1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248

ash / fast_ink / fast_ink_points.cc [blame]

// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "ash/fast_ink/fast_ink_points.h"

#include <algorithm>
#include <array>
#include <limits>

#include "base/containers/adapters.h"
#include "base/containers/circular_deque.h"
#include "base/ranges/algorithm.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect_conversions.h"

namespace ash {
namespace {

constexpr SkColor kDefaultPointColor = SkColorSetRGB(0x42, 0x85, 0xF4);
constexpr int kDefaultOpacity = 0xCC;

}  // namespace

const SkColor FastInkPoints::kDefaultColor =
    SkColorSetA(kDefaultPointColor, kDefaultOpacity);

FastInkPoints::FastInkPoints(base::TimeDelta life_duration)
    : life_duration_(life_duration) {}

FastInkPoints::~FastInkPoints() = default;

void FastInkPoints::AddPoint(const gfx::PointF& point,
                             const base::TimeTicks& time) {
  FastInkPoint new_point;
  new_point.location = point;
  new_point.time = time;
  points_.push_back(new_point);
}

void FastInkPoints::AddPoint(const gfx::PointF& point,
                             const base::TimeTicks& time,
                             SkColor color) {
  FastInkPoint new_point;
  new_point.location = point;
  new_point.time = time;
  new_point.color = color;
  points_.push_back(new_point);
}

void FastInkPoints::AddGap() {
  // Not doing anything special regarding prediction, as in real usage there
  // will be a gap in timestamps, and the prediction algorithm will reject the
  // points that are too old.
  points_.back().gap_after = true;
}

void FastInkPoints::MoveForwardToTime(const base::TimeTicks& latest_time) {
  DCHECK_GE(latest_time, collection_latest_time_);
  collection_latest_time_ = latest_time;

  if (!points_.empty() && !life_duration_.is_zero()) {
    // Remove obsolete points.
    const base::TimeTicks expiration = latest_time - life_duration_;
    auto first_alive_point = base::ranges::lower_bound(
        points_, expiration, base::ranges::less_equal(), &FastInkPoint::time);
    points_.erase(points_.begin(), first_alive_point);
  }
}

gfx::Rect FastInkPoints::UndoLastStroke() {
  if (points_.empty())
    return gfx::Rect();

  gfx::PointF min_point = GetNewest().location;
  gfx::PointF max_point = min_point;
  // Skip the last gap to delete until the penultimate gap.
  if (points_.back().gap_after)
    points_.pop_back();

  while (!points_.empty() && !points_.back().gap_after) {
    const gfx::PointF& location = points_.back().location;
    min_point.SetToMin(location);
    max_point.SetToMax(location);
    points_.pop_back();
  }

  return gfx::ToEnclosingRect(gfx::BoundingRect(min_point, max_point));
}

void FastInkPoints::Clear() {
  points_.clear();
}

gfx::Rect FastInkPoints::GetBoundingBox() const {
  return gfx::ToEnclosingRect(GetBoundingBoxF());
}

gfx::RectF FastInkPoints::GetBoundingBoxF() const {
  if (IsEmpty())
    return gfx::RectF();

  gfx::PointF min_point = GetOldest().location;
  gfx::PointF max_point = min_point;
  for (const FastInkPoint& point : points_) {
    min_point.SetToMin(point.location);
    max_point.SetToMax(point.location);
  }
  return gfx::BoundingRect(min_point, max_point);
}

FastInkPoints::FastInkPoint FastInkPoints::GetOldest() const {
  DCHECK(!IsEmpty());
  return points_.front();
}

FastInkPoints::FastInkPoint FastInkPoints::GetNewest() const {
  DCHECK(!IsEmpty());
  return points_.back();
}

bool FastInkPoints::IsEmpty() const {
  return points_.empty();
}

int FastInkPoints::GetNumberOfPoints() const {
  return points_.size();
}

const base::circular_deque<FastInkPoints::FastInkPoint>& FastInkPoints::points()
    const {
  return points_;
}

float FastInkPoints::GetFadeoutFactor(int index) const {
  DCHECK(!life_duration_.is_zero());
  DCHECK_GE(index, 0);
  DCHECK_LT(index, GetNumberOfPoints());
  const base::TimeDelta age = collection_latest_time_ - points_[index].time;
  return std::min(age / life_duration_, 1.0);
}

void FastInkPoints::Predict(const FastInkPoints& real_points,
                            const base::TimeTicks& current_time,
                            base::TimeDelta prediction_duration,
                            const gfx::Size& screen_size) {
  Clear();

  if (real_points.IsEmpty() || prediction_duration.is_zero())
    return;

  gfx::Vector2dF scale(1.0f / screen_size.width(), 1.0f / screen_size.height());

