1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
base / allocator / partition_allocator / src / partition_alloc / partition_root.cc [blame]
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/partition_root.h"
#include <cstdint>
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/freeslot_bitmap.h"
#include "partition_alloc/in_slot_metadata.h"
#include "partition_alloc/oom.h"
#include "partition_alloc/page_allocator.h"
#include "partition_alloc/partition_address_space.h"
#include "partition_alloc/partition_alloc-inl.h"
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/component_export.h"
#include "partition_alloc/partition_alloc_base/thread_annotations.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/partition_alloc_constants.h"
#include "partition_alloc/partition_bucket.h"
#include "partition_alloc/partition_cookie.h"
#include "partition_alloc/partition_oom.h"
#include "partition_alloc/partition_page.h"
#include "partition_alloc/partition_superpage_extent_entry.h"
#include "partition_alloc/reservation_offset_table.h"
#include "partition_alloc/tagging.h"
#include "partition_alloc/thread_isolation/thread_isolation.h"
#if PA_BUILDFLAG(IS_MAC)
#include "partition_alloc/partition_alloc_base/mac/mac_util.h"
#endif
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
#include "partition_alloc/address_pool_manager_bitmap.h"
#endif
#if PA_BUILDFLAG(IS_WIN)
#include <windows.h>
#include "wow64apiset.h"
#endif
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
#include <pthread.h>
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
#include <sys/mman.h>
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
#endif // PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
namespace partition_alloc::internal {
#if PA_BUILDFLAG(RECORD_ALLOC_INFO)
// Even if this is not hidden behind a PA_BUILDFLAG, it should not use any
// memory when recording is disabled, since it ends up in the .bss section.
AllocInfo g_allocs = {};
void RecordAllocOrFree(uintptr_t addr, size_t size) {
g_allocs.allocs[g_allocs.index.fetch_add(1, std::memory_order_relaxed) %
kAllocInfoSize] = {addr, size};
}
#endif // PA_BUILDFLAG(RECORD_ALLOC_INFO)
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
PtrPosWithinAlloc IsPtrWithinSameAlloc(uintptr_t orig_address,
uintptr_t test_address,
size_t type_size) {
PA_DCHECK(IsManagedByNormalBucketsOrDirectMap(orig_address));
DCheckIfManagedByPartitionAllocBRPPool(orig_address);
auto [slot_start, _] =
PartitionAllocGetSlotStartAndSizeInBRPPool(orig_address);
// Don't use |orig_address| beyond this point at all. It was needed to
// pick the right slot, but now we're dealing with very concrete addresses.
// Zero it just in case, to catch errors.
orig_address = 0;
auto* slot_span = internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::FromSlotStart(slot_start);
auto* root = PartitionRoot::FromSlotSpanMetadata(slot_span);
// Double check that in-slot metadata is indeed present. Currently that's the
// case only when BRP is used.
PA_DCHECK(root->brp_enabled());
uintptr_t object_addr = root->SlotStartToObjectAddr(slot_start);
uintptr_t object_end = object_addr + root->GetSlotUsableSize(slot_span);
if (test_address < object_addr || object_end < test_address) {
return PtrPosWithinAlloc::kFarOOB;
#if PA_BUILDFLAG(BACKUP_REF_PTR_POISON_OOB_PTR)
} else if (object_end - type_size < test_address) {
// Not even a single element of the type referenced by the pointer can fit
// between the pointer and the end of the object.
return PtrPosWithinAlloc::kAllocEnd;
#endif
} else {
return PtrPosWithinAlloc::kInBounds;
}
}
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
} // namespace partition_alloc::internal
namespace partition_alloc {
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
internal::SharedMutex PartitionRoot::g_shadow_metadata_init_mutex_;
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
#if PA_CONFIG(USE_PARTITION_ROOT_ENUMERATOR)
namespace {
internal::Lock g_root_enumerator_lock;
}
internal::Lock& PartitionRoot::GetEnumeratorLock() {
return g_root_enumerator_lock;
}
namespace internal {
class PartitionRootEnumerator {
public:
template <typename T>
using EnumerateCallback = void (*)(PartitionRoot* root, T param);
enum EnumerateOrder {
kNormal,
kReverse,
};
static PartitionRootEnumerator& Instance() {
static PartitionRootEnumerator instance;
return instance;
}
template <typename T>
void Enumerate(EnumerateCallback<T> callback,
T param,
EnumerateOrder order) PA_NO_THREAD_SAFETY_ANALYSIS {
if (order == kNormal) {
PartitionRoot* root;
for (root = Head(partition_roots_); root != nullptr;
root = root->next_root) {
callback(root, param);
}
} else {
PA_DCHECK(order == kReverse);
PartitionRoot* root;
for (root = Tail(partition_roots_); root != nullptr;
root = root->prev_root) {
callback(root, param);
}
}
}
void Register(PartitionRoot* root) {
internal::ScopedGuard guard(PartitionRoot::GetEnumeratorLock());
root->next_root = partition_roots_;
root->prev_root = nullptr;
if (partition_roots_) {
partition_roots_->prev_root = root;
}
partition_roots_ = root;
}
void Unregister(PartitionRoot* root) {
internal::ScopedGuard guard(PartitionRoot::GetEnumeratorLock());
PartitionRoot* prev = root->prev_root;
PartitionRoot* next = root->next_root;
if (prev) {
PA_DCHECK(prev->next_root == root);
prev->next_root = next;
} else {
PA_DCHECK(partition_roots_ == root);
partition_roots_ = next;
}
if (next) {
PA_DCHECK(next->prev_root == root);
next->prev_root = prev;
}
root->next_root = nullptr;
root->prev_root = nullptr;
}
private:
constexpr PartitionRootEnumerator() = default;
PartitionRoot* Head(PartitionRoot* roots) { return roots; }
PartitionRoot* Tail(PartitionRoot* roots) PA_NO_THREAD_SAFETY_ANALYSIS {
if (!roots) {
return nullptr;
}
PartitionRoot* node = roots;
for (; node->next_root != nullptr; node = node->next_root)
;
return node;
}
PartitionRoot* partition_roots_
PA_GUARDED_BY(PartitionRoot::GetEnumeratorLock()) = nullptr;
};
} // namespace internal
#endif // PA_USE_PARTITION_ROOT_ENUMERATOR
#if (PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
PA_CONFIG(HAS_ATFORK_HANDLER)) || \
PA_CONFIG(ENABLE_SHADOW_METADATA)
namespace {
void LockRoot(PartitionRoot* root, bool) PA_NO_THREAD_SAFETY_ANALYSIS {
PA_DCHECK(root);
internal::PartitionRootLock(root).Acquire();
}
template <typename T>
void UnlockOrReinit(T& lock, bool in_child) PA_NO_THREAD_SAFETY_ANALYSIS {
// Only re-init the locks in the child process, in the parent can unlock
// normally.
