1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
base / allocator / partition_allocator / src / partition_alloc / partition_page.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/partition_page.h"
#include <algorithm>
#include <cstdint>
#include "partition_alloc/address_pool_manager.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/freeslot_bitmap.h"
#include "partition_alloc/page_allocator.h"
#include "partition_alloc/page_allocator_constants.h"
#include "partition_alloc/partition_address_space.h"
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/numerics/safe_conversions.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_constants.h"
#include "partition_alloc/partition_alloc_forward.h"
#include "partition_alloc/partition_direct_map_extent.h"
#include "partition_alloc/partition_freelist_entry.h"
#include "partition_alloc/partition_root.h"
#include "partition_alloc/reservation_offset_table.h"
#include "partition_alloc/tagging.h"
namespace partition_alloc::internal {
namespace {
void UnmapNow(uintptr_t reservation_start,
size_t reservation_size,
pool_handle pool);
PA_ALWAYS_INLINE void PartitionDirectUnmap(
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span) {
auto* root = PartitionRoot::FromSlotSpanMetadata(slot_span);
PartitionRootLock(root).AssertAcquired();
auto* extent =
PartitionDirectMapExtent<MetadataKind::kReadOnly>::FromSlotSpanMetadata(
slot_span);
// Maintain the doubly-linked list of all direct mappings.
if (extent->prev_extent) {
PA_DCHECK(extent->prev_extent->next_extent == extent);
extent->prev_extent->ToWritable(root)->next_extent = extent->next_extent;
} else {
root->direct_map_list = extent->next_extent;
}
if (extent->next_extent) {
PA_DCHECK(extent->next_extent->prev_extent == extent);
extent->next_extent->ToWritable(root)->prev_extent = extent->prev_extent;
}
// The actual decommit is deferred below after releasing the lock.
root->DecreaseCommittedPages(slot_span->bucket->slot_size);
size_t reservation_size = extent->reservation_size;
PA_DCHECK(!(reservation_size & DirectMapAllocationGranularityOffsetMask()));
PA_DCHECK(root->total_size_of_direct_mapped_pages >= reservation_size);
root->total_size_of_direct_mapped_pages -= reservation_size;
uintptr_t reservation_start =
SlotSpanMetadata<MetadataKind::kReadOnly>::ToSlotSpanStart(slot_span);
// The mapping may start at an unspecified location within a super page, but
// we always reserve memory aligned to super page size.
reservation_start = base::bits::AlignDown(reservation_start, kSuperPageSize);
// All the metadata have been updated above, in particular the mapping has
// been unlinked. We can safely release the memory outside the lock, which is
// important as decommitting memory can be expensive.
//
// This can create a fake "address space exhaustion" OOM, in the case where
// e.g. a large allocation is freed on a thread, and another large one is made
// from another *before* UnmapNow() has finished running. In this case the
// second one may not find enough space in the pool, and fail. This is
// expected to be very rare though, and likely preferable to holding the lock
// while releasing the address space.
ScopedUnlockGuard unlock{PartitionRootLock(root)};
ScopedSyscallTimer timer{root};
UnmapNow(reservation_start, reservation_size, root->ChoosePool());
}
} // namespace
PA_ALWAYS_INLINE void
SlotSpanMetadata<MetadataKind::kWritable>::RegisterEmpty() {
PA_DCHECK(is_empty_internal());
// We can use FromSlotSpanMetadata() to get PartitionRoot from
// both SlotSpanMetadata<MetadataKind::kReadOnly> and
// SlotSpanMetadata<MetadataKind::kWritable>, because SuperPageExtentEntry and
// SlotSpanMetadata<MetadataKind::kReadOnly> are in the same system page, and
// WritableSuperPageExtentEntry and SlotSpanMetadata<MetadataKind::kWritable>
// are also in the same system page.
auto* root = PartitionRoot::FromSlotSpanMetadata(this);
PartitionRootLock(root).AssertAcquired();
root->empty_slot_spans_dirty_bytes +=
base::bits::AlignUp(GetProvisionedSize(), SystemPageSize());
ToSuperPageExtent()->DecrementNumberOfNonemptySlotSpans();
// If the slot span is already registered as empty, don't do anything. This
// prevents continually reusing a slot span from decommitting a bunch of other
// slot spans.
if (in_empty_cache_) {
return;
}
PA_DCHECK(root->global_empty_slot_span_ring_index <
root->global_empty_slot_span_ring_size);
int16_t current_index = root->global_empty_slot_span_ring_index;
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span_to_decommit =
root->global_empty_slot_span_ring[current_index];
// The slot span might well have been re-activated, filled up, etc. before we
// get around to looking at it here.
if (slot_span_to_decommit) {
slot_span_to_decommit->ToWritable(root)->DecommitIfPossible(root);
}
// There should not be a slot span in the buffer at the position this is
// going into.
