1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
base / allocator / partition_allocator / src / partition_alloc / partition_bucket.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/partition_bucket.h"
#include <algorithm>
#include <cstdint>
#include <tuple>
#include "partition_alloc/address_pool_manager.h"
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/freeslot_bitmap.h"
#include "partition_alloc/freeslot_bitmap_constants.h"
#include "partition_alloc/oom.h"
#include "partition_alloc/page_allocator.h"
#include "partition_alloc/page_allocator_constants.h"
#include "partition_alloc/partition_address_space.h"
#include "partition_alloc/partition_alloc.h"
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/component_export.h"
#include "partition_alloc/partition_alloc_base/debug/alias.h"
#include "partition_alloc/partition_alloc_base/immediate_crash.h"
#include "partition_alloc/partition_alloc_base/thread_annotations.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/partition_alloc_constants.h"
#include "partition_alloc/partition_alloc_forward.h"
#include "partition_alloc/partition_direct_map_extent.h"
#include "partition_alloc/partition_freelist_entry.h"
#include "partition_alloc/partition_oom.h"
#include "partition_alloc/partition_page.h"
#include "partition_alloc/partition_root.h"
#include "partition_alloc/reservation_offset_table.h"
#include "partition_alloc/tagging.h"
namespace partition_alloc::internal {
namespace {
[[noreturn]] PA_NOINLINE void PartitionOutOfMemoryMappingFailure(
PartitionRoot* root,
size_t size) PA_LOCKS_EXCLUDED(PartitionRootLock(root)) {
PA_NO_CODE_FOLDING();
root->OutOfMemory(size);
PA_IMMEDIATE_CRASH(); // Not required, kept as documentation.
}
[[noreturn]] PA_NOINLINE void PartitionOutOfMemoryCommitFailure(
PartitionRoot* root,
size_t size) PA_LOCKS_EXCLUDED(PartitionRootLock(root)) {
PA_NO_CODE_FOLDING();
root->OutOfMemory(size);
PA_IMMEDIATE_CRASH(); // Not required, kept as documentation.
}
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS) && \
PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
// |start| has to be aligned to kSuperPageSize, but |end| doesn't. This means
// that a partial super page is allowed at the end. Since the block list uses
// kSuperPageSize granularity, a partial super page is considered blocked if
// there is a raw_ptr<T> pointing anywhere in that super page, even if doesn't
// point to that partially allocated region.
bool AreAllowedSuperPagesForBRPPool(uintptr_t start, uintptr_t end) {
PA_DCHECK(!(start % kSuperPageSize));
for (uintptr_t super_page = start; super_page < end;
super_page += kSuperPageSize) {
// If any blocked super page is found inside the given memory region,
// the memory region is blocked.
if (!AddressPoolManagerBitmap::IsAllowedSuperPageForBRPPool(super_page)) {
AddressPoolManagerBitmap::IncrementBlocklistHitCount();
return false;
}
}
return true;
}
#endif // !PA_BUILDFLAG(HAS_64_BIT_POINTERS) &&
// PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
// Reserves |requested_size| worth of super pages from the specified pool.
// If BRP pool is requested this function will honor BRP block list.
//
// The returned address will be aligned to kSuperPageSize, and so
// |requested_address| should be. |requested_size| doesn't have to be, however.
//
// |requested_address| is merely a hint, which will be attempted, but easily
// given up on if doesn't work the first time.
//
// The function doesn't need to hold root->lock_ or any other locks, because:
// - It (1) reserves memory, (2) then consults AreAllowedSuperPagesForBRPPool
// for that memory, and (3) returns the memory if
// allowed, or unreserves and decommits if not allowed. So no other
// overlapping region can be allocated while executing
// AreAllowedSuperPagesForBRPPool.
// - IsAllowedSuperPageForBRPPool (used by AreAllowedSuperPagesForBRPPool) is
// designed to not need locking.
uintptr_t ReserveMemoryFromPool(pool_handle pool,
uintptr_t requested_address,
size_t requested_size) {
PA_DCHECK(!(requested_address % kSuperPageSize));
uintptr_t reserved_address = AddressPoolManager::GetInstance().Reserve(
pool, requested_address, requested_size);
// In 32-bit mode, when allocating from BRP pool, verify that the requested
// allocation honors the block list. Find a better address otherwise.
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS) && \
PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
if (pool == kBRPPoolHandle) {
constexpr int kMaxRandomAddressTries = 10;
for (int i = 0; i < kMaxRandomAddressTries; ++i) {
if (!reserved_address ||
AreAllowedSuperPagesForBRPPool(reserved_address,
reserved_address + requested_size)) {
break;
}
AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool, reserved_address, requested_size);
// No longer try to honor |requested_address|, because it didn't work for
// us last time.
reserved_address =
AddressPoolManager::GetInstance().Reserve(pool, 0, requested_size);
}
// If the allocation attempt succeeds, we will break out of the following
// loop immediately.
//
// Last resort: sequentially scan the whole 32-bit address space. The number
// of blocked super-pages should be very small, so we expect to practically
// never need to run the following code. Note that it may fail to find an
// available super page, e.g., when it becomes available after the scan
// passes through it, but we accept the risk.
for (uintptr_t address_to_try = kSuperPageSize; address_to_try != 0;
address_to_try += kSuperPageSize) {
if (!reserved_address ||
AreAllowedSuperPagesForBRPPool(reserved_address,
reserved_address + requested_size)) {
break;
}
AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool, reserved_address, requested_size);
// Reserve() can return a different pointer than attempted.
reserved_address = AddressPoolManager::GetInstance().Reserve(
pool, address_to_try, requested_size);
}
// If the loop ends naturally, the last allocated region hasn't been
// verified. Do it now.
if (reserved_address &&
!AreAllowedSuperPagesForBRPPool(reserved_address,
reserved_address + requested_size)) {
AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool, reserved_address, requested_size);
reserved_address = 0;
}
}
#endif // !PA_BUILDFLAG(HAS_64_BIT_POINTERS) &&
// PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
// Only mark the region as belonging to the pool after it has passed the
// blocklist check in order to avoid a potential race with destructing a
// raw_ptr<T> object that points to non-PA memory in another thread.
// If `MarkUsed` was called earlier, the other thread could incorrectly
// determine that the allocation had come form PartitionAlloc.
if (reserved_address) {
AddressPoolManager::GetInstance().MarkUsed(pool, reserved_address,
requested_size);
}
#endif
PA_DCHECK(!(reserved_address % kSuperPageSize));
return reserved_address;
}
SlotSpanMetadata<MetadataKind::kReadOnly>* PartitionDirectMap(
PartitionRoot* root,
AllocFlags flags,
size_t raw_size,
size_t slot_span_alignment) {
PA_DCHECK((slot_span_alignment >= PartitionPageSize()) &&
base::bits::HasSingleBit(slot_span_alignment));
// No static EXCLUSIVE_LOCKS_REQUIRED(), as the checker doesn't understand
// scoped unlocking.
PartitionRootLock(root).AssertAcquired();
const bool return_null = ContainsFlags(flags, AllocFlags::kReturnNull);
if (raw_size > MaxDirectMapped()) [[unlikely]] {
if (return_null) {
return nullptr;
}
// The lock is here to protect PA from:
// 1. Concurrent calls
// 2. Reentrant calls
//
// This is fine here however, as:
// 1. Concurrency: |PartitionRoot::OutOfMemory()| never returns, so the lock
// will not be re-acquired, which would lead to acting on inconsistent
// data that could have been modified in-between releasing and acquiring
// it.
// 2. Reentrancy: This is why we release the lock. On some platforms,
// terminating the process may free() memory, or even possibly try to
// allocate some. Calling free() is fine, but will deadlock since
// |PartitionRoot::lock_| is not recursive.
//
// Supporting reentrant calls properly is hard, and not a requirement for
// PA. However up to that point, we've only *read* data, not *written* to
// any state. Reentrant calls are then fine, especially as we don't continue
// on this path. The only downside is possibly endless recursion if the OOM
// handler allocates and fails to use UncheckedMalloc() or equivalent, but
// that's violating the contract of base::TerminateBecauseOutOfMemory().