if (in_child) {
lock.Reinit();
} else {
lock.Release();
}
}
void UnlockOrReinitRoot(PartitionRoot* root,
bool in_child) PA_NO_THREAD_SAFETY_ANALYSIS {
UnlockOrReinit(internal::PartitionRootLock(root), in_child);
}
} // namespace
#endif // (PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) &&
// PA_CONFIG(HAS_ATFORK_HANDLER)) || PA_CONFIG(ENABLE_SHADOW_METADATA)
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
namespace {
#if PA_CONFIG(HAS_ATFORK_HANDLER)
// PA_NO_THREAD_SAFETY_ANALYSIS: acquires the lock and doesn't release it, by
// design.
void BeforeForkInParent() PA_NO_THREAD_SAFETY_ANALYSIS {
// PartitionRoot::GetLock() is private. So use
// g_root_enumerator_lock here.
g_root_enumerator_lock.Acquire();
internal::PartitionRootEnumerator::Instance().Enumerate(
LockRoot, false,
internal::PartitionRootEnumerator::EnumerateOrder::kNormal);
ThreadCacheRegistry::GetLock().Acquire();
}
void ReleaseLocks(bool in_child) PA_NO_THREAD_SAFETY_ANALYSIS {
// In reverse order, even though there are no lock ordering dependencies.
UnlockOrReinit(ThreadCacheRegistry::GetLock(), in_child);
internal::PartitionRootEnumerator::Instance().Enumerate(
UnlockOrReinitRoot, in_child,
internal::PartitionRootEnumerator::EnumerateOrder::kReverse);
// PartitionRoot::GetLock() is private. So use
// g_root_enumerator_lock here.
UnlockOrReinit(g_root_enumerator_lock, in_child);
}
void AfterForkInParent() {
ReleaseLocks(/* in_child = */ false);
}
void AfterForkInChild() {
ReleaseLocks(/* in_child = */ true);
// Unsafe, as noted in the name. This is fine here however, since at this
// point there is only one thread, this one (unless another post-fork()
// handler created a thread, but it would have needed to allocate, which would
// have deadlocked the process already).
//
// If we don't reclaim this memory, it is lost forever. Note that this is only
// really an issue if we fork() a multi-threaded process without calling
// exec() right away, which is discouraged.
ThreadCacheRegistry::Instance().ForcePurgeAllThreadAfterForkUnsafe();
}
#endif // PA_CONFIG(HAS_ATFORK_HANDLER)
std::atomic<bool> g_global_init_called;
void PartitionAllocMallocInitOnce() {
bool expected = false;
// No need to block execution for potential concurrent initialization, merely
// want to make sure this is only called once.
if (!g_global_init_called.compare_exchange_strong(expected, true)) {
return;
}
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
// When fork() is called, only the current thread continues to execute in the
// child process. If the lock is held, but *not* by this thread when fork() is
// called, we have a deadlock.
//
// The "solution" here is to acquire the lock on the forking thread before
// fork(), and keep it held until fork() is done, in the parent and the
// child. To clean up memory, we also must empty the thread caches in the
// child, which is easier, since no threads except for the current one are
// running right after the fork().
//
// This is not perfect though, since:
// - Multiple pre/post-fork() handlers can be registered, they are then run in
// LIFO order for the pre-fork handler, and FIFO order for the post-fork
// one. So unless we are the first to register a handler, if another handler
// allocates, then we deterministically deadlock.
// - pthread handlers are *not* called when the application calls clone()
// directly, which is what Chrome does to launch processes.
//
// However, no perfect solution really exists to make threads + fork()
// cooperate, but deadlocks are real (and fork() is used in DEATH_TEST()s),
// and other malloc() implementations use the same techniques.
int err =
pthread_atfork(BeforeForkInParent, AfterForkInParent, AfterForkInChild);
PA_CHECK(err == 0);
#endif // PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
}
} // namespace
#if PA_BUILDFLAG(IS_APPLE)
void PartitionAllocMallocHookOnBeforeForkInParent() {
BeforeForkInParent();
}
void PartitionAllocMallocHookOnAfterForkInParent() {
AfterForkInParent();
}
void PartitionAllocMallocHookOnAfterForkInChild() {
AfterForkInChild();
}
#endif // PA_BUILDFLAG(IS_APPLE)
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
namespace {
void MakeSuperPageExtentEntriesShared(PartitionRoot* root,
internal::PoolHandleMask mask)
PA_NO_THREAD_SAFETY_ANALYSIS {
PA_DCHECK(root);
// Regardless of root->ChoosePool(), no chance if shadow_pool_offset_ is
// non-zero.
if (root->settings.shadow_pool_offset_) {
return;
}
switch (root->ChoosePool()) {
case internal::kRegularPoolHandle:
if (!ContainsFlags(mask, internal::PoolHandleMask::kRegular)) {
return;
}
root->settings.shadow_pool_offset_ =
internal::PartitionAddressSpace::RegularPoolShadowOffset();
break;
case internal::kBRPPoolHandle:
if (!ContainsFlags(mask, internal::PoolHandleMask::kBRP)) {
return;
}
root->settings.shadow_pool_offset_ =
internal::PartitionAddressSpace::BRPPoolShadowOffset();
break;
case internal::kConfigurablePoolHandle:
if (!ContainsFlags(mask, internal::PoolHandleMask::kConfigurable)) {
return;
}
root->settings.shadow_pool_offset_ =
internal::PartitionAddressSpace::ConfigurablePoolShadowOffset();
break;
default:
return;
}
// For normal-bucketed.
