1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280

base / allocator / partition_allocator / src / partition_alloc / partition_alloc_base / time / time.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "partition_alloc/partition_alloc_base/time/time.h"

#include <atomic>
#include <cmath>
#include <limits>
#include <ostream>
#include <tuple>
#include <utility>

#include "partition_alloc/partition_alloc_base/time/time_override.h"

namespace partition_alloc::internal::base {

namespace internal {

std::atomic<TimeNowFunction> g_time_now_function{
    &subtle::TimeNowIgnoringOverride};

std::atomic<TimeNowFunction> g_time_now_from_system_time_function{
    &subtle::TimeNowFromSystemTimeIgnoringOverride};

std::atomic<TimeTicksNowFunction> g_time_ticks_now_function{
    &subtle::TimeTicksNowIgnoringOverride};

std::atomic<ThreadTicksNowFunction> g_thread_ticks_now_function{
    &subtle::ThreadTicksNowIgnoringOverride};

}  // namespace internal

// TimeDelta ------------------------------------------------------------------

int TimeDelta::InDays() const {
  if (!is_inf()) {
    return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
  }
  return (delta_ < 0) ? std::numeric_limits<int>::min()
                      : std::numeric_limits<int>::max();
}

int TimeDelta::InDaysFloored() const {
  if (!is_inf()) {
    const int result = delta_ / Time::kMicrosecondsPerDay;
    // Convert |result| from truncating to flooring.
    return (result * Time::kMicrosecondsPerDay > delta_) ? (result - 1)
                                                         : result;
  }
  return (delta_ < 0) ? std::numeric_limits<int>::min()
                      : std::numeric_limits<int>::max();
}

double TimeDelta::InMillisecondsF() const {
  if (!is_inf()) {
    return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
  }
  return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
                      : std::numeric_limits<double>::infinity();
}

int64_t TimeDelta::InMilliseconds() const {
  if (!is_inf()) {
    return delta_ / Time::kMicrosecondsPerMillisecond;
  }
  return (delta_ < 0) ? std::numeric_limits<int64_t>::min()
                      : std::numeric_limits<int64_t>::max();
}

int64_t TimeDelta::InMillisecondsRoundedUp() const {
  if (!is_inf()) {
    const int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
    // Convert |result| from truncating to ceiling.
    return (delta_ > result * Time::kMicrosecondsPerMillisecond) ? (result + 1)
                                                                 : result;
  }
  return delta_;
}

double TimeDelta::InMicrosecondsF() const {
  if (!is_inf()) {
    return static_cast<double>(delta_);
  }
  return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
                      : std::numeric_limits<double>::infinity();
}

TimeDelta TimeDelta::CeilToMultiple(TimeDelta interval) const {
  if (is_inf() || interval.is_zero()) {
    return *this;
  }
  const TimeDelta remainder = *this % interval;
  if (delta_ < 0) {
    return *this - remainder;
  }
  return remainder.is_zero() ? *this
                             : (*this - remainder + interval.magnitude());
}

TimeDelta TimeDelta::FloorToMultiple(TimeDelta interval) const {
  if (is_inf() || interval.is_zero()) {
    return *this;
  }
  const TimeDelta remainder = *this % interval;
  if (delta_ < 0) {
    return remainder.is_zero() ? *this
                               : (*this - remainder - interval.magnitude());
  }
  return *this - remainder;
}

TimeDelta TimeDelta::RoundToMultiple(TimeDelta interval) const {
  if (is_inf() || interval.is_zero()) {
    return *this;
  }
  if (interval.is_inf()) {
    return TimeDelta();
  }
  const TimeDelta half = interval.magnitude() / 2;
  return (delta_ < 0) ? (*this - half).CeilToMultiple(interval)
                      : (*this + half).FloorToMultiple(interval);
}

// Time -----------------------------------------------------------------------

// static
Time Time::Now() {
  return internal::g_time_now_function.load(std::memory_order_relaxed)();
}

// static
Time Time::NowFromSystemTime() {
  // Just use g_time_now_function because it returns the system time.
  return internal::g_time_now_from_system_time_function.load(
      std::memory_order_relaxed)();
}

time_t Time::ToTimeT() const {
  if (is_null()) {
    return 0;  // Preserve 0 so we can tell it doesn't exist.
  }
  if (!is_inf() && ((std::numeric_limits<int64_t>::max() -
                     kTimeTToMicrosecondsOffset) > us_)) {
    return (*this - UnixEpoch()).InSeconds();
  }
  return (us_ < 0) ? std::numeric_limits<time_t>::min()
                   : std::numeric_limits<time_t>::max();
}

