1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245

base / allocator / partition_allocator / src / partition_alloc / hardening_unittest.cc [blame]

// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <cstdint>
#include <string>
#include <vector>

#include "partition_alloc/build_config.h"
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/partition_freelist_entry.h"
#include "partition_alloc/partition_page.h"
#include "partition_alloc/partition_root.h"
#include "partition_alloc/use_death_tests.h"
#include "testing/gtest/include/gtest/gtest.h"

// With *SAN, PartitionAlloc is rerouted to malloc().
#if !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)

namespace partition_alloc::internal {
namespace {

#if PA_USE_DEATH_TESTS() && PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)

TEST(HardeningTest, PartialCorruption) {
  std::string important_data("very important");
  char* to_corrupt = const_cast<char*>(important_data.c_str());

  PartitionOptions opts;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);
  void* data2 = root.Alloc(kAllocSize);
  root.Free(data2);
  root.Free(data);

  // root->bucket->active_slot_span_head->freelist_head points to data, next_
  // points to data2. We can corrupt *data to overwrite the next_ pointer.
  // Even if it looks reasonable (valid encoded pointer), freelist corruption
  // detection will make the code crash, because shadow_ doesn't match
  // encoded_next_.
  root.get_freelist_dispatcher()->EmplaceAndInitForTest(
      root.ObjectToSlotStart(data), to_corrupt, false);

  EXPECT_DEATH(root.Alloc(kAllocSize), "");
}

TEST(HardeningTest, OffHeapPointerCrashing) {
  std::string important_data("very important");
  char* to_corrupt = const_cast<char*>(important_data.c_str());

  PartitionOptions opts;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);
  void* data2 = root.Alloc(kAllocSize);
  root.Free(data2);
  root.Free(data);

  // See "PartialCorruption" above for details. This time, make shadow_
  // consistent.
  root.get_freelist_dispatcher()->EmplaceAndInitForTest(
      root.ObjectToSlotStart(data), to_corrupt, true);

  // Crashes, because |to_corrupt| is not on the same superpage as data.
  EXPECT_DEATH(root.Alloc(kAllocSize), "");
}

TEST(HardeningTest, MetadataPointerCrashing) {
  PartitionOptions opts;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);
  void* data2 = root.Alloc(kAllocSize);
  root.Free(data2);
  root.Free(data);

  uintptr_t slot_start = root.ObjectToSlotStart(data);
  auto* metadata =
      SlotSpanMetadata<MetadataKind::kReadOnly>::FromSlotStart(slot_start);

  root.get_freelist_dispatcher()->EmplaceAndInitForTest(slot_start, metadata,
                                                        true);

  // Crashes, because |metadata| points inside the metadata area.
  EXPECT_DEATH(root.Alloc(kAllocSize), "");
}
#endif  // PA_USE_DEATH_TESTS() && PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)

// Below test also misbehaves on Android; as above, death tests don't
// quite work (crbug.com/1240184), and having free slot bitmaps enabled
// force the expectations below to crash.
#if !PA_BUILDFLAG(IS_ANDROID)

TEST(HardeningTest, SuccessfulCorruption) {
  PartitionOptions opts;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  uintptr_t* zero_vector = reinterpret_cast<uintptr_t*>(
      root.Alloc<AllocFlags::kZeroFill>(100 * sizeof(uintptr_t), ""));
  ASSERT_TRUE(zero_vector);
  // Pointer to the middle of an existing allocation.
  uintptr_t* to_corrupt = zero_vector + 20;

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);
  void* data2 = root.Alloc(kAllocSize);
  root.Free(data2);
  root.Free(data);

  root.get_freelist_dispatcher()->EmplaceAndInitForTest(
      root.ObjectToSlotStartUnchecked(data), to_corrupt, true);

#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
  // This part crashes with freeslot bitmap because it detects freelist
  // corruptions, which is rather desirable behavior.
  EXPECT_DEATH_IF_SUPPORTED(root.Alloc(kAllocSize), "");
#else
  // Next allocation is what was in
  // root->bucket->active_slot_span_head->freelist_head, so not the corrupted
  // pointer.
  void* new_data = root.Alloc(kAllocSize);
  ASSERT_EQ(new_data, data);