for (const internal::PartitionSuperPageExtentEntry<
internal::MetadataKind::kReadOnly>* extent = root->first_extent;
extent != nullptr; extent = extent->next) {
// The page which contains the extent is in-used and shared mapping.
uintptr_t super_page = SuperPagesBeginFromExtent(extent);
for (size_t i = 0; i < extent->number_of_consecutive_super_pages; ++i) {
internal::PartitionAddressSpace::MapMetadata(super_page,
/*copy_metadata=*/true);
super_page += kSuperPageSize;
}
PA_DCHECK(extent->root == root);
}
// For direct-mapped.
for (const internal::PartitionDirectMapExtent<
internal::MetadataKind::kReadOnly>* extent = root->direct_map_list;
extent != nullptr; extent = extent->next_extent) {
internal::PartitionAddressSpace::MapMetadata(
reinterpret_cast<uintptr_t>(extent) & internal::kSuperPageBaseMask,
/*copy_metadata=*/true);
}
}
} // namespace
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
namespace internal {
namespace {
// 64 was chosen arbitrarily, as it seems like a reasonable trade-off between
// performance and purging opportunity. Higher value (i.e. smaller slots)
// wouldn't necessarily increase chances of purging, but would result in
// more work and larger |slot_usage| array. Lower value would probably decrease
// chances of purging. Not empirically tested.
constexpr size_t kMaxPurgeableSlotsPerSystemPage = 64;
// See above, this will lead to less work getting done, so lower cost, lower
// savings.
constexpr size_t kConservativeMaxPurgeableSlotsPerSystemPage = 2;
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR size_t
MinPurgeableSlotSize() {
return SystemPageSize() / kMaxPurgeableSlotsPerSystemPage;
}
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR size_t
MinConservativePurgeableSlotSize() {
return SystemPageSize() / kConservativeMaxPurgeableSlotsPerSystemPage;
}
} // namespace
// The function attempts to unprovision unused slots and discard unused pages.
// It may also "straighten" the free list.
//
// If `accounting_only` is set to true, no action is performed and the function
// merely returns the number of bytes in the would-be discarded pages.
PA_NOPROFILE
static size_t PartitionPurgeSlotSpan(
PartitionRoot* root,
internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>* slot_span,
bool accounting_only)
PA_EXCLUSIVE_LOCKS_REQUIRED(internal::PartitionRootLock(root)) {
const internal::PartitionBucket* bucket = slot_span->bucket;
size_t slot_size = bucket->slot_size;
if (slot_size < MinPurgeableSlotSize() || !slot_span->num_allocated_slots) {
return 0;
}
size_t bucket_num_slots = bucket->get_slots_per_span();
size_t discardable_bytes = 0;
if (slot_span->CanStoreRawSize()) {
uint32_t utilized_slot_size = static_cast<uint32_t>(
RoundUpToSystemPage(slot_span->GetUtilizedSlotSize()));
discardable_bytes = bucket->slot_size - utilized_slot_size;
if (discardable_bytes && !accounting_only) {
uintptr_t slot_span_start = internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::ToSlotSpanStart(slot_span);
uintptr_t committed_data_end = slot_span_start + utilized_slot_size;
ScopedSyscallTimer timer{root};
DiscardSystemPages(committed_data_end, discardable_bytes);
}
return discardable_bytes;
}
#if defined(PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR)
constexpr size_t kMaxSlotCount =
(PartitionPageSize() * kMaxPartitionPagesPerRegularSlotSpan) /
MinPurgeableSlotSize();
#elif PA_BUILDFLAG(IS_APPLE) || \
defined(PARTITION_ALLOCATOR_CONSTANTS_POSIX_NONCONST_PAGE_SIZE)
// It's better for slot_usage to be stack-allocated and fixed-size, which
// demands that its size be constexpr. On IS_APPLE and Linux on arm64,
// PartitionPageSize() is always SystemPageSize() << 2, so regardless of
// what the run time page size is, kMaxSlotCount can always be simplified
// to this expression.
constexpr size_t kMaxSlotCount =
4 * kMaxPurgeableSlotsPerSystemPage *
internal::kMaxPartitionPagesPerRegularSlotSpan;
PA_CHECK(kMaxSlotCount == (PartitionPageSize() *
internal::kMaxPartitionPagesPerRegularSlotSpan) /
MinPurgeableSlotSize());
#endif
PA_DCHECK(bucket_num_slots <= kMaxSlotCount);
PA_DCHECK(slot_span->num_unprovisioned_slots < bucket_num_slots);
size_t num_provisioned_slots =
bucket_num_slots - slot_span->num_unprovisioned_slots;
char slot_usage[kMaxSlotCount];
#if !PA_BUILDFLAG(IS_WIN)
// The last freelist entry should not be discarded when using OS_WIN.
