1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
base / allocator / partition_allocator / src / partition_alloc / partition_alloc_base / time / time.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/partition_alloc_base/time/time.h"
#include <atomic>
#include <cmath>
#include <limits>
#include <ostream>
#include <tuple>
#include <utility>
#include "partition_alloc/partition_alloc_base/time/time_override.h"
namespace partition_alloc::internal::base {
namespace internal {
std::atomic<TimeNowFunction> g_time_now_function{
&subtle::TimeNowIgnoringOverride};
std::atomic<TimeNowFunction> g_time_now_from_system_time_function{
&subtle::TimeNowFromSystemTimeIgnoringOverride};
std::atomic<TimeTicksNowFunction> g_time_ticks_now_function{
&subtle::TimeTicksNowIgnoringOverride};
std::atomic<ThreadTicksNowFunction> g_thread_ticks_now_function{
&subtle::ThreadTicksNowIgnoringOverride};
} // namespace internal
// TimeDelta ------------------------------------------------------------------
int TimeDelta::InDays() const {
if (!is_inf()) {
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
return (delta_ < 0) ? std::numeric_limits<int>::min()
: std::numeric_limits<int>::max();
}
int TimeDelta::InDaysFloored() const {
if (!is_inf()) {
const int result = delta_ / Time::kMicrosecondsPerDay;
// Convert |result| from truncating to flooring.
return (result * Time::kMicrosecondsPerDay > delta_) ? (result - 1)
: result;
}
return (delta_ < 0) ? std::numeric_limits<int>::min()
: std::numeric_limits<int>::max();
}
double TimeDelta::InMillisecondsF() const {
if (!is_inf()) {
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
int64_t TimeDelta::InMilliseconds() const {
if (!is_inf()) {
return delta_ / Time::kMicrosecondsPerMillisecond;
}
return (delta_ < 0) ? std::numeric_limits<int64_t>::min()
: std::numeric_limits<int64_t>::max();
}
int64_t TimeDelta::InMillisecondsRoundedUp() const {
if (!is_inf()) {
const int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
// Convert |result| from truncating to ceiling.
return (delta_ > result * Time::kMicrosecondsPerMillisecond) ? (result + 1)
: result;
}
return delta_;
}
double TimeDelta::InMicrosecondsF() const {
if (!is_inf()) {
return static_cast<double>(delta_);
}
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
TimeDelta TimeDelta::CeilToMultiple(TimeDelta interval) const {
if (is_inf() || interval.is_zero()) {
return *this;
}
const TimeDelta remainder = *this % interval;
if (delta_ < 0) {
return *this - remainder;
}
return remainder.is_zero() ? *this
: (*this - remainder + interval.magnitude());
}
TimeDelta TimeDelta::FloorToMultiple(TimeDelta interval) const {
if (is_inf() || interval.is_zero()) {
return *this;
}
const TimeDelta remainder = *this % interval;
if (delta_ < 0) {
return remainder.is_zero() ? *this
: (*this - remainder - interval.magnitude());
}
return *this - remainder;
}
TimeDelta TimeDelta::RoundToMultiple(TimeDelta interval) const {
if (is_inf() || interval.is_zero()) {
return *this;
}
if (interval.is_inf()) {
return TimeDelta();
}
const TimeDelta half = interval.magnitude() / 2;
return (delta_ < 0) ? (*this - half).CeilToMultiple(interval)
: (*this + half).FloorToMultiple(interval);
}
// Time -----------------------------------------------------------------------
// static
Time Time::Now() {
return internal::g_time_now_function.load(std::memory_order_relaxed)();
}
// static
Time Time::NowFromSystemTime() {
// Just use g_time_now_function because it returns the system time.
return internal::g_time_now_from_system_time_function.load(
std::memory_order_relaxed)();
}
time_t Time::ToTimeT() const {
if (is_null()) {
return 0; // Preserve 0 so we can tell it doesn't exist.
}
if (!is_inf() && ((std::numeric_limits<int64_t>::max() -
kTimeTToMicrosecondsOffset) > us_)) {
return (*this - UnixEpoch()).InSeconds();
}
return (us_ < 0) ? std::numeric_limits<time_t>::min()
: std::numeric_limits<time_t>::max();
}
// static
Time Time::FromSecondsSinceUnixEpoch(double dt) {
// Preserve 0 so we can tell it doesn't exist.
return (dt == 0 || std::isnan(dt)) ? Time() : (UnixEpoch() + Seconds(dt));
}
double Time::InSecondsFSinceUnixEpoch() const {
if (is_null()) {
return 0; // Preserve 0 so we can tell it doesn't exist.