ScopedUnlockGuard unlock{PartitionRootLock(root)};
PartitionExcessiveAllocationSize(raw_size);
}
PartitionDirectMapExtent<MetadataKind::kReadOnly>* map_extent = nullptr;
PartitionDirectMapExtent<MetadataKind::kWritable>* writable_map_extent =
nullptr;
PartitionPageMetadata<MetadataKind::kReadOnly>* page_metadata = nullptr;
{
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
// Because of the performance reason, PartitionRoot's lock is unlocked
// here. However this causes multi-thread issue when running
// EnableShadowMetadata(). If some thread is running PartitionDirectMap()
// and unlock PartitionRoot lock and also another thread is running
// EnableShadowMetadata(), the metadata page's permission will be modified
// by both threads and chrome will crash. c.f. crbug.com/378809882
// Be careful. This should not block PartitionDirectMap() in another thread.
internal::SharedLock shared_lock(
PartitionRoot::g_shadow_metadata_init_mutex_);
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
// Getting memory for direct-mapped allocations doesn't interact with the
// rest of the allocator, but takes a long time, as it involves several
// system calls. Although no mmap() (or equivalent) calls are made on
// 64 bit systems, page permissions are changed with mprotect(), which is
// a syscall.
//
// These calls are almost always slow (at least a couple us per syscall on a
// desktop Linux machine), and they also have a very long latency tail,
// possibly from getting descheduled. As a consequence, we should not hold
// the lock when performing a syscall. This is not the only problematic
// location, but since this one doesn't interact with the rest of the
// allocator, we can safely drop and then re-acquire the lock.
//
// Note that this only affects allocations that are not served out of the
// thread cache, but as a simple example the buffer partition in blink is
// frequently used for large allocations (e.g. ArrayBuffer), and frequent,
// small ones (e.g. WTF::String), and does not have a thread cache.
ScopedUnlockGuard scoped_unlock{PartitionRootLock(root)};
const size_t slot_size = PartitionRoot::GetDirectMapSlotSize(raw_size);
// The super page starts with a partition page worth of metadata and guard
// pages, hence alignment requests ==PartitionPageSize() will be
// automatically satisfied. Padding is needed for higher-order alignment
// requests. Note, |slot_span_alignment| is at least 1 partition page.
const size_t padding_for_alignment =
slot_span_alignment - PartitionPageSize();
const size_t reservation_size = PartitionRoot::GetDirectMapReservationSize(
raw_size + padding_for_alignment);
PA_DCHECK(reservation_size >= raw_size);
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
const size_t available_reservation_size =
reservation_size - padding_for_alignment -
PartitionRoot::GetDirectMapMetadataAndGuardPagesSize();
PA_DCHECK(slot_size <= available_reservation_size);
#endif
pool_handle pool = root->ChoosePool();
uintptr_t reservation_start;
{
// Reserving memory from the pool is actually not a syscall on 64 bit
// platforms.
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
ScopedSyscallTimer timer{root};
#endif
reservation_start = ReserveMemoryFromPool(pool, 0, reservation_size);
}
if (!reservation_start) [[unlikely]] {
if (return_null) {
return nullptr;
}
PartitionOutOfMemoryMappingFailure(root, reservation_size);
}
root->total_size_of_direct_mapped_pages.fetch_add(
reservation_size, std::memory_order_relaxed);
// Shift by 1 partition page (metadata + guard pages) and alignment padding.
const uintptr_t slot_start =
reservation_start + PartitionPageSize() + padding_for_alignment;
{
ScopedSyscallTimer timer{root};
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
if (PartitionAddressSpace::IsShadowMetadataEnabled(root->ChoosePool())) {
PartitionAddressSpace::MapMetadata(reservation_start,
/*copy_metadata=*/false);
} else
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
{
RecommitSystemPages(reservation_start + SystemPageSize(),
SystemPageSize(),
root->PageAccessibilityWithThreadIsolationIfEnabled(
PageAccessibilityConfiguration::kReadWrite),
PageAccessibilityDisposition::kRequireUpdate);
}
}
if (pool == kBRPPoolHandle) {
// Allocate a system page for InSlotMetadata table (only one of its
// elements will be used). Shadow metadata does not need to protect
// this table, because (1) corrupting the table won't help with the
// pool escape and (2) accessing the table is on the BRP hot path.
// The protection will cause significant performance regression.
ScopedSyscallTimer timer{root};
RecommitSystemPages(reservation_start + SystemPageSize() * 2,
SystemPageSize(),
root->PageAccessibilityWithThreadIsolationIfEnabled(
PageAccessibilityConfiguration::kReadWrite),
PageAccessibilityDisposition::kRequireUpdate);
}
// No need to hold root->lock_. Now that memory is reserved, no other
// overlapping region can be allocated (because of how pools work),
// so no other thread can update the same offset table entries at the
// same time. Furthermore, nobody will be ready these offsets until this
// function returns.
auto* offset_ptr = ReservationOffsetPointer(reservation_start);
[[maybe_unused]] const auto* offset_ptr_end =
GetReservationOffsetTableEnd(reservation_start);
// |raw_size| > MaxBucketed(). So |reservation_size| > 0.
PA_DCHECK(reservation_size > 0);
const uint16_t offset_end = (reservation_size - 1) >> kSuperPageShift;
for (uint16_t offset = 0; offset <= offset_end; ++offset) {
PA_DCHECK(offset < kOffsetTagNormalBuckets);
PA_DCHECK(offset_ptr < offset_ptr_end);
*offset_ptr++ = offset;
}
auto* super_page_extent = PartitionSuperPageToExtent(reservation_start);
auto* writable_super_page_extent = super_page_extent->ToWritable(root);
writable_super_page_extent->root = root;
// The new structures are all located inside a fresh system page so they
// will all be zeroed out. These DCHECKs are for documentation and to assert
// our expectations of the kernel.
PA_DCHECK(!super_page_extent->number_of_consecutive_super_pages);
PA_DCHECK(!super_page_extent->next);
PartitionPageMetadata<MetadataKind::kWritable>* first_page_metadata =
reinterpret_cast<PartitionPageMetadata<MetadataKind::kWritable>*>(
writable_super_page_extent) +
1;
page_metadata =
PartitionPageMetadata<MetadataKind::kReadOnly>::FromAddr(slot_start);
PartitionPageMetadata<MetadataKind::kWritable>* writable_page_metadata =
page_metadata->ToWritable(root);
// |first_page_metadata| and |writable_page_metadata| may be equal, if there
// is no alignment padding.
if (writable_page_metadata != first_page_metadata) {
PA_DCHECK(writable_page_metadata > first_page_metadata);
PA_DCHECK(writable_page_metadata - first_page_metadata <=
PartitionPageMetadata<
MetadataKind::kReadOnly>::kMaxSlotSpanMetadataOffset);
PA_CHECK(!first_page_metadata->is_valid);
first_page_metadata->has_valid_span_after_this = true;
first_page_metadata->slot_span_metadata_offset =
writable_page_metadata - first_page_metadata;
}
auto* direct_map_metadata =
reinterpret_cast<PartitionDirectMapMetadata<MetadataKind::kReadOnly>*>(
page_metadata);
auto* writable_direct_map_metadata =
reinterpret_cast<PartitionDirectMapMetadata<MetadataKind::kWritable>*>(
writable_page_metadata);
// Since direct map metadata is larger than PartitionPageMetadata, make sure
// the first and the last bytes are on the same system page, i.e. within the
// super page metadata region.