PA_DCHECK(!root->global_empty_slot_span_ring[current_index]);
// We put the empty slot span on our global list of "slot spans that were once
// empty", thus providing it a bit of breathing room to get re-used before we
// really free it. This reduces the number of system calls. Otherwise any
// free() from a single-slot slot span would lead to a syscall, for instance.
root->global_empty_slot_span_ring[current_index] = ToReadOnly(root);
empty_cache_index_ = current_index;
in_empty_cache_ = 1;
++current_index;
if (current_index == root->global_empty_slot_span_ring_size) {
current_index = 0;
}
PA_DCHECK(current_index <
base::checked_cast<int16_t>(internal::kMaxEmptySlotSpanRingSize));
root->global_empty_slot_span_ring_index = current_index;
// Avoid wasting too much memory on empty slot spans. Note that we only divide
// by powers of two, since division can be very slow, and this path is taken
// for every single-slot slot span deallocation.
//
// Empty slot spans are also all decommitted with MemoryReclaimer, but it may
// never run, be delayed arbitrarily, and/or miss large memory spikes.
size_t max_empty_dirty_bytes =
root->total_size_of_committed_pages.load(std::memory_order_relaxed) >>
root->max_empty_slot_spans_dirty_bytes_shift;
if (root->empty_slot_spans_dirty_bytes > max_empty_dirty_bytes) {
root->ShrinkEmptySlotSpansRing(std::min(
root->empty_slot_spans_dirty_bytes / 2, max_empty_dirty_bytes));
}
}
// static
const SlotSpanMetadata<MetadataKind::kReadOnly>
SlotSpanMetadata<MetadataKind::kReadOnly>::sentinel_slot_span_;
// static
const SlotSpanMetadata<MetadataKind::kReadOnly>*
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span() {
return &sentinel_slot_span_;
}
// static
SlotSpanMetadata<MetadataKind::kReadOnly>*
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span_non_const() {
return const_cast<SlotSpanMetadata<MetadataKind::kReadOnly>*>(
&sentinel_slot_span_);
}
void SlotSpanMetadata<MetadataKind::kWritable>::FreeSlowPath(
size_t number_of_freed,
PartitionRoot* root) {
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
DCheckRootLockIsAcquired(root);
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
SlotSpanMetadata<MetadataKind::kReadOnly>* readonly_this = ToReadOnly(root);
PA_DCHECK(
readonly_this !=
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span());
// The caller has already modified |num_allocated_slots|. It is a
// responsibility of this function to react to it, and update the state. We
// can get here only if the slot span is marked full and/or is now empty. Both
// are possible at the same time, which can happen when the caller lowered
// |num_allocated_slots| from "all" to 0 (common for single-slot spans). First
// execute the "is marked full" path, as it sets up |active_slot_spans_head|
// in a way later needed for the "is empty" path.
if (marked_full) {
// Direct map slot spans aren't added to any lists, hence never marked full.
PA_DCHECK(!bucket->is_direct_mapped());
// Double check that the slot span was full.
PA_DCHECK(num_allocated_slots ==
bucket->get_slots_per_span() - number_of_freed);
marked_full = 0;
// Fully used slot span became partially used. It must be put back on the
// non-full list. Also make it the current slot span to increase the
// chances of it being filled up again. The old current slot span will be
// the next slot span.
PA_DCHECK(!next_slot_span);
if (bucket->active_slot_spans_head !=
SlotSpanMetadata<MetadataKind::kReadOnly>::get_sentinel_slot_span())
[[likely]] {
next_slot_span = bucket->active_slot_spans_head;
}
bucket->active_slot_spans_head = readonly_this;
PA_CHECK(bucket->num_full_slot_spans); // Underflow.