}
if (!is_inf()) {
return (*this - UnixEpoch()).InSecondsF();
}
return (us_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
#if PA_BUILDFLAG(IS_POSIX) || PA_BUILDFLAG(IS_FUCHSIA)
// static
Time Time::FromTimeSpec(const timespec& ts) {
return FromSecondsSinceUnixEpoch(ts.tv_sec + static_cast<double>(ts.tv_nsec) /
kNanosecondsPerSecond);
}
#endif
// static
Time Time::FromMillisecondsSinceUnixEpoch(double ms_since_epoch) {
// The epoch is a valid time, so this constructor doesn't interpret 0 as the
// null time.
return UnixEpoch() + Milliseconds(ms_since_epoch);
}
double Time::InMillisecondsFSinceUnixEpoch() const {
// Preserve 0 so the invalid result doesn't depend on the platform.
return is_null() ? 0 : InMillisecondsFSinceUnixEpochIgnoringNull();
}
double Time::InMillisecondsFSinceUnixEpochIgnoringNull() const {
// Preserve max and min without offset to prevent over/underflow.
if (!is_inf()) {
return (*this - UnixEpoch()).InMillisecondsF();
}
return (us_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
Time Time::FromMillisecondsSinceUnixEpoch(int64_t ms_since_epoch) {
return UnixEpoch() + Milliseconds(ms_since_epoch);
}
int64_t Time::InMillisecondsSinceUnixEpoch() const {
// Preserve 0 so the invalid result doesn't depend on the platform.
if (is_null()) {
return 0;
}
if (!is_inf()) {
return (*this - UnixEpoch()).InMilliseconds();
}
return (us_ < 0) ? std::numeric_limits<int64_t>::min()
: std::numeric_limits<int64_t>::max();
}
// static
bool Time::FromMillisecondsSinceUnixEpoch(int64_t unix_milliseconds,
Time* time) {
// Adjust the provided time from milliseconds since the Unix epoch (1970) to
// microseconds since the Windows epoch (1601), avoiding overflows.
CheckedNumeric<int64_t> checked_microseconds_win_epoch = unix_milliseconds;
checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond;
checked_microseconds_win_epoch += kTimeTToMicrosecondsOffset;
*time = Time(checked_microseconds_win_epoch.ValueOrDefault(0));
return checked_microseconds_win_epoch.IsValid();
}
int64_t Time::ToRoundedDownMillisecondsSinceUnixEpoch() const {
constexpr int64_t kEpochOffsetMillis =
kTimeTToMicrosecondsOffset / kMicrosecondsPerMillisecond;
static_assert(kTimeTToMicrosecondsOffset % kMicrosecondsPerMillisecond == 0,
"assumption: no epoch offset sub-milliseconds");
// Compute the milliseconds since UNIX epoch without the possibility of
// under/overflow. Round the result towards -infinity.
//
// If |us_| is negative and includes fractions of a millisecond, subtract one
// more to effect the round towards -infinity. C-style integer truncation
// takes care of all other cases.
const int64_t millis = us_ / kMicrosecondsPerMillisecond;
const int64_t submillis = us_ % kMicrosecondsPerMillisecond;
return millis - kEpochOffsetMillis - (submillis < 0);
}
// TimeTicks ------------------------------------------------------------------
// static
TimeTicks TimeTicks::Now() {
return internal::g_time_ticks_now_function.load(std::memory_order_relaxed)();
}
// static
TimeTicks TimeTicks::UnixEpoch() {
static const TimeTicks epoch([] {
return subtle::TimeTicksNowIgnoringOverride() -
(subtle::TimeNowIgnoringOverride() - Time::UnixEpoch());
}());
return epoch;
}
TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
TimeDelta tick_interval) const {
// |interval_offset| is the offset from |this| to the next multiple of
// |tick_interval| after |tick_phase|, possibly negative if in the past.
TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
// If |this| is exactly on the interval (i.e. offset==0), don't adjust.
// Otherwise, if |tick_phase| was in the past, adjust forward to the next
// tick after |this|.
if (!interval_offset.is_zero() && tick_phase < *this) {
interval_offset += tick_interval;
}
return *this + interval_offset;
}
// ThreadTicks ----------------------------------------------------------------
// static
ThreadTicks ThreadTicks::Now() {
return internal::g_thread_ticks_now_function.load(
std::memory_order_relaxed)();
}
} // namespace partition_alloc::internal::base