1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
base / allocator / partition_allocator / src / partition_alloc / freeslot_bitmap_unittest.cc [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/freeslot_bitmap.h"
#include <cstdint>
#include <limits>
#include "partition_alloc/buildflags.h"
#include "partition_alloc/freeslot_bitmap_constants.h"
#include "partition_alloc/partition_alloc.h"
#include "partition_alloc/partition_alloc_constants.h"
#include "partition_alloc/partition_alloc_forward.h"
#include "partition_alloc/partition_page.h"
#include "partition_alloc/partition_root.h"
#include "testing/gtest/include/gtest/gtest.h"
// This test is disabled when MEMORY_TOOL_REPLACES_ALLOCATOR is defined because
// we cannot locate the freeslot bitmap address in that case.
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP) && \
!defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
namespace partition_alloc::internal {
namespace {
class PartitionAllocFreeSlotBitmapTest : public ::testing::Test {
protected:
static constexpr FreeSlotBitmapCellType kAllUsed = 0u;
static constexpr FreeSlotBitmapCellType kAllFree =
std::numeric_limits<FreeSlotBitmapCellType>::max();
void SetUp() override {
// Allocates memory and creates a pseudo superpage in it. We need to
// allocate |2 * kSuperPageSize| so that a whole superpage is contained in
// the allocated region.
allocator_.init(PartitionOptions{});
allocated_ptr_ = reinterpret_cast<uintptr_t>(
allocator_.root()->Alloc(2 * kSuperPageSize));
super_page_ = (allocated_ptr_ + kSuperPageSize) & kSuperPageBaseMask;
// Checks that the whole superpage is in the allocated region.
PA_DCHECK(super_page_ + kSuperPageSize <=
allocated_ptr_ + 2 * kSuperPageSize);
}
void TearDown() override {
allocator_.root()->Free(reinterpret_cast<void*>(allocated_ptr_));
}
// Returns the |index|-th slot address in the virtual superpage. It assumes
// that there are no slot spans and the superpage is only filled with the slot
// of size |kSmallestBucket|.
uintptr_t SlotAddr(size_t index) {
return SuperPagePayloadBegin(super_page_, false) + index * kSmallestBucket;
}
// Returns the last slot address in the virtual superpage. It assumes that
// there are no slot spans but the superpage is only filled with the slot of
// size |kSmallestBucket|.
uintptr_t LastSlotAddr() {
return super_page_ + kSuperPageSize - PartitionPageSize() - kSmallestBucket;
}
private:
uintptr_t allocated_ptr_;
uintptr_t super_page_;
PartitionAllocator allocator_;
};
} // namespace
TEST_F(PartitionAllocFreeSlotBitmapTest, MarkFirstSlotAsUsed) {
uintptr_t slot_addr = SlotAddr(0);
FreeSlotBitmapMarkSlotAsFree(slot_addr);
EXPECT_FALSE(FreeSlotBitmapSlotIsUsed(slot_addr));
FreeSlotBitmapMarkSlotAsUsed(slot_addr);
EXPECT_TRUE(FreeSlotBitmapSlotIsUsed(slot_addr));
}
TEST_F(PartitionAllocFreeSlotBitmapTest, MarkFirstSlotAsFree) {
uintptr_t slot_addr = SlotAddr(0);
// All slots are set to "used" by default.
EXPECT_TRUE(FreeSlotBitmapSlotIsUsed(slot_addr));
FreeSlotBitmapMarkSlotAsFree(slot_addr);
EXPECT_FALSE(FreeSlotBitmapSlotIsUsed(slot_addr));
}
TEST_F(PartitionAllocFreeSlotBitmapTest, MarkAllBitsInCellAsUsed) {
const size_t kFirstSlotAddr = SlotAddr(0);
const size_t kLastSlotAddr = SlotAddr(kFreeSlotBitmapBitsPerCell);
auto [cell_first_slot, bit_index_first_slot] =
GetFreeSlotBitmapCellPtrAndBitIndex(kFirstSlotAddr);
auto [cell_last_slot, bit_index_last_slot] =
GetFreeSlotBitmapCellPtrAndBitIndex(kLastSlotAddr);
// Check that the bit corresponding to |kFirstSlotAddr| is the first bit in
// some cell (= |cell_first_slot|), and the bit for |kLastSlotAddr| is the
// first bit in the next cell. This means that we are manipulating all the
// bits in |cell_first_slot| in this test.
EXPECT_EQ(0u, bit_index_first_slot);
EXPECT_EQ(0u, bit_index_last_slot);
EXPECT_NE(cell_first_slot, cell_last_slot);
for (size_t slot_addr = kFirstSlotAddr; slot_addr < kLastSlotAddr;
slot_addr += kSmallestBucket) {
FreeSlotBitmapMarkSlotAsFree(slot_addr);
}
// Check all the bits in |cell_first_slot| are 1 (= free).