// DiscardVirtualMemory makes the contents of discarded memory undefined.
size_t last_slot = static_cast<size_t>(-1);
#endif
memset(slot_usage, 1, num_provisioned_slots);
uintptr_t slot_span_start = internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::ToSlotSpanStart(slot_span);
// First, walk the freelist for this slot span and make a bitmap of which
// slots are not in use.
const PartitionFreelistDispatcher* freelist_dispatcher =
root->get_freelist_dispatcher();
for (PartitionFreelistEntry* entry = slot_span->get_freelist_head(); entry;
entry = freelist_dispatcher->GetNext(entry, slot_size)) {
size_t slot_number =
bucket->GetSlotNumber(SlotStartPtr2Addr(entry) - slot_span_start);
PA_DCHECK(slot_number < num_provisioned_slots);
slot_usage[slot_number] = 0;
#if !PA_BUILDFLAG(IS_WIN)
// If we have a slot where the encoded next pointer is 0, we can actually
// discard that entry because touching a discarded page is guaranteed to
// return the original content or 0. (Note that this optimization won't be
// effective on big-endian machines because the masking function is
// negation.)
if (freelist_dispatcher->IsEncodedNextPtrZero(entry)) {
last_slot = slot_number;
}
#endif
}
// If the slot(s) at the end of the slot span are not in use, we can truncate
// them entirely and rewrite the freelist.
size_t truncated_slots = 0;
while (!slot_usage[num_provisioned_slots - 1]) {
truncated_slots++;
num_provisioned_slots--;
PA_DCHECK(num_provisioned_slots);
}
// First, do the work of calculating the discardable bytes. Don't actually
// discard anything if `accounting_only` is set.
size_t unprovisioned_bytes = 0;
uintptr_t begin_addr = slot_span_start + (num_provisioned_slots * slot_size);
uintptr_t end_addr = begin_addr + (slot_size * truncated_slots);
if (truncated_slots) {
// The slots that do not contain discarded pages should not be included to
// |truncated_slots|. Detects those slots and fixes |truncated_slots| and
// |num_provisioned_slots| accordingly.
uintptr_t rounded_up_truncatation_begin_addr =
RoundUpToSystemPage(begin_addr);
while (begin_addr + slot_size <= rounded_up_truncatation_begin_addr) {
begin_addr += slot_size;
PA_DCHECK(truncated_slots);
--truncated_slots;
++num_provisioned_slots;
}
begin_addr = rounded_up_truncatation_begin_addr;
// We round the end address here up and not down because we're at the end of
// a slot span, so we "own" all the way up the page boundary.
end_addr = RoundUpToSystemPage(end_addr);
PA_DCHECK(end_addr <= slot_span_start + bucket->get_bytes_per_span());
if (begin_addr < end_addr) {
unprovisioned_bytes = end_addr - begin_addr;
discardable_bytes += unprovisioned_bytes;
}
}
// If `accounting_only` isn't set, then take action to remove unprovisioned
// slots from the free list (if any) and "straighten" the list (if
// requested) to help reduce fragmentation in the future. Then
// discard/decommit the pages hosting the unprovisioned slots.
if (!accounting_only) {
auto straighten_mode =
PartitionRoot::GetStraightenLargerSlotSpanFreeListsMode();
bool straighten =
straighten_mode == StraightenLargerSlotSpanFreeListsMode::kAlways ||
(straighten_mode ==
StraightenLargerSlotSpanFreeListsMode::kOnlyWhenUnprovisioning &&
unprovisioned_bytes);
PA_DCHECK((unprovisioned_bytes > 0) == (truncated_slots > 0));
size_t new_unprovisioned_slots =
truncated_slots + slot_span->num_unprovisioned_slots;
PA_DCHECK(new_unprovisioned_slots <= bucket->get_slots_per_span());
slot_span->ToWritable(root)->num_unprovisioned_slots =
new_unprovisioned_slots;
size_t num_new_freelist_entries = 0;
internal::PartitionFreelistEntry* back = nullptr;
if (straighten) {
// Rewrite the freelist to "straighten" it. This achieves two things:
// getting rid of unprovisioned entries, ordering etnries based on how
// close they're to the slot span start. This reduces chances of
// allocating further slots, in hope that we'll get some unused pages at
// the end of the span that can be unprovisioned, thus reducing
// fragmentation.
for (size_t slot_index = 0; slot_index < num_provisioned_slots;
++slot_index) {
if (slot_usage[slot_index]) {
continue;
}
// Add the slot to the end of the list. The most proper thing to do
// would be to null-terminate the new entry with:
// auto* entry = PartitionFreelistEntry::EmplaceAndInitNull(
// slot_span_start + (slot_size * slot_index));
// But no need to do this, as it's last-ness is likely temporary, and
// the next iteration's back->SetNext(), or the post-loop
// PartitionFreelistEntry::EmplaceAndInitNull(back) will override it
// anyway.
auto* entry = static_cast<PartitionFreelistEntry*>(
SlotStartAddr2Ptr(slot_span_start + (slot_size * slot_index)));
if (num_new_freelist_entries) {
freelist_dispatcher->SetNext(back, entry);
} else {
slot_span->ToWritable(root)->SetFreelistHead(entry, root);
}
back = entry;
num_new_freelist_entries++;
}
} else if (unprovisioned_bytes) {
// If there are any unprovisioned entries, scan the list to remove them,
// without "straightening" it.
uintptr_t first_unprovisioned_slot =
slot_span_start + (num_provisioned_slots * slot_size);
bool skipped = false;
for (PartitionFreelistEntry* entry = slot_span->get_freelist_head();
entry; entry = freelist_dispatcher->GetNext(entry, slot_size)) {
uintptr_t entry_addr = SlotStartPtr2Addr(entry);
if (entry_addr >= first_unprovisioned_slot) {
skipped = true;
continue;
}
// If the last visited entry was skipped (due to being unprovisioned),
// update the next pointer of the last not skipped entry (or the head
// if no entry exists). Otherwise the link is already correct.
if (skipped) {
if (num_new_freelist_entries) {
freelist_dispatcher->SetNext(back, entry);
} else {
slot_span->ToWritable(root)->SetFreelistHead(entry, root);
}
skipped = false;
}
back = entry;
num_new_freelist_entries++;
}
}
// If any of the above loops were executed, null-terminate the last entry,
// or the head if no entry exists.
if (straighten || unprovisioned_bytes) {
if (num_new_freelist_entries) {
PA_DCHECK(back);
freelist_dispatcher->EmplaceAndInitNull(back);
#if !PA_BUILDFLAG(IS_WIN)
// Memorize index of the last slot in the list, as it may be able to
// participate in an optimization related to page discaring (below), due
// to its next pointer encoded as 0.
last_slot =
bucket->GetSlotNumber(SlotStartPtr2Addr(back) - slot_span_start);
#endif
} else {
PA_DCHECK(!back);
slot_span->ToWritable(root)->SetFreelistHead(nullptr, root);
}
PA_DCHECK(num_new_freelist_entries ==
num_provisioned_slots - slot_span->num_allocated_slots);
}
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
FreeSlotBitmapReset(slot_span_start + (slot_size * num_provisioned_slots),
end_addr, slot_size);
#endif
if (unprovisioned_bytes) {
if (!kUseLazyCommit) {
// Discard the memory.