#if !PA_CONFIG(ENFORCE_SLOT_STARTS)
  // Not crashing, because a zeroed area is a "valid" freelist entry.
  void* new_data2 = root.Alloc(kAllocSize);
  // Now we have a pointer to the middle of an existing allocation.
  EXPECT_EQ(new_data2, to_corrupt);
#else
  // When `SlotStart` enforcement is on, `AllocInternalNoHooks()` will
  // call `SlotStartToObject()` and `CHECK()` that it's a slot start.
  EXPECT_DEATH_IF_SUPPORTED(root.Alloc(kAllocSize), "");
#endif  // !PA_CONFIG(ENFORCE_SLOT_STARTS)
#endif  // PA_BUILDFLAG(USE_FREESLOT_BITMAP)
}
#endif  // !PA_BUILDFLAG(IS_ANDROID)

#if PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
#if PA_USE_DEATH_TESTS() && PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
TEST(HardeningTest, ConstructPoolOffsetFromStackPointerCrashing) {
  int num_to_corrupt = 12345;
  int* to_corrupt = &num_to_corrupt;

  PartitionOptions opts;
  opts.use_pool_offset_freelists = PartitionOptions::kEnabled;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);

  EXPECT_DEATH(root.get_freelist_dispatcher()->EmplaceAndInitForTest(
                   root.ObjectToSlotStart(data), to_corrupt, true),
               "");
}

TEST(HardeningTest, PoolOffsetMetadataPointerCrashing) {
  PartitionOptions opts;
  opts.use_pool_offset_freelists = PartitionOptions::kEnabled;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);
  void* data2 = root.Alloc(kAllocSize);
  root.Free(data2);
  root.Free(data);

  uintptr_t slot_start = root.ObjectToSlotStart(data);
  auto* metadata =
      SlotSpanMetadata<MetadataKind::kReadOnly>::FromSlotStart(slot_start);

  root.get_freelist_dispatcher()->EmplaceAndInitForTest(slot_start, metadata,
                                                        true);

  // Crashes, because |metadata| points inside the metadata area.
  EXPECT_DEATH(root.Alloc(kAllocSize), "");
}
#endif  // PA_USE_DEATH_TESTS() && PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)

#if !PA_BUILDFLAG(IS_ANDROID)

TEST(HardeningTest, PoolOffsetSuccessfulCorruption) {
  PartitionOptions opts;
  opts.use_pool_offset_freelists = PartitionOptions::kEnabled;
  PartitionRoot root(opts);
  root.UncapEmptySlotSpanMemoryForTesting();

  uintptr_t* zero_vector = reinterpret_cast<uintptr_t*>(
      root.Alloc<AllocFlags::kZeroFill>(100 * sizeof(uintptr_t), ""));
  ASSERT_TRUE(zero_vector);
  // Pointer to the middle of an existing allocation.
  uintptr_t* to_corrupt = zero_vector + 20;

  const size_t kAllocSize = 100;
  void* data = root.Alloc(kAllocSize);
  void* data2 = root.Alloc(kAllocSize);
  root.Free(data2);
  root.Free(data);

  root.get_freelist_dispatcher()->EmplaceAndInitForTest(
      root.ObjectToSlotStart(data), to_corrupt, true);

#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
  // This part crashes with freeslot bitmap because it detects freelist
  // corruptions, which is rather desirable behavior.
  EXPECT_DEATH_IF_SUPPORTED(root.Alloc(kAllocSize), "");
#else
  // Next allocation is what was in
  // root->bucket->active_slot_span_head->freelist_head, so not the corrupted
  // pointer.
  void* new_data = root.Alloc(kAllocSize);
  ASSERT_EQ(new_data, data);

#if !PA_CONFIG(ENFORCE_SLOT_STARTS)

  // Not crashing, because a zeroed area is a "valid" freelist entry.
  void* new_data2 = root.Alloc(kAllocSize);
  // Now we have a pointer to the middle of an existing allocation.
  EXPECT_EQ(new_data2, to_corrupt);

#else

  // When `SlotStart` enforcement is on, `AllocInternalNoHooks()` will
  // call `SlotStartToObject()` and `CHECK()` that it's a slot start.
  EXPECT_DEATH_IF_SUPPORTED(root.Alloc(kAllocSize), "");

#endif  // !PA_CONFIG(ENFORCE_SLOT_STARTS)

#endif  // PA_BUILDFLAG(USE_FREESLOT_BITMAP)
}
#endif  // !PA_BUILDFLAG(IS_ANDROID)
#endif  // PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
}  // namespace
}  // namespace partition_alloc::internal

#endif  // !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)