1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371

ash / fast_ink / laser / laser_pointer_view.cc [blame]

// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ash/fast_ink/laser/laser_pointer_view.h"

#include "ash/fast_ink/laser/laser_segment_utils.h"
#include "base/functional/bind.h"
#include "base/task/single_thread_task_runner.h"
#include "base/trace_event/trace_event.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "ui/aura/window.h"
#include "ui/events/base_event_utils.h"
#include "ui/gfx/canvas.h"
#include "ui/views/widget/widget.h"

namespace ash {
namespace {

// Variables for rendering the laser. Radius in DIP.
const float kPointInitialRadius = 5.0f;
const float kPointFinalRadius = 0.25f;
const int kPointInitialOpacity = 200;
const int kPointFinalOpacity = 10;
const SkColor kPointColor = SkColorSetRGB(255, 0, 0);
// Change this when debugging prediction code.
const SkColor kPredictionPointColor = kPointColor;

float DistanceBetweenPoints(const gfx::PointF& point1,
                            const gfx::PointF& point2) {
  return (point1 - point2).Length();
}

float LinearInterpolate(float initial_value,
                        float final_value,
                        float progress) {
  return initial_value + (final_value - initial_value) * progress;
}

}  // namespace

////////////////////////////////////////////////////////////////////////////////

// The laser segment calcuates the path needed to draw a laser segment. A laser
// segment is used instead of just a regular line segments to avoid overlapping.
// A laser segment looks as follows:
//    _______         _________       _________        _________
//   /       \        \       /      /         /      /         \       |
//   |   A   |       2|.  B  .|1    2|.   C   .|1    2|.   D     \.1    |
//   |       |        |       |      |         |      |          /      |
//    \_____/         /_______\      \_________\      \_________/       |
//
//
// Given a start and end point (represented by the periods in the above
// diagrams), we create each segment by projecting each point along the normal
// to the line segment formed by the start(1) and end(2) points. We then
// create a path using arcs and lines. There are three types of laser segments:
// head(B), regular(C) and tail(D). A typical laser is created by rendering one
// tail(D), zero or more regular segments(C), one head(B) and a circle at the
// end(A). They are meant to fit perfectly with the previous and next segments,
// so that no whitespace/overlap is shown.
// A more detailed version of this is located at:
// https://docs.google.com/document/d/1wqws7g5ra7MCFDaDdMPbTFj7hJ-eq6MLd0podA2y_i0/edit
class LaserSegment {
 public:
  LaserSegment(const std::vector<gfx::PointF>& previous_points,
               const gfx::PointF& start_point,
               const gfx::PointF& end_point,
               float start_radius,
               float end_radius,
               bool is_last_segment) {
    DCHECK(previous_points.empty() || previous_points.size() == 2u);
    bool is_first_segment = previous_points.empty();

    // Calculate the variables for the equation of the lines which pass through
    // the start and end points, and are perpendicular to the line segment
    // between the start and end points.
    float slope, start_y_intercept, end_y_intercept;
    ComputeNormalLineVariables(start_point, end_point, &slope,
                               &start_y_intercept, &end_y_intercept);

    // Project the points along normal line by the given radius.
    gfx::PointF end_first_projection, end_second_projection;
    ComputeProjectedPoints(end_point, slope, end_y_intercept, end_radius,
                           &end_first_projection, &end_second_projection);

    // Create a collection of the points used to create the path and reorder
    // them as needed.
    std::vector<gfx::PointF> ordered_points;
    ordered_points.reserve(4);
    if (!is_first_segment) {
      ordered_points.push_back(previous_points[1]);
      ordered_points.push_back(previous_points[0]);
    } else {
      // We push two of the same point, so that for both cases we have 4 points,
      // and we can use the same indexes when creating the path.
      ordered_points.push_back(start_point);
      ordered_points.push_back(start_point);
    }
    // Push the projected points so that the the smaller angle relative to the
    // line segment between the two data points is first. This will ensure there
    // is always a anticlockwise arc between the last two points, and always a
    // clockwise arc for these two points if and when they are used in the next
    // segment.
    if (IsFirstPointSmallerAngle(start_point, end_point, end_first_projection,
                                 end_second_projection)) {
      ordered_points.push_back(end_first_projection);
      ordered_points.push_back(end_second_projection);
    } else {
      ordered_points.push_back(end_second_projection);
      ordered_points.push_back(end_first_projection);
    }