ScopedSyscallTimer timer{root};
DiscardSystemPages(begin_addr, unprovisioned_bytes);
} else {
// See crbug.com/1431606 to understand the detail. LazyCommit depends
// on the design: both used slots and unused slots (=in the freelist)
// are committed. However this removes the unused slots from the
// freelist. So if using DiscardSystemPages() here, PartitionAlloc may
// commit the system pages which has been already committed again.
// This will make commited_size and max_committed_size metrics wrong.
// PA should use DecommitSystemPagesForData() instead.
root->DecommitSystemPagesForData(
begin_addr, unprovisioned_bytes,
PageAccessibilityDisposition::kAllowKeepForPerf);
}
}
}
if (slot_size < SystemPageSize()) {
// Returns here because implementing the following steps for smaller slot
// size will need a complicated logic and make the code messy.
return discardable_bytes;
}
// Next, walk the slots and for any not in use, consider which system pages
// are no longer needed. We can discard any system pages back to the system as
// long as we don't interfere with a freelist pointer or an adjacent used
// slot. Note they'll be automatically paged back in when touched, and
// zero-initialized (except Windows).
for (size_t i = 0; i < num_provisioned_slots; ++i) {
if (slot_usage[i]) {
continue;
}
// The first address we can safely discard is just after the freelist
// pointer. There's one optimization opportunity: if the freelist pointer is
// encoded as 0, we can discard that pointer value too (except on
// Windows).
begin_addr = slot_span_start + (i * slot_size);
end_addr = begin_addr + slot_size;
bool can_discard_free_list_pointer = false;
#if !PA_BUILDFLAG(IS_WIN)
if (i != last_slot) {
begin_addr += sizeof(internal::PartitionFreelistEntry);
} else {
can_discard_free_list_pointer = true;
}
#else
begin_addr += sizeof(internal::PartitionFreelistEntry);
#endif
uintptr_t rounded_up_begin_addr = RoundUpToSystemPage(begin_addr);
uintptr_t rounded_down_begin_addr = RoundDownToSystemPage(begin_addr);
end_addr = RoundDownToSystemPage(end_addr);
// |rounded_up_begin_addr| could be greater than |end_addr| only if slot
// size was less than system page size, or if free list pointer crossed the
// page boundary. Neither is possible here.
PA_DCHECK(rounded_up_begin_addr <= end_addr);
if (rounded_down_begin_addr < rounded_up_begin_addr && i != 0 &&
!slot_usage[i - 1] && can_discard_free_list_pointer) {
// This slot contains a partial page in the beginning. The rest of that
// page is contained in the slot[i-1], which is also discardable.
// Therefore we can discard this page.
begin_addr = rounded_down_begin_addr;
} else {
begin_addr = rounded_up_begin_addr;
}
if (begin_addr < end_addr) {
size_t partial_slot_bytes = end_addr - begin_addr;
discardable_bytes += partial_slot_bytes;
if (!accounting_only) {
// Discard the pages. But don't be tempted to decommit it (as done
// above), because here we're getting rid of provisioned pages amidst
// used pages, so we're relying on them to materialize automatically
// when the virtual address is accessed, so the mapping needs to be
// intact.
ScopedSyscallTimer timer{root};
DiscardSystemPages(begin_addr, partial_slot_bytes);
}
}
}
return discardable_bytes;
}
PA_NOPROFILE
static void PartitionPurgeBucket(PartitionRoot* root,
internal::PartitionBucket* bucket)
PA_EXCLUSIVE_LOCKS_REQUIRED(internal::PartitionRootLock(root)) {
if (bucket->active_slot_spans_head !=
internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span()) {
for (internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>*
slot_span = bucket->active_slot_spans_head;
slot_span; slot_span = slot_span->next_slot_span) {
PA_DCHECK(
slot_span !=
internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span());
PartitionPurgeSlotSpan(root, slot_span, false);
}
}
}
static void PartitionDumpSlotSpanStats(
PartitionBucketMemoryStats* stats_out,
PartitionRoot* root,
internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>* slot_span)
PA_EXCLUSIVE_LOCKS_REQUIRED(internal::PartitionRootLock(root)) {
uint16_t bucket_num_slots = slot_span->bucket->get_slots_per_span();
if (slot_span->is_decommitted()) {
++stats_out->num_decommitted_slot_spans;
return;
}
stats_out->discardable_bytes += PartitionPurgeSlotSpan(root, slot_span, true);
if (slot_span->CanStoreRawSize()) {
stats_out->active_bytes += static_cast<uint32_t>(slot_span->GetRawSize());
} else {
stats_out->active_bytes +=
(slot_span->num_allocated_slots * stats_out->bucket_slot_size);
}
stats_out->active_count += slot_span->num_allocated_slots;
size_t slot_span_bytes_resident = RoundUpToSystemPage(
(bucket_num_slots - slot_span->num_unprovisioned_slots) *
stats_out->bucket_slot_size);
stats_out->resident_bytes += slot_span_bytes_resident;
if (slot_span->is_empty()) {
stats_out->decommittable_bytes += slot_span_bytes_resident;
++stats_out->num_empty_slot_spans;
} else if (slot_span->is_full()) {
++stats_out->num_full_slot_spans;
} else {
PA_DCHECK(slot_span->is_active());
++stats_out->num_active_slot_spans;
}
}
static void PartitionDumpBucketStats(PartitionBucketMemoryStats* stats_out,
PartitionRoot* root,
const internal::PartitionBucket* bucket)
PA_EXCLUSIVE_LOCKS_REQUIRED(internal::PartitionRootLock(root)) {
PA_DCHECK(!bucket->is_direct_mapped());
stats_out->is_valid = false;
// If the active slot span list is empty (==internal::SlotSpanMetadata<
// internal::MetadataKind::kReadOnly>::get_sentinel_slot_span()),
// the bucket might still need to be reported if it has a list of empty,
// decommitted or full slot spans.