--bucket->num_full_slot_spans;
}
if (num_allocated_slots == 0) [[likely]] {
// Slot span became fully unused.
if (bucket->is_direct_mapped()) [[unlikely]] {
PartitionDirectUnmap(readonly_this);
return;
}
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
const PartitionFreelistDispatcher* freelist_dispatcher =
PartitionRoot::FromSlotSpanMetadata(this)->get_freelist_dispatcher();
freelist_dispatcher->CheckFreeList(freelist_head, bucket->slot_size);
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
// If it's the current active slot span, change it. We bounce the slot span
// to the empty list as a force towards defragmentation.
if (readonly_this == bucket->active_slot_spans_head) [[likely]] {
bucket->SetNewActiveSlotSpan(root);
}
PA_DCHECK(bucket->active_slot_spans_head != readonly_this);
if (CanStoreRawSize()) {
SetRawSize(0);
}
RegisterEmpty();
}
}
void SlotSpanMetadata<MetadataKind::kWritable>::Decommit(PartitionRoot* root) {
PartitionRootLock(root).AssertAcquired();
PA_DCHECK(is_empty_internal());
PA_DCHECK(!bucket->is_direct_mapped());
uintptr_t slot_span_start =
SlotSpanMetadata<MetadataKind::kReadOnly>::ToSlotSpanStart(
ToReadOnly(root));
// If lazy commit is enabled, only provisioned slots are committed.
size_t dirty_size =
base::bits::AlignUp(GetProvisionedSize(), SystemPageSize());
size_t size_to_decommit =
kUseLazyCommit ? dirty_size : bucket->get_bytes_per_span();
PA_DCHECK(root->empty_slot_spans_dirty_bytes >= dirty_size);
root->empty_slot_spans_dirty_bytes -= dirty_size;
// Not decommitted slot span must've had at least 1 allocation.
PA_DCHECK(size_to_decommit > 0);
root->DecommitSystemPagesForData(
slot_span_start, size_to_decommit,
PageAccessibilityDisposition::kAllowKeepForPerf);
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
FreeSlotBitmapReset(slot_span_start, slot_span_start + size_to_decommit,
bucket->slot_size);
#endif
// We actually leave the decommitted slot span in the active list. We'll sweep
// it on to the decommitted list when we next walk the active list.
// Pulling this trick enables us to use a singly-linked list for all
// cases, which is critical in keeping the slot span metadata structure down
// to 32 bytes in size.
SetFreelistHead(nullptr, root);
num_unprovisioned_slots = 0;
PA_DCHECK(is_decommitted_internal());
PA_DCHECK(bucket);
}
void SlotSpanMetadata<MetadataKind::kWritable>::DecommitIfPossible(
PartitionRoot* root) {
PartitionRootLock(root).AssertAcquired();
PA_DCHECK(in_empty_cache_);
PA_DCHECK(empty_cache_index_ < kMaxEmptySlotSpanRingSize);
PA_DCHECK(ToReadOnly(root) ==
root->global_empty_slot_span_ring[empty_cache_index_]);
in_empty_cache_ = 0;
if (is_empty_internal()) {
Decommit(root);
}
root->global_empty_slot_span_ring[empty_cache_index_] = nullptr;
}
void SlotSpanMetadata<MetadataKind::kWritable>::SortFreelist(
[[maybe_unused]] PartitionRoot* root) {
std::bitset<kMaxSlotsPerSlotSpan> free_slots;
uintptr_t slot_span_start =
SlotSpanMetadata<MetadataKind::kReadOnly>::ToSlotSpanStart(
ToReadOnly(root));
size_t num_provisioned_slots =
bucket->get_slots_per_span() - num_unprovisioned_slots;
PA_CHECK(num_provisioned_slots <= kMaxSlotsPerSlotSpan);
size_t num_free_slots = 0;
size_t slot_size = bucket->slot_size;
const PartitionFreelistDispatcher* freelist_dispatcher =
PartitionRoot::FromSlotSpanMetadata(this)->get_freelist_dispatcher();
for (PartitionFreelistEntry* head = freelist_head; head;
head = freelist_dispatcher->GetNext(head, slot_size)) {
++num_free_slots;
size_t offset_in_slot_span = SlotStartPtr2Addr(head) - slot_span_start;
size_t slot_number = bucket->GetSlotNumber(offset_in_slot_span);
PA_DCHECK(slot_number < num_provisioned_slots);
free_slots[slot_number] = true;
}
PA_DCHECK(num_free_slots == GetFreelistLength());
// Empty or single-element list is always sorted.