EXPECT_EQ(kAllFree, *cell_first_slot);
for (size_t slot_addr = kFirstSlotAddr; slot_addr < kLastSlotAddr;
slot_addr += kSmallestBucket) {
FreeSlotBitmapMarkSlotAsUsed(slot_addr);
}
// Check all the bits in |cell_first_slot| are 0 (= used).
EXPECT_EQ(kAllUsed, *cell_first_slot);
}
TEST_F(PartitionAllocFreeSlotBitmapTest, MarkLastSlotAsUsed) {
uintptr_t last_slot_addr = LastSlotAddr();
FreeSlotBitmapMarkSlotAsFree(last_slot_addr);
EXPECT_FALSE(FreeSlotBitmapSlotIsUsed(last_slot_addr));
FreeSlotBitmapMarkSlotAsUsed(last_slot_addr);
EXPECT_TRUE(FreeSlotBitmapSlotIsUsed(last_slot_addr));
}
TEST_F(PartitionAllocFreeSlotBitmapTest, ResetBitmap) {
const size_t kNumSlots = 3 * kFreeSlotBitmapBitsPerCell;
for (size_t i = 0; i < kNumSlots; ++i) {
FreeSlotBitmapMarkSlotAsFree(SlotAddr(i));
}
auto [cell_first_slot, bit_index_first_slot] =
GetFreeSlotBitmapCellPtrAndBitIndex(SlotAddr(0));
EXPECT_EQ(0u, bit_index_first_slot);
EXPECT_EQ(kAllFree, *cell_first_slot);
EXPECT_EQ(kAllFree, *(cell_first_slot + 1));
EXPECT_EQ(kAllFree, *(cell_first_slot + 2));
FreeSlotBitmapReset(SlotAddr(kFreeSlotBitmapBitsPerCell),
SlotAddr(2 * kFreeSlotBitmapBitsPerCell),
kSmallestBucket);
EXPECT_EQ(kAllFree, *cell_first_slot);
EXPECT_EQ(kAllUsed, *(cell_first_slot + 1));
EXPECT_EQ(kAllFree, *(cell_first_slot + 2));
}
TEST_F(PartitionAllocFreeSlotBitmapTest, ResetBitmapWithZeroLengthRange) {
const size_t kNumSlots = 3 * kFreeSlotBitmapBitsPerCell;
for (size_t i = 0; i < kNumSlots; ++i) {
FreeSlotBitmapMarkSlotAsFree(SlotAddr(i));
}
// Test with an aligned address.
uintptr_t aligned_addr = SlotAddr(0);
auto [cell_aligned, bit_index_aligned] =
GetFreeSlotBitmapCellPtrAndBitIndex(aligned_addr);
EXPECT_EQ(0u, bit_index_aligned);
EXPECT_EQ(kAllFree, *cell_aligned);
FreeSlotBitmapReset(aligned_addr, aligned_addr, kSmallestBucket);
EXPECT_EQ(kAllFree, *cell_aligned);
// Test with a non-aligned address.
uintptr_t non_aligned_addr = SlotAddr(1);
auto [cell_non_aligned, bit_index_non_aligned] =
GetFreeSlotBitmapCellPtrAndBitIndex(non_aligned_addr);
EXPECT_EQ(1u, bit_index_non_aligned);
EXPECT_EQ(kAllFree, *cell_non_aligned);
FreeSlotBitmapReset(non_aligned_addr, non_aligned_addr, kSmallestBucket);
EXPECT_EQ(kAllFree, *cell_non_aligned);
}
TEST_F(PartitionAllocFreeSlotBitmapTest, ResetSingleBitInMiddleOfCell) {
const size_t kNumSlots = 3 * kFreeSlotBitmapBitsPerCell;
for (size_t i = 0; i < kNumSlots; ++i) {
FreeSlotBitmapMarkSlotAsFree(SlotAddr(i));
}
// Choose a slot address that is in the middle of a cell.
uintptr_t mid_cell_slot_addr = SlotAddr(kFreeSlotBitmapBitsPerCell / 2);
auto [cell_mid, bit_index_mid] =
GetFreeSlotBitmapCellPtrAndBitIndex(mid_cell_slot_addr);
EXPECT_NE(0u, bit_index_mid);
EXPECT_TRUE(*cell_mid & CellWithAOne(bit_index_mid));
// Reset the single bit in the middle of the cell.
FreeSlotBitmapReset(mid_cell_slot_addr, mid_cell_slot_addr + kSmallestBucket,
kSmallestBucket);
EXPECT_FALSE(*cell_mid & CellWithAOne(bit_index_mid));
}
} // namespace partition_alloc::internal
#endif // PA_BUILDFLAG(USE_FREESLOT_BITMAP) &&
// !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)