if (bucket->active_slot_spans_head ==
internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span() &&
!bucket->empty_slot_spans_head && !bucket->decommitted_slot_spans_head &&
!bucket->num_full_slot_spans) {
return;
}
memset(stats_out, '\0', sizeof(*stats_out));
stats_out->is_valid = true;
stats_out->is_direct_map = false;
stats_out->num_full_slot_spans =
static_cast<size_t>(bucket->num_full_slot_spans);
stats_out->bucket_slot_size = bucket->slot_size;
uint16_t bucket_num_slots = bucket->get_slots_per_span();
size_t bucket_useful_storage = stats_out->bucket_slot_size * bucket_num_slots;
stats_out->allocated_slot_span_size = bucket->get_bytes_per_span();
stats_out->active_bytes = bucket->num_full_slot_spans * bucket_useful_storage;
stats_out->active_count = bucket->num_full_slot_spans * bucket_num_slots;
stats_out->resident_bytes =
bucket->num_full_slot_spans * stats_out->allocated_slot_span_size;
for (internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>*
slot_span = bucket->empty_slot_spans_head;
slot_span; slot_span = slot_span->next_slot_span) {
PA_DCHECK(slot_span->is_empty() || slot_span->is_decommitted());
PartitionDumpSlotSpanStats(stats_out, root, slot_span);
}
for (internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>*
slot_span = bucket->decommitted_slot_spans_head;
slot_span; slot_span = slot_span->next_slot_span) {
PA_DCHECK(slot_span->is_decommitted());
PartitionDumpSlotSpanStats(stats_out, root, slot_span);
}
if (bucket->active_slot_spans_head !=
internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span()) {
for (internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>*
slot_span = bucket->active_slot_spans_head;
slot_span; slot_span = slot_span->next_slot_span) {
PA_DCHECK(
slot_span !=
internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span());
PartitionDumpSlotSpanStats(stats_out, root, slot_span);
}
}
}
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
void DCheckIfManagedByPartitionAllocBRPPool(uintptr_t address) {
PA_DCHECK(IsManagedByPartitionAllocBRPPool(address));
}
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
void PartitionAllocThreadIsolationInit(ThreadIsolationOption thread_isolation) {
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
ThreadIsolationSettings::settings.enabled = true;
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
PartitionAddressSpace::InitThreadIsolatedPool(thread_isolation);
// Call WriteProtectThreadIsolatedGlobals last since we might not have write
// permissions to to globals afterwards.
WriteProtectThreadIsolatedGlobals(thread_isolation);
}
#endif // PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
} // namespace internal
[[noreturn]] PA_NOINLINE void PartitionRoot::OutOfMemory(size_t size) {
const size_t virtual_address_space_size =
total_size_of_super_pages.load(std::memory_order_relaxed) +
total_size_of_direct_mapped_pages.load(std::memory_order_relaxed);
#if !PA_BUILDFLAG(PA_ARCH_CPU_64_BITS)
const size_t uncommitted_size =
virtual_address_space_size -
total_size_of_committed_pages.load(std::memory_order_relaxed);
// Check whether this OOM is due to a lot of super pages that are allocated
// but not committed, probably due to http://crbug.com/421387.
if (uncommitted_size > internal::kReasonableSizeOfUnusedPages) {
internal::PartitionOutOfMemoryWithLotsOfUncommitedPages(size);
}
#if PA_BUILDFLAG(IS_WIN)
// If true then we are running on 64-bit Windows.
BOOL is_wow_64 = FALSE;
// Intentionally ignoring failures.
IsWow64Process(GetCurrentProcess(), &is_wow_64);
// 32-bit address space on Windows is typically either 2 GiB (on 32-bit
// Windows) or 4 GiB (on 64-bit Windows). 2.8 and 1.0 GiB are just rough
// guesses as to how much address space PA can consume (note that code,
// stacks, and other allocators will also consume address space).
const size_t kReasonableVirtualSize = (is_wow_64 ? 2800 : 1024) * 1024 * 1024;
// Make it obvious whether we are running on 64-bit Windows.
PA_DEBUG_DATA_ON_STACK("iswow64", static_cast<size_t>(is_wow_64));
#else
constexpr size_t kReasonableVirtualSize =
// 1.5GiB elsewhere, since address space is typically 3GiB.
(1024 + 512) * 1024 * 1024;
#endif
if (virtual_address_space_size > kReasonableVirtualSize) {
internal::PartitionOutOfMemoryWithLargeVirtualSize(
virtual_address_space_size);
}
#endif // #if !PA_BUILDFLAG(PA_ARCH_CPU_64_BITS)
// Out of memory can be due to multiple causes, such as:
// - Out of virtual address space in the desired pool
// - Out of commit due to either our process, or another one
// - Excessive allocations in the current process
//
// Saving these values make it easier to distinguish between these. See the
// documentation in PA_CONFIG(DEBUG_DATA_ON_STACK) on how to get these from
// minidumps.
PA_DEBUG_DATA_ON_STACK("va_size", virtual_address_space_size);
PA_DEBUG_DATA_ON_STACK("alloc", get_total_size_of_allocated_bytes());
PA_DEBUG_DATA_ON_STACK("commit", get_total_size_of_committed_pages());
PA_DEBUG_DATA_ON_STACK("size", size);
if (internal::g_oom_handling_function) {
(*internal::g_oom_handling_function)(size);
}
OOM_CRASH(size);
}
void PartitionRoot::DecommitEmptySlotSpans() {
ShrinkEmptySlotSpansRing(0);
// Just decommitted everything, and holding the lock, should be exactly 0.