if (num_free_slots > 1) {
PartitionFreelistEntry* back = nullptr;
PartitionFreelistEntry* head = nullptr;
for (size_t slot_number = 0; slot_number < num_provisioned_slots;
slot_number++) {
if (free_slots[slot_number]) {
uintptr_t slot_start = slot_span_start + (slot_size * slot_number);
auto* entry = freelist_dispatcher->EmplaceAndInitNull(slot_start);
if (!head) {
head = entry;
} else {
freelist_dispatcher->SetNext(back, entry);
}
back = entry;
}
}
SetFreelistHead(head, root);
}
freelist_is_sorted_ = true;
}
void SlotSpanMetadata<
MetadataKind::kWritable>::IncrementNumberOfNonemptySlotSpans() {
PartitionSuperPageExtentEntry<MetadataKind::kWritable>* extent =
ToSuperPageExtent();
extent->IncrementNumberOfNonemptySlotSpans();
}
namespace {
void UnmapNow(uintptr_t reservation_start,
size_t reservation_size,
pool_handle pool) {
PA_DCHECK(reservation_start && reservation_size > 0);
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
if (pool == kBRPPoolHandle) {
// In 32-bit mode, the beginning of a reservation may be excluded from the
// BRP pool, so shift the pointer. Other pools don't have this logic.
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
PA_DCHECK(IsManagedByPartitionAllocBRPPool(reservation_start));
#else
PA_DCHECK(IsManagedByPartitionAllocBRPPool(
reservation_start +
AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap *
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap));
#endif // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
} else
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
{
const bool received_expected_pool_handle =
pool == kRegularPoolHandle
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|| pool == kThreadIsolatedPoolHandle
#endif
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|| (pool == kConfigurablePoolHandle && IsConfigurablePoolAvailable())
#endif
;
PA_DCHECK(received_expected_pool_handle);
// Non-BRP pools don't need adjustment that BRP needs in 32-bit mode.
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
PA_DCHECK(IsManagedByPartitionAllocThreadIsolatedPool(reservation_start) ||
IsManagedByPartitionAllocRegularPool(reservation_start) ||
IsManagedByPartitionAllocConfigurablePool(reservation_start));
#else
PA_DCHECK(IsManagedByPartitionAllocRegularPool(reservation_start) ||
IsManagedByPartitionAllocConfigurablePool(reservation_start));
#endif
}
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
PA_DCHECK((reservation_start & kSuperPageOffsetMask) == 0);
uintptr_t reservation_end = reservation_start + reservation_size;
auto* offset_ptr = ReservationOffsetPointer(reservation_start);
// Reset the offset table entries for the given memory before unreserving
// it. Since the memory is not unreserved and not available for other
// threads, the table entries for the memory are not modified by other
// threads either. So we can update the table entries without race
// condition.
uint16_t i = 0;
for (uintptr_t address = reservation_start; address < reservation_end;
address += kSuperPageSize) {
PA_DCHECK(offset_ptr < GetReservationOffsetTableEnd(address));
PA_DCHECK(*offset_ptr == i++);
*offset_ptr++ = kOffsetTagNotAllocated;
}
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
// UnmapShadowMetadata must be done before unreserving memory, because
// Unreserved memory may be allocated by PartitionDirectMap() in another
// thread. In the case, MapShadowMetadata() and UnmapShadowMetadata()
// will be executed for the same system pages in wrong order. It causes
// memory access error.
if (internal::PartitionAddressSpace::IsShadowMetadataEnabled(pool)) {
PartitionAddressSpace::UnmapShadowMetadata(reservation_start, pool);
}
#endif
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
AddressPoolManager::GetInstance().MarkUnused(pool, reservation_start,
reservation_size);
#endif
// After resetting the table entries, unreserve and decommit the memory.
AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool, reservation_start, reservation_size);
}
} // namespace
} // namespace partition_alloc::internal