PA_DCHECK(
base::bits::AlignDown(reinterpret_cast<uintptr_t>(direct_map_metadata),
SystemPageSize()) ==
base::bits::AlignDown(
reinterpret_cast<uintptr_t>(direct_map_metadata) +
sizeof(PartitionDirectMapMetadata<MetadataKind::kReadOnly>) - 1,
SystemPageSize()));
PA_DCHECK(writable_page_metadata ==
&writable_direct_map_metadata->page_metadata);
writable_page_metadata->is_valid = true;
PA_DCHECK(!writable_page_metadata->has_valid_span_after_this);
PA_DCHECK(!writable_page_metadata->slot_span_metadata_offset);
PA_DCHECK(!writable_page_metadata->slot_span_metadata.next_slot_span);
PA_DCHECK(!writable_page_metadata->slot_span_metadata.marked_full);
PA_DCHECK(!writable_page_metadata->slot_span_metadata.num_allocated_slots);
PA_DCHECK(
!writable_page_metadata->slot_span_metadata.num_unprovisioned_slots);
PA_DCHECK(!writable_page_metadata->slot_span_metadata.in_empty_cache());
PA_DCHECK(!direct_map_metadata->second_page_metadata
.subsequent_page_metadata.raw_size);
// Raw size is set later, by the caller.
writable_direct_map_metadata->second_page_metadata
.slot_span_metadata_offset = 1;
PA_DCHECK(!direct_map_metadata->bucket.active_slot_spans_head);
PA_DCHECK(!direct_map_metadata->bucket.empty_slot_spans_head);
PA_DCHECK(!direct_map_metadata->bucket.decommitted_slot_spans_head);
PA_DCHECK(!direct_map_metadata->bucket.num_system_pages_per_slot_span);
PA_DCHECK(!direct_map_metadata->bucket.num_full_slot_spans);
writable_direct_map_metadata->bucket.slot_size = slot_size;
writable_direct_map_metadata->bucket.can_store_raw_size = true;
// SlotSpanMetadata must point to the bucket inside the giga cage.
new (&writable_page_metadata->slot_span_metadata)
SlotSpanMetadata<MetadataKind::kWritable>(
const_cast<PartitionBucket*>(&direct_map_metadata->bucket));
// It is typically possible to map a large range of inaccessible pages, and
// this is leveraged in multiple places, including the pools. However,
// this doesn't mean that we can commit all this memory. For the vast
// majority of allocations, this just means that we crash in a slightly
// different place, but for callers ready to handle failures, we have to
// return nullptr. See crbug.com/1187404.
//
// Note that we didn't check above, because if we cannot even commit a
// single page, then this is likely hopeless anyway, and we will crash very
// soon.
//
// Direct map never uses tagging, as size is always >kMaxMemoryTaggingSize.
PA_DCHECK(raw_size > kMaxMemoryTaggingSize);
const bool ok = root->TryRecommitSystemPagesForDataWithAcquiringLock(
slot_start, slot_size, PageAccessibilityDisposition::kRequireUpdate,
false);
if (!ok) {
if (!return_null) {
PartitionOutOfMemoryCommitFailure(root, slot_size);
}
{
ScopedSyscallTimer timer{root};
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
AddressPoolManager::GetInstance().MarkUnused(pool, reservation_start,
reservation_size);
#endif
AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool, reservation_start, reservation_size);
}
root->total_size_of_direct_mapped_pages.fetch_sub(
reservation_size, std::memory_order_relaxed);
return nullptr;
}
auto* next_entry =
root->get_freelist_dispatcher()->EmplaceAndInitNull(slot_start);
writable_page_metadata->slot_span_metadata.SetFreelistHead(next_entry,
root);
writable_map_extent = &writable_direct_map_metadata->direct_map_extent;
writable_map_extent->reservation_size = reservation_size;
writable_map_extent->padding_for_alignment = padding_for_alignment;
// Point to read-only bucket.
writable_map_extent->bucket = &direct_map_metadata->bucket;
map_extent = &direct_map_metadata->direct_map_extent;
}
PartitionRootLock(root).AssertAcquired();
// Maintain the doubly-linked list of all direct mappings.
writable_map_extent->next_extent = root->direct_map_list;
if (map_extent->next_extent) {
map_extent->next_extent->ToWritable(root)->prev_extent = map_extent;
}
writable_map_extent->prev_extent = nullptr;
root->direct_map_list = map_extent;
return &page_metadata->slot_span_metadata;
}
uint8_t ComputeSystemPagesPerSlotSpanPreferSmall(size_t slot_size) {
if (slot_size > MaxRegularSlotSpanSize()) {
// This is technically not needed, as for now all the larger slot sizes are
// multiples of the system page size.
return base::bits::AlignUp(slot_size, SystemPageSize()) / SystemPageSize();
}
// Smaller slot spans waste less address space, as well as potentially lower
// fragmentation:
// - Address space: This comes from fuller SuperPages (since the tail end of a
// SuperPage is more likely to be used when the slot span is smaller. Also,
// if a slot span is partially used, a smaller slot span will use less
// address space.
// - In-slot fragmentation: Slot span management code will prioritize
// almost-full slot spans, as well as trying to keep empty slot spans
// empty. The more granular this logic can work, the better.
//
// Since metadata space overhead is constant per-PartitionPage, keeping
// smaller slot spans makes sense.
//
// Underlying memory allocation is done per-PartitionPage, but memory commit
// is done per system page. This means that we prefer to fill the entirety of
// a PartitionPage with a slot span, but we can tolerate some system pages
// being empty at the end, as these will not cost committed or dirty memory.
//
// The choice below is, for multi-slot slot spans:
// - If a full PartitionPage slot span is possible with less than 2% of a
// *single* system page wasted, use it. The smallest possible size wins.
// - Otherwise, select the size with the smallest virtual address space
// loss. Allow a SlotSpan to leave some slack in its PartitionPage, up to
// 1/4 of the total.
for (size_t partition_page_count = 1;
partition_page_count <= kMaxPartitionPagesPerRegularSlotSpan;
partition_page_count++) {
size_t candidate_size = partition_page_count * PartitionPageSize();
size_t waste = candidate_size % slot_size;
if (waste <= .02 * SystemPageSize()) {
return partition_page_count * NumSystemPagesPerPartitionPage();
}
}
size_t best_count = 0;
size_t best_waste = std::numeric_limits<size_t>::max();
for (size_t partition_page_count = 1;
partition_page_count <= kMaxPartitionPagesPerRegularSlotSpan;
partition_page_count++) {
// Prefer no slack.
for (size_t slack = 0; slack < partition_page_count; slack++) {
size_t system_page_count =
partition_page_count * NumSystemPagesPerPartitionPage() - slack;
size_t candidate_size = system_page_count * SystemPageSize();
size_t waste = candidate_size % slot_size;
if (waste < best_waste) {
best_waste = waste;
best_count = system_page_count;
}
}
}
return best_count;
}
uint8_t ComputeSystemPagesPerSlotSpanInternal(size_t slot_size) {
// This works out reasonably for the current bucket sizes of the generic
// allocator, and the current values of partition page size and constants.
// Specifically, we have enough room to always pack the slots perfectly into
// some number of system pages. The only waste is the waste associated with
// unfaulted pages (i.e. wasted address space).
// TODO: we end up using a lot of system pages for very small sizes. For
// example, we'll use 12 system pages for slot size 24. The slot size is so
// small that the waste would be tiny with just 4, or 1, system pages. Later,
// we can investigate whether there are anti-fragmentation benefits to using
// fewer system pages.
double best_waste_ratio = 1.0f;
uint16_t best_pages = 0;
if (slot_size > MaxRegularSlotSpanSize()) {
// TODO(ajwong): Why is there a DCHECK here for this?
// http://crbug.com/776537
PA_DCHECK(!(slot_size % SystemPageSize()));
best_pages = static_cast<uint16_t>(slot_size >> SystemPageShift());
PA_CHECK(best_pages <= std::numeric_limits<uint8_t>::max());
return static_cast<uint8_t>(best_pages);
}
PA_DCHECK(slot_size <= MaxRegularSlotSpanSize());
for (uint16_t i = NumSystemPagesPerPartitionPage() - 1;
i <= MaxSystemPagesPerRegularSlotSpan(); ++i) {
size_t page_size = i << SystemPageShift();
size_t num_slots = page_size / slot_size;
size_t waste = page_size - (num_slots * slot_size);
// Leaving a page unfaulted is not free; the page will occupy an empty page
// table entry. Make a simple attempt to account for that.
//
// TODO(ajwong): This looks wrong. PTEs are allocated for all pages
// regardless of whether or not they are wasted. Should it just
// be waste += i * sizeof(void*)?
