1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596

ash / wm / scoped_layer_tree_synchronizer.cc [blame]

// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ash/wm/scoped_layer_tree_synchronizer.h"

#include <cmath>
#include <cstdlib>
#include <utility>
#include <vector>

#include "base/check_op.h"
#include "base/numerics/angle_conversions.h"
#include "ui/aura/window.h"
#include "ui/compositor/layer.h"
#include "ui/gfx/geometry/mask_filter_info.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/rrect_f.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/vector2d_f.h"

namespace ash {
namespace {

using Corner = gfx::RRectF::Corner;

float Square(float n) {
  return std::pow(n, 2);
}

// Represents an arc of the circle, defined by its center, radius and start and
// end angles.
struct CircularArc {
  static constexpr int kDegree0 = 0;
  static constexpr int kDegree90 = 90;
  static constexpr int kDegree180 = 180;
  static constexpr int kDegree270 = 270;
  static constexpr int kDegree360 = 360;

  gfx::PointF center;
  float radius;

  // Angles are in degrees.
  int start_angle;
  int end_angle;

  bool Intersects(const CircularArc& other) const {
    return FindIntersection(other);
  }

  // Return true if the arc inclusively contains the `point`.
  bool InclusivelyContains(const gfx::PointF point) const {
    const gfx::Vector2dF distance_vec = point - center;
    if (distance_vec.Length() > radius) {
      return false;
    }

    // atan2 range is angle between (-PI, PI]. Therefore we must transform the
    // angle in range [0, 2*PI).
    // Note: atan2 assumes that the positive y-axis runs from bottom
    // to top, whereas our positive y-axis runs from top to bottom. Therefore,
    // we need to flip the direction y vector.
    const float angle_in_radians =
        std::atan2(-distance_vec.y(), distance_vec.x());

    const int normalized_angle_in_degree =
        base::RadToDeg(angle_in_radians) +
        (angle_in_radians < kDegree0 ? kDegree360 : kDegree0);

    return normalized_angle_in_degree >= start_angle &&
           normalized_angle_in_degree <= end_angle;
  }

  gfx::PointF GetMidPointOnArc() const {
    const float mid_angle_in_degree = (start_angle + end_angle) / 2;
    const float mid_angle_in_radian = base::DegToRad(mid_angle_in_degree);

    // The parametric equations for a circle with center (cx, cy) and radius r
    // are:
    // x = cx + r * cos(theta)
    // y = cy + r * sin(theta)
    // where theta is the angle counter-clockwise from +x axis.
    // Note: For y coordinate, we have a negative sign calculation since
    // our y-axis runs positive top-down.
    return {center.x() + radius * std::cos(mid_angle_in_radian),
            center.y() - radius * std::sin(mid_angle_in_radian)};
  }

 private:
  using Points = std::pair<std::vector<gfx::PointF>, /*infinite_points=*/bool>;

  bool FindIntersection(const CircularArc& other) const {
    const Points points = FindIntersectionBetweenTwoCircles(
        center, radius, other.center, other.radius);

    // If the intersection points between two arcs are infinite, it indicates
    // that both arcs belong to the same circle.
    if (points.second) {
      return start_angle >= other.start_angle && end_angle <= other.end_angle;
    }

    for (const auto& point : points.first) {
      if (InclusivelyContains(point) && other.InclusivelyContains(point)) {
        return true;
      }
    }

    return false;
  }

  // Returns the points intersection of two circles centered at points c1, c2
  // and have radius of r1, r2 respectively. If the two circles, are identical,
  // the output has `infinite_points` boolean set to true.
  // For mathematical explanation, see b/326468096.
  Points FindIntersectionBetweenTwoCircles(const gfx::PointF& c1,
                                           float r1,
                                           const gfx::PointF& c2,
                                           float r2) const {
    static constexpr Points kNoIntersectingPoint = {{}, false};
    static constexpr Points kInfiniteIntersectingPoints = {{}, true};

    // Same circles.
    if (c1 == c2 && r1 == r2) {
      return kInfiniteIntersectingPoints;
    }

    // Distance between the centers of the two cycles.
    const gfx::Vector2dF distance_vec = c2 - c1;
    const float d = distance_vec.Length();

    // No intersection.
    if (d > r1 + r2) {
      return kNoIntersectingPoint;
    }

    // One circle contains the other.
    if (d < std::abs(r1 - r2)) {
      return kNoIntersectingPoint;
    }