// static
Time Time::FromSecondsSinceUnixEpoch(double dt) {
  // Preserve 0 so we can tell it doesn't exist.
  return (dt == 0 || std::isnan(dt)) ? Time() : (UnixEpoch() + Seconds(dt));
}

double Time::InSecondsFSinceUnixEpoch() const {
  if (is_null()) {
    return 0;  // Preserve 0 so we can tell it doesn't exist.
  }
  if (!is_inf()) {
    return (*this - UnixEpoch()).InSecondsF();
  }
  return (us_ < 0) ? -std::numeric_limits<double>::infinity()
                   : std::numeric_limits<double>::infinity();
}

#if PA_BUILDFLAG(IS_POSIX) || PA_BUILDFLAG(IS_FUCHSIA)
// static
Time Time::FromTimeSpec(const timespec& ts) {
  return FromSecondsSinceUnixEpoch(ts.tv_sec + static_cast<double>(ts.tv_nsec) /
                                                   kNanosecondsPerSecond);
}
#endif

// static
Time Time::FromMillisecondsSinceUnixEpoch(double ms_since_epoch) {
  // The epoch is a valid time, so this constructor doesn't interpret 0 as the
  // null time.
  return UnixEpoch() + Milliseconds(ms_since_epoch);
}

double Time::InMillisecondsFSinceUnixEpoch() const {
  // Preserve 0 so the invalid result doesn't depend on the platform.
  return is_null() ? 0 : InMillisecondsFSinceUnixEpochIgnoringNull();
}

double Time::InMillisecondsFSinceUnixEpochIgnoringNull() const {
  // Preserve max and min without offset to prevent over/underflow.
  if (!is_inf()) {
    return (*this - UnixEpoch()).InMillisecondsF();
  }
  return (us_ < 0) ? -std::numeric_limits<double>::infinity()
                   : std::numeric_limits<double>::infinity();
}

Time Time::FromMillisecondsSinceUnixEpoch(int64_t ms_since_epoch) {
  return UnixEpoch() + Milliseconds(ms_since_epoch);
}

int64_t Time::InMillisecondsSinceUnixEpoch() const {
  // Preserve 0 so the invalid result doesn't depend on the platform.
  if (is_null()) {
    return 0;
  }
  if (!is_inf()) {
    return (*this - UnixEpoch()).InMilliseconds();
  }
  return (us_ < 0) ? std::numeric_limits<int64_t>::min()
                   : std::numeric_limits<int64_t>::max();
}

// static
bool Time::FromMillisecondsSinceUnixEpoch(int64_t unix_milliseconds,
                                          Time* time) {
  // Adjust the provided time from milliseconds since the Unix epoch (1970) to
  // microseconds since the Windows epoch (1601), avoiding overflows.
  CheckedNumeric<int64_t> checked_microseconds_win_epoch = unix_milliseconds;
  checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond;
  checked_microseconds_win_epoch += kTimeTToMicrosecondsOffset;
  *time = Time(checked_microseconds_win_epoch.ValueOrDefault(0));
  return checked_microseconds_win_epoch.IsValid();
}

int64_t Time::ToRoundedDownMillisecondsSinceUnixEpoch() const {
  constexpr int64_t kEpochOffsetMillis =
      kTimeTToMicrosecondsOffset / kMicrosecondsPerMillisecond;
  static_assert(kTimeTToMicrosecondsOffset % kMicrosecondsPerMillisecond == 0,
                "assumption: no epoch offset sub-milliseconds");

  // Compute the milliseconds since UNIX epoch without the possibility of
  // under/overflow. Round the result towards -infinity.
  //
  // If |us_| is negative and includes fractions of a millisecond, subtract one
  // more to effect the round towards -infinity. C-style integer truncation
  // takes care of all other cases.
  const int64_t millis = us_ / kMicrosecondsPerMillisecond;
  const int64_t submillis = us_ % kMicrosecondsPerMillisecond;
  return millis - kEpochOffsetMillis - (submillis < 0);
}

// TimeTicks ------------------------------------------------------------------

// static
TimeTicks TimeTicks::Now() {
  return internal::g_time_ticks_now_function.load(std::memory_order_relaxed)();
}

// static
TimeTicks TimeTicks::UnixEpoch() {
  static const TimeTicks epoch([] {
    return subtle::TimeTicksNowIgnoringOverride() -
           (subtle::TimeNowIgnoringOverride() - Time::UnixEpoch());
  }());
  return epoch;
}

TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
                                       TimeDelta tick_interval) const {
  // |interval_offset| is the offset from |this| to the next multiple of
  // |tick_interval| after |tick_phase|, possibly negative if in the past.
  TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
  // If |this| is exactly on the interval (i.e. offset==0), don't adjust.
  // Otherwise, if |tick_phase| was in the past, adjust forward to the next
  // tick after |this|.
  if (!interval_offset.is_zero() && tick_phase < *this) {
    interval_offset += tick_interval;
  }
  return *this + interval_offset;
}

// ThreadTicks ----------------------------------------------------------------

// static
ThreadTicks ThreadTicks::Now() {
  return internal::g_thread_ticks_now_function.load(
      std::memory_order_relaxed)();
}

}  // namespace partition_alloc::internal::base