// http://crbug.com/776537
size_t num_remainder_pages = i & (NumSystemPagesPerPartitionPage() - 1);
size_t num_unfaulted_pages =
num_remainder_pages
? (NumSystemPagesPerPartitionPage() - num_remainder_pages)
: 0;
waste += sizeof(void*) * num_unfaulted_pages;
double waste_ratio =
static_cast<double>(waste) / static_cast<double>(page_size);
if (waste_ratio < best_waste_ratio) {
best_waste_ratio = waste_ratio;
best_pages = i;
}
}
PA_DCHECK(best_pages > 0);
PA_CHECK(best_pages <= MaxSystemPagesPerRegularSlotSpan());
return static_cast<uint8_t>(best_pages);
}
} // namespace
uint8_t ComputeSystemPagesPerSlotSpan(size_t slot_size,
bool prefer_smaller_slot_spans) {
if (prefer_smaller_slot_spans) {
size_t system_page_count =
ComputeSystemPagesPerSlotSpanPreferSmall(slot_size);
size_t waste = (system_page_count * SystemPageSize()) % slot_size;
// In case the waste is too large (more than 5% of a page), don't try to use
// the "small" slot span formula. This happens when we have a lot of
// buckets, in some cases the formula doesn't find a nice, small size.
if (waste <= .05 * SystemPageSize()) {
return system_page_count;
}
}
return ComputeSystemPagesPerSlotSpanInternal(slot_size);
}
void PartitionBucket::Init(uint32_t new_slot_size,
bool use_small_single_slot_spans) {
slot_size = new_slot_size;
slot_size_reciprocal = kReciprocalMask / new_slot_size + 1;
active_slot_spans_head = SlotSpanMetadata<
MetadataKind::kReadOnly>::get_sentinel_slot_span_non_const();
empty_slot_spans_head = nullptr;
decommitted_slot_spans_head = nullptr;
num_full_slot_spans = 0;
bool prefer_smaller_slot_spans =
#if PA_CONFIG(PREFER_SMALLER_SLOT_SPANS)
true
#else
false
#endif
;
num_system_pages_per_slot_span =
ComputeSystemPagesPerSlotSpan(slot_size, prefer_smaller_slot_spans);
InitCanStoreRawSize(use_small_single_slot_spans);
}
PA_ALWAYS_INLINE SlotSpanMetadata<MetadataKind::kReadOnly>*
PartitionBucket::AllocNewSlotSpan(PartitionRoot* root,
AllocFlags flags,
size_t slot_span_alignment) {
PA_DCHECK(!(root->next_partition_page % PartitionPageSize()));
PA_DCHECK(!(root->next_partition_page_end % PartitionPageSize()));
size_t num_partition_pages = get_pages_per_slot_span();
size_t slot_span_reservation_size = num_partition_pages
<< PartitionPageShift();
size_t slot_span_committed_size = get_bytes_per_span();
PA_DCHECK(num_partition_pages <= NumPartitionPagesPerSuperPage());
PA_DCHECK(slot_span_committed_size % SystemPageSize() == 0);
PA_DCHECK(slot_span_committed_size <= slot_span_reservation_size);
uintptr_t adjusted_next_partition_page =
base::bits::AlignUp(root->next_partition_page, slot_span_alignment);
if (adjusted_next_partition_page + slot_span_reservation_size >
root->next_partition_page_end) [[unlikely]] {
// AllocNewSuperPage() may crash (e.g. address space exhaustion), put data
// on stack.
PA_DEBUG_DATA_ON_STACK("slotsize", slot_size);
PA_DEBUG_DATA_ON_STACK("spansize", slot_span_reservation_size);
// In this case, we can no longer hand out pages from the current super page
// allocation. Get a new super page.
if (!AllocNewSuperPage(root, flags)) {
return nullptr;
}
// AllocNewSuperPage() updates root->next_partition_page, re-query.
adjusted_next_partition_page =
base::bits::AlignUp(root->next_partition_page, slot_span_alignment);
PA_CHECK(adjusted_next_partition_page + slot_span_reservation_size <=
root->next_partition_page_end);
}
auto* gap_start_page =
PartitionPageMetadata<MetadataKind::kReadOnly>::FromAddr(
root->next_partition_page);
auto* gap_end_page = PartitionPageMetadata<MetadataKind::kReadOnly>::FromAddr(
adjusted_next_partition_page);
for (auto* page = gap_start_page->ToWritable(root);
page < gap_end_page->ToWritable(root); ++page) {
PA_DCHECK(!page->is_valid);
page->has_valid_span_after_this = 1;
}
root->next_partition_page =
adjusted_next_partition_page + slot_span_reservation_size;
uintptr_t slot_span_start = adjusted_next_partition_page;
auto* slot_span = &gap_end_page->slot_span_metadata;
InitializeSlotSpan(slot_span, root);
// Now that slot span is initialized, it's safe to call FromSlotStart.
PA_DCHECK(slot_span ==
SlotSpanMetadata<MetadataKind::kReadOnly>::FromSlotStart(
slot_span_start));
// System pages in the super page come in a decommited state. Commit them
// before vending them back.
// If lazy commit is enabled, pages will be committed when provisioning slots,
// in ProvisionMoreSlotsAndAllocOne(), not here.
if (!kUseLazyCommit) {
PA_DEBUG_DATA_ON_STACK("slotsize", slot_size);
PA_DEBUG_DATA_ON_STACK("spansize", slot_span_reservation_size);
PA_DEBUG_DATA_ON_STACK("spancmt", slot_span_committed_size);
root->RecommitSystemPagesForData(
slot_span_start, slot_span_committed_size,
PageAccessibilityDisposition::kRequireUpdate,
slot_size <= kMaxMemoryTaggingSize);
}
PA_CHECK(get_slots_per_span() <= kMaxSlotsPerSlotSpan);
// Double check that we had enough space in the super page for the new slot
// span.
PA_DCHECK(root->next_partition_page <= root->next_partition_page_end);
return slot_span;
}
void PartitionBucket::InitCanStoreRawSize(bool use_small_single_slot_spans) {
// By definition, direct map buckets can store the raw size. The value
// of `can_store_raw_size` is set explicitly in that code path (see
// `PartitionDirectMap()`), bypassing this method.
PA_DCHECK(!is_direct_mapped());
can_store_raw_size = false;
// For direct-map as well as single-slot slot spans (recognized by checking
// against |MaxRegularSlotSpanSize()|), we have some spare metadata space in
// subsequent PartitionPage to store the raw size. It isn't only metadata
// space though, slot spans that have more than one slot can't have raw size
// stored, because we wouldn't know which slot it applies to.
if (slot_size <= MaxRegularSlotSpanSize()) [[likely]] {
// Even when the slot size is below the standard floor for single
// slot spans, there exist spans that happen to have exactly one
// slot per. If `use_small_single_slot_spans` is true, we use more
// nuanced criteria for determining if a span is "single-slot."
//
// The conditions are all of:
// * Don't deal with slots trafficked by the thread cache [1].
// * There must be exactly one slot in this span.
// * There must be enough room in the super page metadata area [2]
// to store the raw size - hence, this span must take up more
// than one partition page.
//
// [1] Updating the raw size is considered slow relative to the
// thread cache's fast paths. Letting the thread cache handle
// single-slot spans forces us to stick branches and raw size
// updates into fast paths. We avoid this by holding single-slot
// spans and thread-cache-eligible spans disjoint.
// [2] ../../PartitionAlloc.md#layout-in-memory
const bool not_handled_by_thread_cache =
slot_size > kThreadCacheLargeSizeThreshold;
can_store_raw_size =
use_small_single_slot_spans && not_handled_by_thread_cache &&
get_slots_per_span() == 1u && get_pages_per_slot_span() > 1u;
return;
}
PA_CHECK((slot_size % SystemPageSize()) == 0);
PA_CHECK(get_slots_per_span() == 1);
can_store_raw_size = true;
}
uintptr_t PartitionBucket::AllocNewSuperPageSpan(PartitionRoot* root,
size_t super_page_count,
AllocFlags flags) {
PA_CHECK(super_page_count > 0);
PA_CHECK(super_page_count <=
std::numeric_limits<size_t>::max() / kSuperPageSize);
// Need a new super page. We want to allocate super pages in a contiguous
// address region as much as possible. This is important for not causing
// page table bloat and not fragmenting address spaces in 32 bit
// architectures.
uintptr_t requested_address = root->next_super_page;
pool_handle pool = root->ChoosePool();
uintptr_t super_page_span_start = ReserveMemoryFromPool(
pool, requested_address, super_page_count * kSuperPageSize);
if (!super_page_span_start) [[unlikely]] {
if (ContainsFlags(flags, AllocFlags::kReturnNull)) {
return 0;
}
// Didn't manage to get a new uncommitted super page -> address space issue.