    // Single intersection point. Circles are tangent to each other.
    if (d == r1 + r2) {
      float x = (c1.x() + c2.x()) / 2;
      float y = (c1.y() + c2.y()) / 2;
      return {{gfx::PointF(x, y)}, /*infinite_points=*/false};
    }

    // Circles intersect at two points.
    CHECK_GT(d, std::abs(r1 - r2));
    CHECK_LT(d, r1 + r2);

    float a = (Square(r1) - Square(r2) + Square(d)) / (2 * Square(d));
    float h = std::sqrt(Square(r1) - Square(a)) / d;

    float p5_x = c1.x() + a * distance_vec.x();
    float p5_y = c1.y() + a * distance_vec.y();

    float p3_x = p5_x - h * distance_vec.y();
    float p3_y = p5_y + h * distance_vec.x();

    float p4_x = p3_x + h * distance_vec.y();
    float p4_y = p3_y - h * distance_vec.x();

    return {{gfx::PointF(p3_x, p3_y), gfx::PointF(p4_x, p4_y)},
            /*infinite_points=*/false};
  }
};

// Returns the arc that represents the corner of `rrectf`.
CircularArc GetArcForCorner(const gfx::RRectF& rrectf, Corner corner) {
  const gfx::RectF bounding_box = rrectf.CornerBoundingRect(corner);

  CircularArc corner_arc;
  const auto radii = rrectf.GetCornerRadii(corner);
  corner_arc.radius = radii.x();

  switch (corner) {
    case Corner::kUpperRight:
      corner_arc.center = bounding_box.bottom_left();
      corner_arc.start_angle = CircularArc::kDegree0;
      corner_arc.end_angle = CircularArc::kDegree90;
      break;
    case Corner::kUpperLeft:
      corner_arc.center = bounding_box.bottom_right();
      corner_arc.start_angle = CircularArc::kDegree90;
      corner_arc.end_angle = CircularArc::kDegree180;
      break;
    case Corner::kLowerLeft:
      corner_arc.center = bounding_box.top_right();
      corner_arc.start_angle = CircularArc::kDegree180;
      corner_arc.end_angle = CircularArc::kDegree270;
      break;
    case Corner::kLowerRight:
      corner_arc.center = bounding_box.origin();
      corner_arc.start_angle = CircularArc::kDegree270;
      corner_arc.end_angle = CircularArc::kDegree360;
      break;
  }

  return corner_arc;
}

// Returns true if the point `p` is contained by `rrectf`. It takes into account
// the curvature of the corners.
bool CheckCornerContainment(const gfx::PointF& p, const gfx::RRectF& rrectf) {
  const gfx::RectF rectf = rrectf.rect();
  if (!rectf.InclusiveContains(p)) {
    return false;
  }

  Corner containing_corner;
  gfx::PointF canonical_point;  // p translated to one of the quadrants

  const float x = p.x();
  const float y = p.y();

  const gfx::Vector2dF lower_left_corner_radii =
      rrectf.GetCornerRadii(Corner::kLowerLeft);
  const gfx::Vector2dF lower_right_corner_radii =
      rrectf.GetCornerRadii(Corner::kLowerRight);
  const gfx::Vector2dF upper_left_corner_radii =
      rrectf.GetCornerRadii(Corner::kUpperLeft);
  const gfx::Vector2dF upper_right_corner_radii =
      rrectf.GetCornerRadii(Corner::kUpperRight);

  if (x < rectf.x() + upper_left_corner_radii.x() &&
      y < rectf.y() + upper_left_corner_radii.y()) {
    // Upper left corner.
    containing_corner = Corner::kUpperLeft;
    canonical_point.SetPoint(x - (rectf.x() + upper_left_corner_radii.x()),
                             y - (rectf.y() + upper_left_corner_radii.y()));
    CHECK_LT(canonical_point.x(), 0);
    CHECK_LT(canonical_point.y(), 0);
  } else if (x < rectf.x() + lower_left_corner_radii.x() &&
             y > rectf.bottom() - lower_left_corner_radii.y()) {
    // Lower left corner.
    containing_corner = Corner::kLowerLeft;
    canonical_point.SetPoint(
        x - (rectf.x() + lower_left_corner_radii.x()),
        y - (rectf.bottom() - lower_left_corner_radii.y()));
    CHECK_LT(canonical_point.x(), 0);
    CHECK_GT(canonical_point.y(), 0);
  } else if (x > rectf.right() - upper_right_corner_radii.x() &&
             y < rectf.y() + upper_right_corner_radii.y()) {
    // Upper right corner.
    containing_corner = Corner::kUpperRight;
    canonical_point.SetPoint(x - (rectf.right() - upper_right_corner_radii.x()),
                             y - (rectf.y() + upper_right_corner_radii.y()));
    CHECK_GT(canonical_point.x(), 0);
    CHECK_LT(canonical_point.y(), 0);
  } else if (x > rectf.right() - lower_right_corner_radii.x() &&
             y > rectf.bottom() - lower_right_corner_radii.y()) {
    // Lower right corner.
    containing_corner = Corner::kLowerRight;
    canonical_point.SetPoint(
        x - (rectf.right() - lower_right_corner_radii.x()),
        y - (rectf.bottom() - lower_right_corner_radii.y()));
    CHECK_GT(canonical_point.x(), 0);
    CHECK_GT(canonical_point.y(), 0);
  } else {
    // Not in any of the corners.
    return true;
  }