    // Create the path. The path always goes as follows:
    // 1. Move to point 0.
    // 2. Arc clockwise from point 0 to point 1. This step is skipped if it
    //    is the tail segment.
    // 3. Line from point 1 to point 2.
    // 4. Arc anticlockwise from point 2 to point 3. Arc clockwise if this is
    //    the head segment.
    // 5. Line from point 3 to point 0.
    //      2           1
    //       *---------*                   |
    //      /         /                    |
    //      |         |                    |
    //      |         |                    |
    //      \         \                    |
    //       *--------*
    //      3          0
    DCHECK_EQ(4u, ordered_points.size());
    path_.moveTo(ordered_points[0].x(), ordered_points[0].y());
    if (!is_first_segment) {
      path_.arcTo(start_radius, start_radius, 180.0f, SkPath::kSmall_ArcSize,
                  SkPathDirection::kCW, ordered_points[1].x(),
                  ordered_points[1].y());
    }

    path_.lineTo(ordered_points[2].x(), ordered_points[2].y());
    path_.arcTo(end_radius, end_radius, 180.0f, SkPath::kSmall_ArcSize,
                is_last_segment ? SkPathDirection::kCW : SkPathDirection::kCCW,
                ordered_points[3].x(), ordered_points[3].y());
    path_.lineTo(ordered_points[0].x(), ordered_points[0].y());

    // Store data to be used by the next segment.
    path_points_.push_back(ordered_points[2]);
    path_points_.push_back(ordered_points[3]);
  }

  LaserSegment(const LaserSegment&) = delete;
  LaserSegment& operator=(const LaserSegment&) = delete;

  SkPath path() const { return path_; }
  std::vector<gfx::PointF> path_points() const { return path_points_; }

 private:
  SkPath path_;
  std::vector<gfx::PointF> path_points_;
};

// LaserPointerView
LaserPointerView::LaserPointerView(base::TimeDelta life_duration,
                                   base::TimeDelta presentation_delay,
                                   base::TimeDelta stationary_point_delay)
    : laser_points_(life_duration),
      predicted_laser_points_(life_duration),
      presentation_delay_(presentation_delay),
      stationary_timer_(FROM_HERE,
                        stationary_point_delay,
                        base::BindRepeating(&LaserPointerView::UpdateTime,
                                            base::Unretained(this))) {}

LaserPointerView::~LaserPointerView() = default;

// static
views::UniqueWidgetPtr LaserPointerView::Create(
    base::TimeDelta life_duration,
    base::TimeDelta presentation_delay,
    base::TimeDelta stationary_point_delay,
    aura::Window* container) {
  return FastInkView::CreateWidgetWithContents(
      base::WrapUnique(new LaserPointerView(life_duration, presentation_delay,
                                            stationary_point_delay)),
      container);
}

void LaserPointerView::AddNewPoint(const gfx::PointF& new_point,
                                   const base::TimeTicks& new_time) {
  TRACE_EVENT1("ui", "LaserPointerView::AddNewPoint", "new_point",
               new_point.ToString());
  TRACE_COUNTER1("ui", "LaserPointerPredictionError",
                 predicted_laser_points_.GetNumberOfPoints()
                     ? std::round((new_point -
                                   predicted_laser_points_.GetOldest().location)
                                      .Length())
                     : 0);
  AddPoint(new_point, new_time);
  stationary_point_location_ = new_point;
  stationary_timer_.Reset();
}

void LaserPointerView::FadeOut(base::OnceClosure done) {
  fadeout_done_ = std::move(done);
}

void LaserPointerView::AddPoint(const gfx::PointF& point,
                                const base::TimeTicks& time) {
  laser_points_.AddPoint(point, time, kPointColor);

  // Current time is needed to determine presentation time and the number of
  // predicted points to add.
  base::TimeTicks current_time = ui::EventTimeForNow();
  predicted_laser_points_.Predict(
      laser_points_, current_time, presentation_delay_,
      GetWidget()->GetNativeView()->GetBoundsInScreen().size());

  // Move forward to next presentation time.
  base::TimeTicks next_presentation_time = current_time + presentation_delay_;
  laser_points_.MoveForwardToTime(next_presentation_time);
  predicted_laser_points_.MoveForwardToTime(next_presentation_time);

  ScheduleUpdateBuffer();
}

void LaserPointerView::ScheduleUpdateBuffer() {
  if (pending_update_buffer_)
    return;

  pending_update_buffer_ = true;
  base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
      FROM_HERE, base::BindOnce(&LaserPointerView::UpdateBuffer,
                                weak_ptr_factory_.GetWeakPtr()));
}

void LaserPointerView::UpdateBuffer() {
  DCHECK(pending_update_buffer_);
  pending_update_buffer_ = false;

  gfx::Rect damage_rect = laser_content_rect_;
  laser_content_rect_ = GetBoundingBox();
  damage_rect.Union(laser_content_rect_);