::partition_alloc::internal::ScopedUnlockGuard unlock{
PartitionRootLock(root)};
PartitionOutOfMemoryMappingFailure(root, kSuperPageSize);
}
uintptr_t super_page_span_end =
super_page_span_start + super_page_count * kSuperPageSize;
for (uintptr_t super_page = super_page_span_start;
super_page < super_page_span_end; super_page += kSuperPageSize) {
InitializeSuperPage(root, super_page, 0);
}
return super_page_span_start;
}
PA_ALWAYS_INLINE uintptr_t
PartitionBucket::AllocNewSuperPage(PartitionRoot* root, AllocFlags flags) {
auto super_page = AllocNewSuperPageSpan(root, 1, flags);
if (!super_page) [[unlikely]] {
// If the `kReturnNull` flag isn't set and the allocation attempt fails,
// `AllocNewSuperPageSpan` should've failed with an OOM crash.
PA_DCHECK(ContainsFlags(flags, AllocFlags::kReturnNull));
return 0;
}
return SuperPagePayloadBegin(super_page);
}
PA_ALWAYS_INLINE uintptr_t
PartitionBucket::InitializeSuperPage(PartitionRoot* root,
uintptr_t super_page,
uintptr_t requested_address) {
*ReservationOffsetPointer(super_page) = kOffsetTagNormalBuckets;
root->total_size_of_super_pages.fetch_add(kSuperPageSize,
std::memory_order_relaxed);
root->next_super_page = super_page + kSuperPageSize;
uintptr_t state_bitmap =
super_page + PartitionPageSize() +
(is_direct_mapped() ? 0 : ReservedFreeSlotBitmapSize());
uintptr_t payload = state_bitmap;
root->next_partition_page = payload;
root->next_partition_page_end = root->next_super_page - PartitionPageSize();
PA_DCHECK(payload == SuperPagePayloadBegin(super_page));
PA_DCHECK(root->next_partition_page_end == SuperPagePayloadEnd(super_page));
// Keep the first partition page in the super page inaccessible to serve as a
// guard page, except an "island" in the middle where we put page metadata and
// also a tiny amount of extent metadata.
{
ScopedSyscallTimer timer{root};
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
if (PartitionAddressSpace::IsShadowMetadataEnabled(root->ChoosePool())) {
PartitionAddressSpace::MapMetadata(super_page, /*copy_metadata=*/false);
} else
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
{
RecommitSystemPages(super_page + SystemPageSize(), SystemPageSize(),
root->PageAccessibilityWithThreadIsolationIfEnabled(
PageAccessibilityConfiguration::kReadWrite),
PageAccessibilityDisposition::kRequireUpdate);
}
}
if (root->ChoosePool() == kBRPPoolHandle) {
// Allocate a system page for InSlotMetadata table (only one of its
// elements will be used). Shadow metadata does not need to protect
// this table, because (1) corrupting the table won't help with the
// pool escape and (2) accessing the table is on the BRP hot path.
// The protection will cause significant performance regression.
ScopedSyscallTimer timer{root};
RecommitSystemPages(super_page + SystemPageSize() * 2, SystemPageSize(),
root->PageAccessibilityWithThreadIsolationIfEnabled(
PageAccessibilityConfiguration::kReadWrite),
PageAccessibilityDisposition::kRequireUpdate);
}
// If we were after a specific address, but didn't get it, assume that
// the system chose a lousy address. Here most OS'es have a default
// algorithm that isn't randomized. For example, most Linux
// distributions will allocate the mapping directly before the last
// successful mapping, which is far from random. So we just get fresh
// randomness for the next mapping attempt.
if (requested_address && requested_address != super_page) {
root->next_super_page = 0;
}
// We allocated a new super page so update super page metadata.
// First check if this is a new extent or not.
auto* latest_extent = PartitionSuperPageToExtent(super_page);
auto* writable_latest_extent = latest_extent->ToWritable(root);
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
PA_DCHECK(writable_latest_extent->ToReadOnly(root) == latest_extent);
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
// By storing the root in every extent metadata object, we have a fast way
// to go from a pointer within the partition to the root object.
writable_latest_extent->root = root;
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
PA_DCHECK(writable_latest_extent->root == root);
PA_DCHECK(latest_extent->root == root);
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
// Most new extents will be part of a larger extent, and these two fields
// are unused, but we initialize them to 0 so that we get a clear signal
// in case they are accidentally used.
writable_latest_extent->number_of_consecutive_super_pages = 0;
writable_latest_extent->next = nullptr;
writable_latest_extent->number_of_nonempty_slot_spans = 0;
PartitionSuperPageExtentEntry<MetadataKind::kReadOnly>* current_extent =
root->current_extent;
const bool is_new_extent = super_page != requested_address;
if (is_new_extent) [[unlikely]] {
if (!current_extent) [[unlikely]] {
PA_DCHECK(!root->first_extent);
root->first_extent = latest_extent;
} else {
PA_DCHECK(current_extent->number_of_consecutive_super_pages);
current_extent->ToWritable(root)->next = latest_extent;
}
root->current_extent = latest_extent;
writable_latest_extent->number_of_consecutive_super_pages = 1;
} else {
// We allocated next to an existing extent so just nudge the size up a
// little.
PA_DCHECK(current_extent->number_of_consecutive_super_pages);
++current_extent->ToWritable(root)->number_of_consecutive_super_pages;
PA_DCHECK(payload > SuperPagesBeginFromExtent(current_extent) &&
payload < SuperPagesEndFromExtent(current_extent));
}
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
// Commit the pages for freeslot bitmap.
if (!is_direct_mapped()) {
uintptr_t freeslot_bitmap_addr = super_page + PartitionPageSize();
PA_DCHECK(SuperPageFreeSlotBitmapAddr(super_page) == freeslot_bitmap_addr);
ScopedSyscallTimer timer{root};
RecommitSystemPages(freeslot_bitmap_addr, CommittedFreeSlotBitmapSize(),
root->PageAccessibilityWithThreadIsolationIfEnabled(
PageAccessibilityConfiguration::kReadWrite),
PageAccessibilityDisposition::kRequireUpdate);
}
#endif
return payload;
}
PA_ALWAYS_INLINE void PartitionBucket::InitializeSlotSpan(
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
PartitionRoot* root) {
SlotSpanMetadata<MetadataKind::kWritable>* writable_slot_span =
slot_span->ToWritable(root);
new (writable_slot_span) SlotSpanMetadata<MetadataKind::kWritable>(this);
writable_slot_span->Reset();
uint16_t num_partition_pages = get_pages_per_slot_span();
auto* page_metadata =
reinterpret_cast<PartitionPageMetadata<MetadataKind::kWritable>*>(
writable_slot_span);
for (uint16_t i = 0; i < num_partition_pages; ++i, ++page_metadata) {
PA_DCHECK(i <= PartitionPageMetadata<
MetadataKind::kReadOnly>::kMaxSlotSpanMetadataOffset);
page_metadata->slot_span_metadata_offset = i;
page_metadata->is_valid = true;
}
#if PA_CONFIG(ENABLE_SHADOW_METADATA) && PA_BUILDFLAG(DCHECKS_ARE_ON)
PA_DCHECK(slot_span->bucket == this);
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA) && PA_BUILDFLAG(DCHECKS_ARE_ON)
}
PA_ALWAYS_INLINE uintptr_t PartitionBucket::ProvisionMoreSlotsAndAllocOne(
PartitionRoot* root,
AllocFlags flags,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span) {
PA_DCHECK(
slot_span !=
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span());
size_t num_slots = slot_span->num_unprovisioned_slots;
PA_DCHECK(num_slots);
PA_DCHECK(num_slots <= get_slots_per_span());
// We should only get here when _every_ slot is either used or unprovisioned.
// (The third possible state is "on the freelist". If we have a non-empty
// freelist, we should not get here.)
PA_DCHECK(num_slots + slot_span->num_allocated_slots == get_slots_per_span());
// Similarly, make explicitly sure that the freelist is empty.
PA_DCHECK(!slot_span->get_freelist_head());
PA_DCHECK(!slot_span->is_full());
uintptr_t slot_span_start =
SlotSpanMetadata<MetadataKind::kReadOnly>::ToSlotSpanStart(slot_span);
// If we got here, the first unallocated slot is either partially or fully on
// an uncommitted page. If the latter, it must be at the start of that page.
uintptr_t return_slot =
slot_span_start + (slot_size * slot_span->num_allocated_slots);
uintptr_t next_slot = return_slot + slot_size;
uintptr_t commit_start = base::bits::AlignUp(return_slot, SystemPageSize());
PA_DCHECK(next_slot > commit_start);
uintptr_t commit_end = base::bits::AlignUp(next_slot, SystemPageSize());
// If the slot was partially committed, |return_slot| and |next_slot| fall
// in different pages. If the slot was fully uncommitted, |return_slot| points
// to the page start and |next_slot| doesn't, thus only the latter gets
// rounded up.