  // A point is in an ellipse (in standard position) if:
  //      x^2     y^2
  //     ----- + ----- <= 1
  //      a^2     b^2
  // or :
  //     b^2*x^2 + a^2*y^2 <= (ab)^2
  const gfx::Vector2dF containing_corner_radii =
      rrectf.GetCornerRadii(containing_corner);
  const float distance =
      Square(canonical_point.x()) * Square(containing_corner_radii.y()) +
      Square(canonical_point.y()) * Square(containing_corner_radii.x());

  return distance <=
         Square(containing_corner_radii.x() * containing_corner_radii.y());
}

gfx::PointF GetCornerCoordinates(const gfx::RectF& rectf, Corner corner) {
  switch (corner) {
    case Corner::kUpperLeft:
      return rectf.origin();
    case Corner::kUpperRight:
      return rectf.top_right();
    case Corner::kLowerRight:
      return rectf.bottom_right();
    case Corner::kLowerLeft:
      return rectf.bottom_left();
  }
}

// Determine whether the corner radius of `rect` should be overridden to match
// the corner radius of `containing_rect`. If `consider_curvature` is true,
// the curvature of `rect` is taken into account.
bool ShouldOverrideCornerRadius(const gfx::RRectF& rect,
                                const gfx::RRectF& containing_rect,
                                Corner corner,
                                bool consider_curvature) {
  if (!rect.HasRoundedCorners() || !containing_rect.HasRoundedCorners()) {
    return false;
  }

  if (!containing_rect.rect().Contains(rect.rect())) {
    return false;
  }

  const gfx::Vector2dF rect_corner_radii = rect.GetCornerRadii(corner);
  const gfx::Vector2dF containing_rect_corner_radii =
      containing_rect.GetCornerRadii(corner);

  // If both the corners are square, it does not make sense to override the
  // radius of the corner.
  if (rect_corner_radii.IsZero() && containing_rect_corner_radii.IsZero()) {
    return false;
  }

  // If only the corner of containing_rect is square, we do not need to
  // override the radius of rect since the curvature of rect's is contained by
  // the square containing rect corner.
  if (containing_rect_corner_radii.IsZero()) {
    return false;
  }

  const gfx::PointF rect_corner_coordinates =
      GetCornerCoordinates(rect.rect(), corner);

  // If only the corner of rect is square, we must override the radius if the
  // square corner of rect is located outside the curvature of the rect's
  // corner.
  if (rect_corner_radii.IsZero()) {
    return !CheckCornerContainment(rect_corner_coordinates, containing_rect);
  }

  if (!consider_curvature) {
    const gfx::PointF containing_rect_corner_coordinates =
        GetCornerCoordinates(containing_rect.rect(), corner);
    return rect_corner_coordinates == containing_rect_corner_coordinates;
  }

  const CircularArc arc = GetArcForCorner(rect, corner);
  const CircularArc other_arc = GetArcForCorner(containing_rect, corner);

  // In the case where both corners of the containing_rect and rect are rounded,
  // we should override the corner radius in following cases:
  //  * The corners (represented as arcs) intersect with each other.
  //  * The corners do not intersect but curvature of rect's corner lies outside
  //    the curvature of the containing_rect's corner.
  return arc.Intersects(other_arc) ||
         !CheckCornerContainment(arc.GetMidPointOnArc(), containing_rect);
}

using Corners = base::flat_set<gfx::RRectF::Corner>;