  // Create a new set of predicted points based on the last four points added.
  // We add enough predicted points to fill the time between the new point and
  // the expected presentation time. Note that estimated presentation time is
  // based on current time and inefficient rendering of points can result in an
  // actual presentation time that is later.

  // TODO(reveman): Determine interval based on history when event time stamps
  // are accurate. b/36137953
  const float kPredictionIntervalMs = 5.0f;
  const float kMaxPointIntervalMs = 10.0f;
  base::TimeDelta prediction_interval =
      base::Milliseconds(kPredictionIntervalMs);
  base::TimeDelta max_point_interval = base::Milliseconds(kMaxPointIntervalMs);
  const FastInkPoint newest_real_point = real_points.GetNewest();
  base::TimeTicks last_point_time = newest_real_point.time;
  gfx::PointF last_point_location =
      gfx::ScalePoint(newest_real_point.location, scale.x(), scale.y());

  // Use the last four points for prediction.
  using PositionArray = std::array<gfx::PointF, 4>;
  PositionArray position;
  PositionArray::iterator it = position.begin();
  for (const auto& point : base::Reversed(real_points.points())) {
    // Stop adding positions if interval between points is too large to provide
    // an accurate history for prediction.
    if ((last_point_time - point.time) > max_point_interval)
      break;

    last_point_time = point.time;
    last_point_location = gfx::ScalePoint(point.location, scale.x(), scale.y());
    *it++ = last_point_location;

    // Stop when no more positions are needed.
    if (it == position.end())
      break;
  }

  const size_t valid_positions = it - position.begin();
  if (valid_positions < 2)  // Not enough reliable data, bail out.
    return;

  // Note: Currently there's no need to divide by the time delta between
  // points as we assume a constant delta between points that matches the
  // prediction point interval.
  gfx::Vector2dF velocity[3];
  for (size_t i = 0; i < valid_positions - 1; ++i)
    velocity[i] = position[i] - position[i + 1];
  // velocity[0] is always valid, since |valid_positions| >=2

  gfx::Vector2dF acceleration[2];
  for (size_t i = 0; i < valid_positions - 2; ++i)
    acceleration[i] = velocity[i] - velocity[i + 1];
  // acceleration[0] is always valid (zero if |valid_positions| < 3).

  gfx::Vector2dF jerk;
  if (valid_positions > 3)
    jerk = acceleration[0] - acceleration[1];
  // |jerk| is aways valid (zero if |valid_positions| < 4).

  // Adjust max prediction time based on speed as prediction data is not great
  // at lower speeds.
  const float kMaxPredictionScaleSpeed = 1e-5;
  double speed = velocity[0].LengthSquared();
  base::TimeTicks max_prediction_time =
      current_time +
      std::min(prediction_duration * (speed / kMaxPredictionScaleSpeed),
               prediction_duration);

  // Add predicted points until we reach the max prediction time.
  gfx::PointF location = position[0];
  for (base::TimeTicks time = newest_real_point.time + prediction_interval;
       time < max_prediction_time; time += prediction_interval) {
    // Note: Currently there's no need to multiply by the prediction interval
    // as the velocity is calculated based on a time delta between points that
    // is the same as the prediction interval.
    velocity[0] += acceleration[0];
    acceleration[0] += jerk;
    location += velocity[0];

    AddPoint(gfx::ScalePoint(location, 1 / scale.x(), 1 / scale.y()), time,
             newest_real_point.color);

    // Always stop at three predicted points as a four point history doesn't
    // provide accurate prediction of more points.
    if (GetNumberOfPoints() == 3)
      break;
  }
}

}  // namespace ash