PA_DCHECK(commit_end > commit_start);
// If lazy commit is enabled, meaning system pages in the slot span come
// in an initially decommitted state, commit them here.
// Note, we can't use PageAccessibilityDisposition::kAllowKeepForPerf, because
// we have no knowledge which pages have been committed before (it doesn't
// matter on Windows anyway).
if (kUseLazyCommit) {
const bool ok = root->TryRecommitSystemPagesForDataLocked(
commit_start, commit_end - commit_start,
PageAccessibilityDisposition::kRequireUpdate,
slot_size <= kMaxMemoryTaggingSize);
if (!ok) {
if (!ContainsFlags(flags, AllocFlags::kReturnNull)) {
ScopedUnlockGuard unlock{PartitionRootLock(root)};
PartitionOutOfMemoryCommitFailure(root, slot_size);
}
return 0;
}
}
SlotSpanMetadata<MetadataKind::kWritable>* writable_slot_span =
slot_span->ToWritable(root);
// The slot being returned is considered allocated.
writable_slot_span->num_allocated_slots++;
// Round down, because a slot that doesn't fully fit in the new page(s) isn't
// provisioned.
size_t slots_to_provision = (commit_end - return_slot) / slot_size;
writable_slot_span->num_unprovisioned_slots -= slots_to_provision;
PA_DCHECK(slot_span->num_allocated_slots +
slot_span->num_unprovisioned_slots <=
get_slots_per_span());
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
const bool use_tagging =
root->IsMemoryTaggingEnabled() && slot_size <= kMaxMemoryTaggingSize;
if (use_tagging) [[likely]] {
// Ensure the MTE-tag of the memory pointed by |return_slot| is unguessable.
TagMemoryRangeRandomly(return_slot, slot_size);
}
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
// Add all slots that fit within so far committed pages to the free list.
PartitionFreelistEntry* prev_entry = nullptr;
uintptr_t next_slot_end = next_slot + slot_size;
size_t free_list_entries_added = 0;
const auto* freelist_dispatcher = root->get_freelist_dispatcher();
while (next_slot_end <= commit_end) {
void* next_slot_ptr;
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
if (use_tagging) [[likely]] {
// Ensure the MTE-tag of the memory pointed by other provisioned slot is
// unguessable. They will be returned to the app as is, and the MTE-tag
// will only change upon calling Free().
next_slot_ptr = TagMemoryRangeRandomly(next_slot, slot_size);
} else {
// No MTE-tagging for larger slots, just cast.
next_slot_ptr = reinterpret_cast<void*>(next_slot);
}
#else // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
next_slot_ptr = reinterpret_cast<void*>(next_slot);
#endif
auto* entry = freelist_dispatcher->EmplaceAndInitNull(next_slot_ptr);
if (!slot_span->get_freelist_head()) {
PA_DCHECK(!prev_entry);
PA_DCHECK(!free_list_entries_added);
writable_slot_span->SetFreelistHead(entry, root);
} else {
PA_DCHECK(free_list_entries_added);
freelist_dispatcher->SetNext(prev_entry, entry);
}
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
FreeSlotBitmapMarkSlotAsFree(next_slot);
#endif
next_slot = next_slot_end;
next_slot_end = next_slot + slot_size;
prev_entry = entry;
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
free_list_entries_added++;
#endif
}
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
FreeSlotBitmapMarkSlotAsFree(return_slot);
#endif
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
// The only provisioned slot not added to the free list is the one being
// returned.
PA_DCHECK(slots_to_provision == free_list_entries_added + 1);
// We didn't necessarily provision more than one slot (e.g. if |slot_size|
// is large), meaning that |slot_span->freelist_head| can be nullptr.
if (slot_span->get_freelist_head()) {
PA_DCHECK(free_list_entries_added);
freelist_dispatcher->CheckFreeList(slot_span->get_freelist_head(),
slot_size);
}
#endif
// We had no free slots, and created some (potentially 0) in sorted order.
writable_slot_span->set_freelist_sorted();
return return_slot;
}
bool PartitionBucket::SetNewActiveSlotSpan(PartitionRoot* root) {
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span = active_slot_spans_head;
if (slot_span ==
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span()) {
return false;
}
SlotSpanMetadata<MetadataKind::kReadOnly>* next_slot_span;
// The goal here is to find a suitable slot span in the active list. Suitable
// slot spans are |is_active()|, i.e. they either have (a) freelist entries,
// or (b) unprovisioned free space. The first case is preferable, since it
// doesn't cost a system call, and doesn't cause new memory to become dirty.
//
// While looking for a new slot span, active list maintenance is performed,
// that is:
// - Empty and decommitted slot spans are moved to their respective lists.
// - Full slot spans are removed from the active list but are not moved
// anywhere. They could be tracked in a separate list, but this would
// increase cost non trivially. Indeed, a full slot span is likely to become
// non-full at some point (due to a free() hitting it). Since we only have
// space in the metadata for a single linked list pointer, removing the
// newly-non-full slot span from the "full" list would require walking it
// (to know what's before it in the full list).
//
// Since we prefer slot spans with provisioned freelist entries, maintenance
// happens in two stages:
// 1. Walk the list to find candidates. Each of the skipped slot span is moved
// to either:
// - one of the long-lived lists: empty, decommitted
// - the temporary "active slots spans with no freelist entry" list
// - Nowhere for full slot spans.
// 2. Once we have a candidate:
// - Set it as the new active list head
// - Reattach the temporary list
//
// Note that in most cases, the whole list will not be walked and maintained
// at this stage.
SlotSpanMetadata<MetadataKind::kReadOnly>* to_provision_head = nullptr;
SlotSpanMetadata<MetadataKind::kReadOnly>* to_provision_tail = nullptr;
for (; slot_span; slot_span = next_slot_span) {
next_slot_span = slot_span->next_slot_span;
PA_DCHECK(slot_span->bucket == this);
PA_DCHECK(slot_span != empty_slot_spans_head);
PA_DCHECK(slot_span != decommitted_slot_spans_head);
if (slot_span->is_active()) {
// Has provisioned slots.
if (slot_span->get_freelist_head()) {
// Will use this slot span, no need to go further.
break;
} else {
// Keeping head and tail because we don't want to reverse the list.
if (!to_provision_head) {
to_provision_head = slot_span;
}
if (to_provision_tail) {
to_provision_tail->ToWritable(root)->next_slot_span = slot_span;
}
to_provision_tail = slot_span;
slot_span->ToWritable(root)->next_slot_span = nullptr;
}
} else if (slot_span->is_empty()) {
slot_span->ToWritable(root)->next_slot_span = empty_slot_spans_head;
empty_slot_spans_head = slot_span;
} else if (slot_span->is_decommitted()) [[likely]] {
slot_span->ToWritable(root)->next_slot_span = decommitted_slot_spans_head;
decommitted_slot_spans_head = slot_span;
} else {
PA_DCHECK(slot_span->is_full());
// Move this slot span... nowhere, and also mark it as full. We need it
// marked so that free'ing can tell, and move it back into the active
// list.
slot_span->ToWritable(root)->marked_full = 1;
++num_full_slot_spans;
// Overflow. Most likely a correctness issue in the code. It is in theory
// possible that the number of full slot spans really reaches (1 << 24),
// but this is very unlikely (and not possible with most pool settings).