// Returns the set of corners of rect that need to have their radius match the
// corner radius of containing_rect.
Corners FindCornersToOverrideRadius(const gfx::RRectF& rect,
                                    const gfx::RRectF& containing_rect,
                                    bool consider_curvature) {
  Corners corners;

  for (auto corner : {Corner::kUpperLeft, Corner::kUpperRight,
                      Corner::kLowerRight, Corner::kLowerLeft}) {
    if (ShouldOverrideCornerRadius(rect, containing_rect, corner,
                                   consider_curvature)) {
      corners.insert(corner);
    }
  }

  return corners;
}

gfx::RRectF ApplyTransform(const gfx::RRectF& bounds,
                           const gfx::Transform& transform) {
  gfx::MaskFilterInfo layer_mask_info(bounds);
  layer_mask_info.ApplyTransform(transform);

  return layer_mask_info.rounded_corner_bounds();
}

gfx::Transform AccumulateTargetTransform(const ui::Layer* layer,
                                         const gfx::Transform& transform) {
  gfx::Transform translation;
  translation.Translate(layer->bounds().x(), layer->bounds().y());

  gfx::Transform accumulated_transform(transform);
  accumulated_transform.PreConcat(translation);

  const gfx::Transform& layer_transform = layer->GetTargetTransform();
  if (!layer_transform.IsIdentity()) {
    accumulated_transform.PreConcat(layer_transform);
  }

  return accumulated_transform;
}

}  // namespace

///////////////////////////////////////////////////////////////////////////////
// ScopedLayerTreeSynchronizerBase:

ScopedLayerTreeSynchronizerBase::ScopedLayerTreeSynchronizerBase(
    ui::Layer* root_layer,
    bool restore_tree)
    : root_layer_(root_layer), restore_tree_(restore_tree) {
  CHECK(root_layer);
}

ScopedLayerTreeSynchronizerBase::~ScopedLayerTreeSynchronizerBase() = default;

void ScopedLayerTreeSynchronizerBase::ResetCachedLayerInfo() {
  original_layers_info_.clear();
}

bool ScopedLayerTreeSynchronizerBase::SynchronizeLayerTreeRoundedCorners(
    ui::Layer* layer,
    bool consider_curvature,
    const gfx::RRectF& reference_bounds) {
  CHECK(root_layer_->Contains(layer));
  if (reference_bounds.IsEmpty() ||
      reference_bounds.GetType() == gfx::RRectF::Type::kRect) {
    return false;
  }

  gfx::Transform transform;
  layer->GetTargetTransformRelativeTo(root_layer_, &transform);

  return SynchronizeLayerTreeRoundedCornersImpl(layer, consider_curvature,
                                                reference_bounds, transform);
}

bool ScopedLayerTreeSynchronizerBase::SynchronizeLayerTreeRoundedCornersImpl(
    ui::Layer* layer,
    bool consider_curvature,
    const gfx::RRectF& reference_bounds,
    const gfx::Transform& transform) {
  CHECK(layer);

  // Currently, cc does not support rounded corners for layer whose transform
  // does not preserve 2d-axis alignment and ignores the radii.
  // (See `cc::Layer::SetRoundedCornerRadius()` comment).
  const bool ignore_layer = !transform.Preserves2dAxisAlignment();

  bool layer_altered = false;
  if (!ignore_layer && !layer->rounded_corner_radii().IsEmpty()) {
    // Get the `layer` bounds in the `root_layer_` coordinate space.
    // `transform` accounts for layer offset from its parent.
    const gfx::RRectF layer_rrectf(gfx::RectF(layer->bounds().size()),
                                   layer->rounded_corner_radii());
    const gfx::RRectF layer_bounds_in_root =
        ApplyTransform(layer_rrectf, transform);

    // Finds the corners of the `layer` that either intersect with the corners
    // of the `reference_bounds` or are drawn outside the curvature (if any) of
    // the reference_bounds rounded corners. The function considers the
    // curvature (if any) of the layer corners as well.
    const Corners corners_to_update = FindCornersToOverrideRadius(
        layer_bounds_in_root, reference_bounds, consider_curvature);

    if (!corners_to_update.empty()) {
      // The inverse transform coverts from the coordinate space of
      // `root_layer_` to the coordinate space of 'layer'.
      const gfx::Transform inverse_transform = transform.GetCheckedInverse();
      const auto reference_bounds_in_local =
          ApplyTransform(reference_bounds, inverse_transform);