PA_DCHECK(empty_slot_spans_dirty_bytes == 0);
}
void PartitionRoot::DecommitEmptySlotSpansForTesting() {
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
DecommitEmptySlotSpans();
}
void PartitionRoot::DestructForTesting()
PA_EXCLUSIVE_LOCKS_REQUIRED(internal::PartitionRootLock(this)) {
// We need to destruct the thread cache before we unreserve any of the super
// pages below, which we currently are not doing. So, we should only call
// this function on PartitionRoots without a thread cache.
PA_CHECK(!settings.with_thread_cache);
auto pool_handle = ChoosePool();
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
// The pages managed by thread isolated pool will be free-ed at
// UninitThreadIsolatedForTesting(). Don't invoke FreePages() for the pages.
if (pool_handle == internal::kThreadIsolatedPoolHandle) {
return;
}
PA_DCHECK(pool_handle < internal::kNumPools);
#else
PA_DCHECK(pool_handle <= internal::kNumPools);
#endif
{
auto* curr = first_extent;
while (curr != nullptr) {
auto* next = curr->next;
uintptr_t address = SuperPagesBeginFromExtent(curr);
size_t size =
internal::kSuperPageSize * curr->number_of_consecutive_super_pages;
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
internal::AddressPoolManager::GetInstance().MarkUnused(pool_handle,
address, size);
#endif
internal::AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool_handle, address, size);
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
if (internal::PartitionAddressSpace::IsShadowMetadataEnabled(
pool_handle)) {
internal::PartitionAddressSpace::UnmapShadowMetadata(address,
pool_handle);
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
curr = next;
}
first_extent = current_extent = nullptr;
}
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
// Decommit direct-mapped allocations too.
if (internal::PartitionAddressSpace::IsShadowMetadataEnabled(pool_handle)) {
auto* curr = direct_map_list;
while (curr != nullptr) {
auto* next = curr->next_extent;
uintptr_t reservation_start = internal::base::bits::AlignDown(
reinterpret_cast<uintptr_t>(curr), kSuperPageSize);
size_t reservation_size = curr->reservation_size;
{
uintptr_t reservation_end = reservation_start + reservation_size;
auto* offset_ptr =
internal::ReservationOffsetPointer(reservation_start);
// Reset the offset table entries for the given memory before
// unreserving it. Since the memory is not unreserved and not available
// for other threads, the table entries for the memory are not modified
// by other threads either. So we can update the table entries without
// race condition.
uint16_t i = 0;
for (uintptr_t address = reservation_start; address < reservation_end;
address += kSuperPageSize) {
PA_DCHECK(offset_ptr <
internal::GetReservationOffsetTableEnd(address));
PA_DCHECK(*offset_ptr == i++);
*offset_ptr++ = internal::kOffsetTagNotAllocated;
}
}
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
internal::AddressPoolManager::GetInstance().MarkUnused(
pool_handle, reservation_start, reservation_size);
#endif // !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
// After resetting the table entries, unreserve and decommit the memory.
internal::AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool_handle, reservation_start, reservation_size);
internal::PartitionAddressSpace::UnmapShadowMetadata(reservation_start,
pool_handle);
curr = next;
}
direct_map_list = nullptr;
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
}
#if PA_CONFIG(MAYBE_ENABLE_MAC11_MALLOC_SIZE_HACK)
void PartitionRoot::InitMac11MallocSizeHackUsableSize() {
settings.mac11_malloc_size_hack_enabled_ = true;
// Request of 32B will fall into a 48B bucket in the presence of BRP
// in-slot metadata, yielding |48 - in_slot_metadata_size| of actual usable
// space.
PA_DCHECK(settings.in_slot_metadata_size);
settings.mac11_malloc_size_hack_usable_size_ =
48 - settings.in_slot_metadata_size;
}
void PartitionRoot::EnableMac11MallocSizeHackForTesting() {
InitMac11MallocSizeHackUsableSize();
}
void PartitionRoot::EnableMac11MallocSizeHackIfNeeded() {
PA_DCHECK(settings.brp_enabled_);
if (internal::base::mac::MacOSMajorVersion() == 11) {
InitMac11MallocSizeHackUsableSize();
}
}
#endif // PA_CONFIG(MAYBE_ENABLE_MAC11_MALLOC_SIZE_HACK)
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) && \
!PA_BUILDFLAG(HAS_64_BIT_POINTERS)
namespace {
std::atomic<bool> g_reserve_brp_guard_region_called;
// An address constructed by repeating `kQuarantinedByte` shouldn't never point
// to valid memory. Preemptively reserve a memory region around that address and
// make it inaccessible. Not needed for 64-bit platforms where the address is
// guaranteed to be non-canonical. Safe to call multiple times.
void ReserveBackupRefPtrGuardRegionIfNeeded() {
bool expected = false;
// No need to block execution for potential concurrent initialization, merely
// want to make sure this is only called once.
if (!g_reserve_brp_guard_region_called.compare_exchange_strong(expected,
true)) {
return;
}
size_t alignment = internal::PageAllocationGranularity();
uintptr_t requested_address;
memset(&requested_address, internal::kQuarantinedByte,
sizeof(requested_address));
requested_address = RoundDownToPageAllocationGranularity(requested_address);
// Request several pages so that even unreasonably large C++ objects stay
// within the inaccessible region. If some of the pages can't be reserved,
// it's still preferable to try and reserve the rest.
for (size_t i = 0; i < 4; ++i) {
[[maybe_unused]] uintptr_t allocated_address =
AllocPages(requested_address, alignment, alignment,
PageAccessibilityConfiguration(
PageAccessibilityConfiguration::kInaccessible),
PageTag::kPartitionAlloc);
requested_address += alignment;
}
}
} // namespace
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) &&
// !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
void PartitionRoot::Init(PartitionOptions opts) {
{
#if PA_BUILDFLAG(IS_APPLE)
// Needed to statically bound page size, which is a runtime constant on
// apple OSes.