PA_CHECK(num_full_slot_spans);
// Not necessary but might help stop accidents.
slot_span->ToWritable(root)->next_slot_span = nullptr;
}
}
bool usable_active_list_head = false;
// Found an active slot span with provisioned entries on the freelist.
if (slot_span) {
usable_active_list_head = true;
// We have active slot spans with unprovisioned entries. Re-attach them into
// the active list, past the span with freelist entries.
if (to_provision_head) {
auto* next = slot_span->next_slot_span;
slot_span->ToWritable(root)->next_slot_span = to_provision_head;
to_provision_tail->ToWritable(root)->next_slot_span = next;
}
active_slot_spans_head = slot_span;
} else if (to_provision_head) {
usable_active_list_head = true;
// Need to provision new slots.
active_slot_spans_head = to_provision_head;
} else {
// Active list is now empty.
active_slot_spans_head = SlotSpanMetadata<
MetadataKind::kReadOnly>::get_sentinel_slot_span_non_const();
}
return usable_active_list_head;
}
void PartitionBucket::MaintainActiveList(PartitionRoot* root) {
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span = active_slot_spans_head;
if (slot_span ==
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span()) {
return;
}
SlotSpanMetadata<MetadataKind::kReadOnly>* new_active_slot_spans_head =
nullptr;
SlotSpanMetadata<MetadataKind::kReadOnly>* new_active_slot_spans_tail =
nullptr;
SlotSpanMetadata<MetadataKind::kReadOnly>* next_slot_span;
for (; slot_span; slot_span = next_slot_span) {
next_slot_span = slot_span->next_slot_span;
if (slot_span->is_active()) {
// Ordering in the active slot span list matters, don't reverse it.
if (!new_active_slot_spans_head) {
new_active_slot_spans_head = slot_span;
}
if (new_active_slot_spans_tail) {
new_active_slot_spans_tail->ToWritable(root)->next_slot_span =
slot_span;
}
new_active_slot_spans_tail = slot_span;
slot_span->ToWritable(root)->next_slot_span = nullptr;
} else if (slot_span->is_empty()) {
// For the empty and decommitted lists, LIFO ordering makes sense (since
// it would lead to reusing memory which has been touched relatively
// recently, which only matters for committed spans though).
slot_span->ToWritable(root)->next_slot_span = empty_slot_spans_head;
empty_slot_spans_head = slot_span;
} else if (slot_span->is_decommitted()) {
slot_span->ToWritable(root)->next_slot_span = decommitted_slot_spans_head;
decommitted_slot_spans_head = slot_span;
} else {
// Full slot spans are not tracked, just accounted for.
PA_DCHECK(slot_span->is_full());
slot_span->ToWritable(root)->marked_full = 1;
++num_full_slot_spans;
PA_CHECK(num_full_slot_spans); // Overflow.
slot_span->ToWritable(root)->next_slot_span = nullptr;
}
}
if (!new_active_slot_spans_head) {
new_active_slot_spans_head = SlotSpanMetadata<
MetadataKind::kReadOnly>::get_sentinel_slot_span_non_const();
}
active_slot_spans_head = new_active_slot_spans_head;
#if PA_CONFIG(ENABLE_SHADOW_METADATA) && PA_BUILDFLAG(DCHECKS_ARE_ON)
// If ShadowMetadata is enabled, `active_slot_spans_heads` must not point
// to a writable SlotSpanMetadata. Instead, it points to a sentinel
// SlotSpanMetadata or a readonly SlotSpanMetadata (inside the gigacage).
PA_DCHECK(
!PartitionAddressSpace::IsShadowMetadataEnabled(root->ChoosePool()) ||
!PartitionAddressSpace::IsInPoolShadow(active_slot_spans_head));
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA) && PA_BUILDFLAG(DCHECKS_ARE_ON)
}
void PartitionBucket::SortSmallerSlotSpanFreeLists(PartitionRoot* root) {
for (auto* slot_span = active_slot_spans_head; slot_span;
slot_span = slot_span->next_slot_span) {
// No need to sort the freelist if it's already sorted. Note that if the
// freelist is sorted, this means that it didn't change at all since the
// last call. This may be a good signal to shrink it if possible (if an
// entire OS page is free, we can decommit it).
//
// Besides saving CPU, this also avoids touching memory of fully idle slot
// spans, which may required paging.
if (slot_span->num_allocated_slots > 0 &&
!slot_span->freelist_is_sorted()) {
slot_span->ToWritable(root)->SortFreelist(root);
}
}
}
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
bool CompareSlotSpans(const SlotSpanMetadata<MetadataKind::kReadOnly>* a,
const SlotSpanMetadata<MetadataKind::kReadOnly>* b) {
auto criteria_tuple = [](SlotSpanMetadata<MetadataKind::kReadOnly> const* a) {
size_t freelist_length = a->GetFreelistLength();
// The criteria are, in order (hence the lexicographic comparison below):
// 1. Prefer slot spans with freelist entries. The ones without freelist
// entries would be skipped in SetNewActiveSlotSpan() anyway.
// 2. Then the ones with the fewest freelist entries. They are either close
// to being full (for the provisioned memory), or close to being pushed
// at the end of the list (since they would not have freelist entries
// anymore, and would either fall into the first case, or be skipped by
// SetNewActiveSlotSpan()).
// 3. The ones with the fewer unprovisioned slots, meaning that they are
// close to being completely full.
//
// Note that this sorting order is not necessarily the best one when slot
// spans are partially provisioned. From local testing, in steady-state,
// most slot spans are entirely provisioned (or decommitted), which may be a
// consequence of the lack of partial slot span decommit, or of fairly
// effective fragmentation avoidance heuristics. Make sure to evaluate
// whether an alternative sorting order (sorting according to freelist size
// + unprovisioned slots) makes more sense.
return std::tuple<bool, size_t, size_t>{
freelist_length == 0, freelist_length, a->num_unprovisioned_slots};
};
return criteria_tuple(a) < criteria_tuple(b);
}
void PartitionBucket::SortActiveSlotSpans(PartitionRoot* root) {
// Sorting up to |kMaxSlotSpansToSort| slot spans. This is capped for two
// reasons:
// - Limiting execution time
// - Current code cannot allocate.
//
// In practice though, it's rare to have that many active slot spans.
SlotSpanMetadata<MetadataKind::kReadOnly>*
active_spans_array[kMaxSlotSpansToSort];
size_t index = 0;
SlotSpanMetadata<MetadataKind::kReadOnly>* overflow_spans_start = nullptr;
for (auto* slot_span = active_slot_spans_head; slot_span;
slot_span = slot_span->next_slot_span) {
if (index < kMaxSlotSpansToSort) {
active_spans_array[index++] = slot_span;
} else {
// Starting from this one, not sorting the slot spans.
overflow_spans_start = slot_span;
break;
}
}
// We sort the active slot spans so that allocations are preferably serviced
// from the fullest ones. This way we hope to reduce fragmentation by keeping
// as few slot spans as full as possible.
//
// With perfect information on allocation lifespan, we would be able to pack
// allocations and get almost no fragmentation. This is obviously not the
// case, so we have partially full SlotSpans. Nevertheless, as a heuristic we
// want to:
// - Keep almost-empty slot spans as empty as possible
// - Keep mostly-full slot spans as full as possible
//
// The first part is done in the hope that future free()s will make these
// slot spans completely empty, allowing us to reclaim them. To that end, sort
// SlotSpans periodically so that the fullest ones are preferred.
//
// std::sort() is not completely guaranteed to never allocate memory. However,
// it may not throw std::bad_alloc, which constrains the implementation. In
// addition, this is protected by the reentrancy guard, so we would detect
// such an allocation.
std::sort(active_spans_array, active_spans_array + index, CompareSlotSpans);
active_slot_spans_head = overflow_spans_start;
// Reverse order, since we insert at the head of the list.
for (int i = index - 1; i >= 0; i--) {
if (active_spans_array[i] ==
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span()) {
// The sentinel is const, don't try to write to it.
PA_DCHECK(active_slot_spans_head == nullptr);
} else {
active_spans_array[i]->ToWritable(root)->next_slot_span =
active_slot_spans_head;
}
active_slot_spans_head = active_spans_array[i];
}
}
uintptr_t PartitionBucket::SlowPathAlloc(
PartitionRoot* root,
AllocFlags flags,
size_t raw_size,
size_t slot_span_alignment,
SlotSpanMetadata<MetadataKind::kReadOnly>** slot_span,
bool* is_already_zeroed) {
PA_DCHECK((slot_span_alignment >= PartitionPageSize()) &&
base::bits::HasSingleBit(slot_span_alignment));
// The slow path is called when the freelist is empty. The only exception is
// when a higher-order alignment is requested, in which case the freelist
// logic is bypassed and we go directly for slot span allocation.
bool allocate_aligned_slot_span = slot_span_alignment > PartitionPageSize();
PA_DCHECK(!active_slot_spans_head->get_freelist_head() ||
allocate_aligned_slot_span);
SlotSpanMetadata<MetadataKind::kReadOnly>* new_slot_span = nullptr;
// |new_slot_span->bucket| will always be |this|, except when |this| is the
// sentinel bucket, which is used to signal a direct mapped allocation. In
// this case |new_bucket| will be set properly later. This avoids a read for
// most allocations.