      gfx::RoundedCornersF radii = layer->rounded_corner_radii();
      radii.Set(
          corners_to_update.contains(Corner::kUpperLeft)
              ? reference_bounds_in_local.GetCornerRadii(Corner::kUpperLeft).x()
              : radii.upper_left(),
          corners_to_update.contains(Corner::kUpperRight)
              ? reference_bounds_in_local.GetCornerRadii(Corner::kUpperRight)
                    .x()
              : radii.upper_right(),
          corners_to_update.contains(Corner::kLowerRight)
              ? reference_bounds_in_local.GetCornerRadii(Corner::kLowerRight)
                    .x()
              : radii.lower_right(),
          corners_to_update.contains(Corner::kLowerLeft)
              ? reference_bounds_in_local.GetCornerRadii(Corner::kLowerLeft).x()
              : radii.lower_left());

      if (radii != layer->rounded_corner_radii()) {
        // If `original_layers_info_` has an entry, it means the layer
        // radii has been changed in a prior call to
        // `SynchronizeLayerTreeRoundedCorners()`
        if (restore_tree_ && !original_layers_info_.contains(layer)) {
          original_layers_info_.insert({layer,
                                        {layer->rounded_corner_radii(),
                                         layer->is_fast_rounded_corner()}});
        }

        layer->SetRoundedCornerRadius(radii);
        layer->SetIsFastRoundedCorner(/*enable=*/!radii.IsEmpty());
        layer_altered = true;
      }
    }
  }

  bool subtree_altered = false;
  for (ui::Layer* child : layer->children()) {
    subtree_altered |= SynchronizeLayerTreeRoundedCornersImpl(
        child, consider_curvature, reference_bounds,
        AccumulateTargetTransform(child, transform));
  }

  return subtree_altered || layer_altered;
}

void ScopedLayerTreeSynchronizerBase::RestoreLayerTree(ui::Layer* layer) {
  if (original_layers_info_.empty()) {
    return;
  }

  RestoreLayerTreeImpl(layer);
}

void ScopedLayerTreeSynchronizerBase::RestoreLayerTreeImpl(ui::Layer* layer) {
  if (original_layers_info_.contains(layer)) {
    const auto& info = original_layers_info_.at(layer);
    layer->SetRoundedCornerRadius(info.first);
    layer->SetIsFastRoundedCorner(/*enable=*/info.second);
  }

  for (ui::Layer* child : layer->children()) {
    RestoreLayerTreeImpl(child);
  }
}

///////////////////////////////////////////////////////////////////////////////
// ScopedLayerTreeSynchronizer:

ScopedLayerTreeSynchronizer::ScopedLayerTreeSynchronizer(ui::Layer* root_layer,
                                                         bool restore_tree)
    : ScopedLayerTreeSynchronizerBase(root_layer, restore_tree) {}

ScopedLayerTreeSynchronizer::~ScopedLayerTreeSynchronizer() {
  Restore();
}

void ScopedLayerTreeSynchronizer::SynchronizeRoundedCorners(
    ui::Layer* layer,
    const gfx::RRectF& reference_bounds) {
  SynchronizeLayerTreeRoundedCorners(layer, /*consider_curvature=*/true,
                                     reference_bounds);
}

void ScopedLayerTreeSynchronizer::Restore() {
  RestoreLayerTree(root_layer());
  ResetCachedLayerInfo();
}

///////////////////////////////////////////////////////////////////////////////
// ScopedWindowTreeSynchronizer:

ScopedWindowTreeSynchronizer::ScopedWindowTreeSynchronizer(
    aura::Window* root_window,
    bool restore_tree)
    : ScopedLayerTreeSynchronizerBase(root_window->layer(), restore_tree) {}

ScopedWindowTreeSynchronizer::~ScopedWindowTreeSynchronizer() {
  Restore();
}

void ScopedWindowTreeSynchronizer::SynchronizeRoundedCorners(
    aura::Window* window,
    bool consider_curvature,
    const gfx::RRectF& reference_bounds,
    TransientTreeIgnorePredicate ignore_predicate) {
  for (auto* window_iter : GetTransientTreeIterator(window, ignore_predicate)) {
    const bool altered = SynchronizeLayerTreeRoundedCorners(
        window_iter->layer(), consider_curvature, reference_bounds);
    if (altered &&
        !altered_window_observations_.IsObservingSource(window_iter)) {
      altered_window_observations_.AddObservation(window_iter);
    }
  }
}

void ScopedWindowTreeSynchronizer::Restore() {
  for (aura::Window* window : altered_window_observations_.sources()) {
    RestoreLayerTree(window->layer());
  }

  ResetCachedLayerInfo();
  altered_window_observations_.RemoveAllObservations();
}

void ScopedWindowTreeSynchronizer::OnWindowDestroying(aura::Window* window) {
  altered_window_observations_.RemoveObservation(window);
}

}  // namespace ash