace ash {
namespace {
constexpr SkColor kDefaultPointColor = SkColorSetRGB(0x42, 0x85, 0xF4);
constexpr int kDefaultOpacity = 0xCC;
} // namespace
const SkColor FastInkPoints::kDefaultColor =
SkColorSetA(kDefaultPointColor, kDefaultOpacity);
FastInkPoints::FastInkPoints(base::TimeDelta life_duration)
: life_duration_(life_duration) {}
FastInkPoints::~FastInkPoints() = default;
void FastInkPoints::AddPoint(const gfx::PointF& point,
const base::TimeTicks& time) {
FastInkPoint new_point;
new_point.location = point;
new_point.time = time;
points_.push_back(new_point);
}
void FastInkPoints::AddPoint(const gfx::PointF& point,
const base::TimeTicks& time,
SkColor color) {
FastInkPoint new_point;
new_point.location = point;
new_point.time = time;
new_point.color = color;
points_.push_back(new_point);
}
void FastInkPoints::AddGap() {
// Not doing anything special regarding prediction, as in real usage there
// will be a gap in timestamps, and the prediction algorithm will reject the
// points that are too old.
points_.back().gap_after = true;
}
void FastInkPoints::MoveForwardToTime(const base::TimeTicks& latest_time) {
DCHECK_GE(latest_time, collection_latest_time_);
collection_latest_time_ = latest_time;
if (!points_.empty() && !life_duration_.is_zero()) {
// Remove obsolete points.
const base::TimeTicks expiration = latest_time - life_duration_;
auto first_alive_point = base::ranges::lower_bound(
points_, expiration, base::ranges::less_equal(), &FastInkPoint::time);
points_.erase(points_.begin(), first_alive_point);
}
}
gfx::Rect FastInkPoints::UndoLastStroke() {
if (points_.empty())
return gfx::Rect();
gfx::PointF min_point = GetNewest().location;
gfx::PointF max_point = min_point;
// Skip the last gap to delete until the penultimate gap.
if (points_.back().gap_after)
points_.pop_back();
while (!points_.empty() && !points_.back().gap_after) {
const gfx::PointF& location = points_.back().location;
min_point.SetToMin(location);
max_point.SetToMax(location);
points_.pop_back();
}
return gfx::ToEnclosingRect(gfx::BoundingRect(min_point, max_point));
}
void FastInkPoints::Clear() {
points_.clear();
}
gfx::Rect FastInkPoints::GetBoundingBox() const {
return gfx::ToEnclosingRect(GetBoundingBoxF());
}
gfx::RectF FastInkPoints::GetBoundingBoxF() const {
if (IsEmpty())
return gfx::RectF();
gfx::PointF min_point = GetOldest().location;
gfx::PointF max_point = min_point;
for (const FastInkPoint& point : points_) {
min_point.SetToMin(point.location);
max_point.SetToMax(point.location);
}
return gfx::BoundingRect(min_point, max_point);
}
FastInkPoints::FastInkPoint FastInkPoints::GetOldest() const {
DCHECK(!IsEmpty());
return points_.front();
}
FastInkPoints::FastInkPoint FastInkPoints::GetNewest() const {
DCHECK(!IsEmpty());
return points_.back();
}
bool FastInkPoints::IsEmpty() const {
return points_.empty();
}
int FastInkPoints::GetNumberOfPoints() const {
return points_.size();
}
const base::circular_deque<FastInkPoints::FastInkPoint>& FastInkPoints::points()
const {
return points_;
}
float FastInkPoints::GetFadeoutFactor(int index) const {
DCHECK(!life_duration_.is_zero());
DCHECK_GE(index, 0);
DCHECK_LT(index, GetNumberOfPoints());
const base::TimeDelta age = collection_latest_time_ - points_[index].time;
return std::min(age / life_duration_, 1.0);
}
void FastInkPoints::Predict(const FastInkPoints& real_points,
const base::TimeTicks& current_time,
base::TimeDelta prediction_duration,
const gfx::Size& screen_size) {
Clear();
if (real_points.IsEmpty() || prediction_duration.is_zero())
return;
gfx::Vector2dF scale(1.0f / screen_size.width(), 1.0f / screen_size.height());
// Create a new set of predicted points based on the last four points added.
// We add enough predicted points to fill the time between the new point and
// the expected presentation time. Note that estimated presentation time is
// based on current time and inefficient rendering of points can result in an
// actual presentation time that is later.
// TODO(reveman): Determine interval based on history when event time stamps
// are accurate. b/36137953
const float kPredictionIntervalMs = 5.0f;
const float kMaxPointIntervalMs = 10.0f;
base::TimeDelta prediction_interval =
base::Milliseconds(kPredictionIntervalMs);
base::TimeDelta max_point_interval = base::Milliseconds(kMaxPointIntervalMs);
const FastInkPoint newest_real_point = real_points.GetNewest();
base::TimeTicks last_point_time = newest_real_point.time;
gfx::PointF last_point_location =
gfx::ScalePoint(newest_real_point.location, scale.x(), scale.y());
// Use the last four points for prediction.
using PositionArray = std::array<gfx::PointF, 4>;
PositionArray position;
PositionArray::iterator it = position.begin();
for (const auto& point : base::Reversed(real_points.points())) {
// Stop adding positions if interval between points is too large to provide
// an accurate history for prediction.
if ((last_point_time - point.time) > max_point_interval)
break;
last_point_time = point.time;
last_point_location = gfx::ScalePoint(point.location, scale.x(), scale.y());
*it++ = last_point_location;
// Stop when no more positions are needed.
if (it == position.end())
break;
}
const size_t valid_positions = it - position.begin();
if (valid_positions < 2) // Not enough reliable data, bail out.
return;
// Note: Currently there's no need to divide by the time delta between
// points as we assume a constant delta between points that matches the
// prediction point interval.
gfx::Vector2dF velocity[3];
for (size_t i = 0; i < valid_positions - 1; ++i)
velocity[i] = position[i] - position[i + 1];
// velocity[0] is always valid, since |valid_positions| >=2
gfx::Vector2dF acceleration[2];
for (size_t i = 0; i < valid_positions - 2; ++i)
acceleration[i] = velocity[i] - velocity[i + 1];
// acceleration[0] is always valid (zero if |valid_positions| < 3).
gfx::Vector2dF jerk;
if (valid_positions > 3)
jerk = acceleration[0] - acceleration[1];
// |jerk| is aways valid (zero if |valid_positions| < 4).
// Adjust max prediction time based on speed as prediction data is not great
// at lower speeds.
const float kMaxPredictionScaleSpeed = 1e-5;
double speed = velocity[0].LengthSquared();
base::TimeTicks max_prediction_time =
current_time +
std::min(prediction_duration * (speed / kMaxPredictionScaleSpeed),
prediction_duration);
// Add predicted points until we reach the max prediction time.
gfx::PointF location = position[0];
for (base::TimeTicks time = newest_real_point.time + prediction_interval;
time < max_prediction_time; time += prediction_interval) {
// Note: Currently there's no need to multiply by the prediction interval
// as the velocity is calculated based on a time delta between points that
// is the same as the prediction interval.
velocity[0] += acceleration[0];
acceleration[0] += jerk;
location += velocity[0];
AddPoint(gfx::ScalePoint(location, 1 / scale.x(), 1 / scale.y()), time,
newest_real_point.color);
// Always stop at three predicted points as a four point history doesn't
// provide accurate prediction of more points.
if (GetNumberOfPoints() == 3)
break;
}
}
} // namespace ash