  {
    TRACE_EVENT1("ui", "LaserPointerView::UpdateBuffer::Paint", "damage",
                 damage_rect.ToString());

    auto paint = GetScopedPaint(damage_rect);
    Draw(paint->canvas());
  }

  UpdateSurface(laser_content_rect_, damage_rect, /*auto_refresh=*/true);
}

void LaserPointerView::UpdateTime() {
  if (fadeout_done_.is_null()) {
    // Pointer still active but stationary, repeat the most recent position.
    AddPoint(stationary_point_location_, ui::EventTimeForNow());
    return;
  }

  if (laser_points_.IsEmpty() && predicted_laser_points_.IsEmpty()) {
    // No points left to show, complete the fadeout.
    std::move(fadeout_done_).Run();  // This will delete the LaserPointerView.
    return;
  }

  // Do not add the point but advance the time if the view is in process of
  // fading away.
  base::TimeTicks next_presentation_time =
      ui::EventTimeForNow() + presentation_delay_;
  laser_points_.MoveForwardToTime(next_presentation_time);
  predicted_laser_points_.MoveForwardToTime(next_presentation_time);

  ScheduleUpdateBuffer();
}

gfx::Rect LaserPointerView::GetBoundingBox() {
  // Early out if there are no points.
  if (laser_points_.IsEmpty() && predicted_laser_points_.IsEmpty())
    return gfx::Rect();

  // Merge bounding boxes. Note that this is not a union as the bounding box
  // for a single point is empty.
  gfx::Rect bounding_box;
  if (laser_points_.IsEmpty()) {
    bounding_box = predicted_laser_points_.GetBoundingBox();
  } else if (predicted_laser_points_.IsEmpty()) {
    bounding_box = laser_points_.GetBoundingBox();
  } else {
    gfx::Rect rect = laser_points_.GetBoundingBox();
    gfx::Rect predicted_rect = predicted_laser_points_.GetBoundingBox();
    bounding_box.SetByBounds(std::min(predicted_rect.x(), rect.x()),
                             std::min(predicted_rect.y(), rect.y()),
                             std::max(predicted_rect.right(), rect.right()),
                             std::max(predicted_rect.bottom(), rect.bottom()));
  }

  // Expand the bounding box so that it includes the radius of the points on the
  // edges and antialiasing.
  const int kOutsetForAntialiasing = 1;
  int outset = kPointInitialRadius + kOutsetForAntialiasing;
  bounding_box.Inset(-outset);
  return bounding_box;
}

void LaserPointerView::Draw(gfx::Canvas& canvas) {
  cc::PaintFlags flags;
  flags.setStyle(cc::PaintFlags::kFill_Style);
  flags.setAntiAlias(true);

  int num_points = laser_points_.GetNumberOfPoints() +
                   predicted_laser_points_.GetNumberOfPoints();
  if (!num_points)
    return;

  gfx::PointF previous_point;
  std::vector<gfx::PointF> previous_segment_points;
  float previous_radius;

  for (int i = 0; i < num_points; ++i) {
    gfx::PointF current_point;
    float fadeout_factor;
    if (i < laser_points_.GetNumberOfPoints()) {
      current_point = laser_points_.points()[i].location;
      fadeout_factor = laser_points_.GetFadeoutFactor(i);
    } else {
      int index = i - laser_points_.GetNumberOfPoints();
      current_point = predicted_laser_points_.points()[index].location;
      fadeout_factor = predicted_laser_points_.GetFadeoutFactor(index);
    }

    // Set the radius and opacity based on the age of the point.
    float current_radius = LinearInterpolate(kPointInitialRadius,
                                             kPointFinalRadius, fadeout_factor);
    int current_opacity = static_cast<int>(LinearInterpolate(
        kPointInitialOpacity, kPointFinalOpacity, fadeout_factor));

    if (i < laser_points_.GetNumberOfPoints())
      flags.setColor(SkColorSetA(kPointColor, current_opacity));
    else
      flags.setColor(SkColorSetA(kPredictionPointColor, current_opacity));

    if (i != 0) {
      // If we draw laser_points_ that are within a stroke width of each other,
      // the result will be very jagged, unless we are on the last point, then
      // we draw regardless.
      float distance_threshold = current_radius * 2.0f;
      if (DistanceBetweenPoints(previous_point, current_point) <=
              distance_threshold &&
          i != num_points - 1) {
        continue;
      }

      LaserSegment current_segment(previous_segment_points,
                                   gfx::PointF(previous_point),
                                   gfx::PointF(current_point), previous_radius,
                                   current_radius, i == num_points - 1);
      canvas.DrawPath(current_segment.path(), flags);
      previous_segment_points = current_segment.path_points();
    }

    previous_radius = current_radius;
    previous_point = current_point;
  }

  // Draw the last point as a circle.
  flags.setStyle(cc::PaintFlags::kFill_Style);
  canvas.DrawCircle(previous_point, kPointInitialRadius, flags);
}

}  // namespace ash