PartitionBucket* new_bucket = this;
*is_already_zeroed = false;
// For the PartitionRoot::Alloc() API, we have a bunch of buckets
// marked as special cases. We bounce them through to the slow path so that
// we can still have a blazing fast hot path due to lack of corner-case
// branches.
//
// Note: The ordering of the conditionals matter! In particular,
// SetNewActiveSlotSpan() has a side-effect even when returning
// false where it sweeps the active list and may move things into the empty or
// decommitted lists which affects the subsequent conditional.
if (is_direct_mapped()) [[unlikely]] {
PA_DCHECK(raw_size > kMaxBucketed);
PA_DCHECK(this == &root->sentinel_bucket);
PA_DCHECK(
active_slot_spans_head ==
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span());
// No fast path for direct-mapped allocations.
if (ContainsFlags(flags, AllocFlags::kFastPathOrReturnNull)) {
return 0;
}
new_slot_span =
PartitionDirectMap(root, flags, raw_size, slot_span_alignment);
if (new_slot_span) {
#if !PA_CONFIG(ENABLE_SHADOW_METADATA)
new_bucket = new_slot_span->bucket;
#else
// |new_slot_span| must be in the giga cage.
PA_DCHECK(IsManagedByPartitionAlloc(
reinterpret_cast<uintptr_t>(new_slot_span)));
// |new_slot_span->bucket| must point to a bucket inside the giga cage,
// because the new slotspan is in the giga cage.
PA_DCHECK(IsManagedByPartitionAlloc(
reinterpret_cast<uintptr_t>(new_slot_span->bucket)));
// To make the writable PartitionBucket, need to apply
// |root->ShadowPoolOffset()|.
new_bucket = reinterpret_cast<PartitionBucket*>(
reinterpret_cast<intptr_t>(new_slot_span->bucket) +
root->ShadowPoolOffset());
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
}
// Memory from PageAllocator is always zeroed.
*is_already_zeroed = true;
} else if (!allocate_aligned_slot_span && SetNewActiveSlotSpan(root))
[[likely]] {
// First, did we find an active slot span in the active list?
new_slot_span = active_slot_spans_head;
PA_DCHECK(new_slot_span->is_active());
} else if (!allocate_aligned_slot_span &&
(empty_slot_spans_head != nullptr ||
decommitted_slot_spans_head != nullptr)) [[likely]] {
// Second, look in our lists of empty and decommitted slot spans.
// Check empty slot spans first, which are preferred, but beware that an
// empty slot span might have been decommitted.
while ((new_slot_span = empty_slot_spans_head) != nullptr) [[likely]] {
PA_DCHECK(new_slot_span->bucket == this);
PA_DCHECK(new_slot_span->is_empty() || new_slot_span->is_decommitted());
empty_slot_spans_head = new_slot_span->next_slot_span;
// Accept the empty slot span unless it got decommitted.
if (new_slot_span->get_freelist_head()) {
new_slot_span->ToWritable(root)->next_slot_span = nullptr;
new_slot_span->ToSuperPageExtent()
->ToWritable(root)
->IncrementNumberOfNonemptySlotSpans();
// Re-activating an empty slot span, update accounting.
size_t dirty_size = base::bits::AlignUp(
new_slot_span->GetProvisionedSize(), SystemPageSize());
PA_DCHECK(root->empty_slot_spans_dirty_bytes >= dirty_size);
root->empty_slot_spans_dirty_bytes -= dirty_size;
break;
}
PA_DCHECK(new_slot_span->is_decommitted());
new_slot_span->ToWritable(root)->next_slot_span =
decommitted_slot_spans_head;
decommitted_slot_spans_head = new_slot_span;
}
if (!new_slot_span) [[unlikely]] {
if (decommitted_slot_spans_head != nullptr) [[likely]] {
// Commit can be expensive, don't do it.
if (ContainsFlags(flags, AllocFlags::kFastPathOrReturnNull)) {
return 0;
}
new_slot_span = decommitted_slot_spans_head;
PA_DCHECK(new_slot_span->bucket == this);
PA_DCHECK(new_slot_span->is_decommitted());
// If lazy commit is enabled, pages will be recommitted when
// provisioning slots, in ProvisionMoreSlotsAndAllocOne(), not here.
if (!kUseLazyCommit) {
uintptr_t slot_span_start =
SlotSpanMetadata<MetadataKind::kReadOnly>::ToSlotSpanStart(
new_slot_span);
// Since lazy commit isn't used, we have a guarantee that all slot
// span pages have been previously committed, and then decommitted
// using PageAccessibilityDisposition::kAllowKeepForPerf, so use the
// same option as an optimization.
const bool ok = root->TryRecommitSystemPagesForDataLocked(
slot_span_start, new_slot_span->bucket->get_bytes_per_span(),
PageAccessibilityDisposition::kAllowKeepForPerf,
slot_size <= kMaxMemoryTaggingSize);
if (!ok) {
if (!ContainsFlags(flags, AllocFlags::kReturnNull)) {
ScopedUnlockGuard unlock{PartitionRootLock(root)};
PartitionOutOfMemoryCommitFailure(
root, new_slot_span->bucket->get_bytes_per_span());
}
return 0;
}
}
decommitted_slot_spans_head = new_slot_span->next_slot_span;
new_slot_span->ToWritable(root)->Reset();
*is_already_zeroed = DecommittedMemoryIsAlwaysZeroed();
}
PA_DCHECK(new_slot_span);
}
} else {
// Getting a new slot span is expensive, don't do it.
if (ContainsFlags(flags, AllocFlags::kFastPathOrReturnNull)) {
return 0;
}
// Third. If we get here, we need a brand new slot span.
// TODO(bartekn): For single-slot slot spans, we can use rounded raw_size
// as slot_span_committed_size.
new_slot_span = AllocNewSlotSpan(root, flags, slot_span_alignment);
// New memory from PageAllocator is always zeroed.
*is_already_zeroed = true;
}
// Bail if we had a memory allocation failure.
if (!new_slot_span) [[unlikely]] {
PA_DCHECK(
active_slot_spans_head ==
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span());
if (ContainsFlags(flags, AllocFlags::kReturnNull)) {
return 0;
}
// See comment in PartitionDirectMap() for unlocking.
ScopedUnlockGuard unlock{PartitionRootLock(root)};
root->OutOfMemory(raw_size);
PA_IMMEDIATE_CRASH(); // Not required, kept as documentation.
}
*slot_span = new_slot_span;
PA_DCHECK(new_bucket != &root->sentinel_bucket);
new_bucket->active_slot_spans_head = new_slot_span;
if (new_slot_span->CanStoreRawSize()) {
new_slot_span->ToWritable(root)->SetRawSize(raw_size);
}
// If we found an active slot span with free slots, or an empty slot span, we
// have a usable freelist head.
if (new_slot_span->get_freelist_head() != nullptr) [[likely]] {
const PartitionFreelistDispatcher* freelist_dispatcher =
root->get_freelist_dispatcher();
PartitionFreelistEntry* entry =
new_slot_span->ToWritable(root)->PopForAlloc(new_bucket->slot_size,
freelist_dispatcher);
// We may have set *is_already_zeroed to true above, make sure that the
// freelist entry doesn't contain data. Either way, it wouldn't be a good
// idea to let users see our internal data.
uintptr_t slot_start = freelist_dispatcher->ClearForAllocation(entry);
return slot_start;
}
// Otherwise, we need to provision more slots by committing more pages. Build
// the free list for the newly provisioned slots.
PA_DCHECK(new_slot_span->num_unprovisioned_slots);
return ProvisionMoreSlotsAndAllocOne(root, flags, new_slot_span);
}
uintptr_t PartitionBucket::AllocNewSuperPageSpanForGwpAsan(
PartitionRoot* root,
size_t super_page_count,
AllocFlags flags) {
return AllocNewSuperPageSpan(root, super_page_count, flags);
}
void PartitionBucket::InitializeSlotSpanForGwpAsan(
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
PartitionRoot* root) {
InitializeSlotSpan(slot_span, root);
}
} // namespace partition_alloc::internal