PA_CHECK((internal::SystemPageSize() == (size_t{1} << 12)) ||
(internal::SystemPageSize() == (size_t{1} << 14)));
#elif PA_BUILDFLAG(IS_LINUX) && PA_BUILDFLAG(PA_ARCH_CPU_ARM64)
// Check runtime pagesize. Though the code is currently the same, it is
// not merged with the IS_APPLE case above as a 1 << 16 case is only
// supported on Linux on AArch64.
PA_CHECK((internal::SystemPageSize() == (size_t{1} << 12)) ||
(internal::SystemPageSize() == (size_t{1} << 14)) ||
(internal::SystemPageSize() == (size_t{1} << 16)));
#endif
::partition_alloc::internal::ScopedGuard guard{lock_};
if (initialized) {
return;
}
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
// Reserve address space for PartitionAlloc.
internal::PartitionAddressSpace::Init();
#endif
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) && \
!PA_BUILDFLAG(HAS_64_BIT_POINTERS)
ReserveBackupRefPtrGuardRegionIfNeeded();
#endif
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
settings.brp_enabled_ = opts.backup_ref_ptr == PartitionOptions::kEnabled;
#else // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
PA_CHECK(opts.backup_ref_ptr == PartitionOptions::kDisabled);
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
settings.use_configurable_pool =
(opts.use_configurable_pool == PartitionOptions::kAllowed) &&
IsConfigurablePoolAvailable();
PA_DCHECK(!settings.use_configurable_pool || IsConfigurablePoolAvailable());
settings.zapping_by_free_flags =
opts.zapping_by_free_flags == PartitionOptions::kEnabled;
settings.eventually_zero_freed_memory =
opts.eventually_zero_freed_memory == PartitionOptions::kEnabled;
settings.scheduler_loop_quarantine =
opts.scheduler_loop_quarantine == PartitionOptions::kEnabled;
if (settings.scheduler_loop_quarantine) {
internal::LightweightQuarantineBranchConfig global_config = {
.lock_required = true,
.branch_capacity_in_bytes =
opts.scheduler_loop_quarantine_branch_capacity_in_bytes,
};
scheduler_loop_quarantine_branch_capacity_in_bytes =
opts.scheduler_loop_quarantine_branch_capacity_in_bytes;
scheduler_loop_quarantine.emplace(
scheduler_loop_quarantine_root.CreateBranch(global_config));
} else {
// Deleting a running quarantine is not supported.
PA_CHECK(!scheduler_loop_quarantine.has_value());
}
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
settings.memory_tagging_enabled_ =
opts.memory_tagging.enabled == PartitionOptions::kEnabled;
// Memory tagging is not supported in the configurable pool because MTE
// stores tagging information in the high bits of the pointer, it causes
// issues with components like V8's ArrayBuffers which use custom pointer
// representations. All custom representations encountered so far rely on an
// "is in configurable pool?" check, so we use that as a proxy.
PA_CHECK(!settings.memory_tagging_enabled_ ||
!settings.use_configurable_pool);
settings.use_random_memory_tagging_ =
opts.memory_tagging.random_memory_tagging == PartitionOptions::kEnabled;
settings.memory_tagging_reporting_mode_ =
opts.memory_tagging.reporting_mode;
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
settings.use_pool_offset_freelists =
opts.use_pool_offset_freelists == PartitionOptions::kEnabled;
// brp_enabled() is not supported in the configurable pool because
// BRP requires objects to be in a different Pool.
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
PA_CHECK(!(settings.use_configurable_pool && brp_enabled()));
#endif
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
// BRP and thread isolated mode use different pools, so they can't be
// enabled at the same time.
PA_CHECK(!opts.thread_isolation.enabled ||
opts.backup_ref_ptr == PartitionOptions::kDisabled);
settings.thread_isolation = opts.thread_isolation;
#endif // PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
#if PA_CONFIG(EXTRAS_REQUIRED)
settings.extras_size = 0;
if (Settings::use_cookie) {
settings.extras_size += internal::kPartitionCookieSizeAdjustment;
}
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
if (brp_enabled()) {
settings.in_slot_metadata_size = internal::kInSlotMetadataSizeAdjustment;
settings.extras_size += internal::kInSlotMetadataSizeAdjustment;
settings.extras_size += opts.backup_ref_ptr_extra_extras_size;
#if PA_CONFIG(MAYBE_ENABLE_MAC11_MALLOC_SIZE_HACK)
EnableMac11MallocSizeHackIfNeeded();
#endif
}
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
#endif // PA_CONFIG(EXTRAS_REQUIRED)
// We mark the sentinel slot span as free to make sure it is skipped by our
// logic to find a new active slot span.
memset(&sentinel_bucket, 0, sizeof(sentinel_bucket));
sentinel_bucket.active_slot_spans_head = internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span_non_const();
// This is a "magic" value so we can test if a root pointer is valid.
inverted_self = ~reinterpret_cast<uintptr_t>(this);
const bool use_small_single_slot_spans =
opts.use_small_single_slot_spans == PartitionOptions::kEnabled;
// Set up the actual usable buckets first.
constexpr internal::BucketIndexLookup lookup{};
size_t bucket_index = 0;
while (lookup.bucket_sizes()[bucket_index] !=
internal::kInvalidBucketSize) {
buckets[bucket_index].Init(lookup.bucket_sizes()[bucket_index],
use_small_single_slot_spans);
bucket_index++;
}
PA_DCHECK(bucket_index < internal::kNumBuckets);
// Remaining buckets are not usable, and not real.
for (size_t index = bucket_index; index < internal::kNumBuckets; index++) {
// Cannot init with size 0 since it computes 1 / size, but make sure the
// bucket is invalid.
buckets[index].Init(internal::kInvalidBucketSize,
use_small_single_slot_spans);
buckets[index].active_slot_spans_head = nullptr;
PA_DCHECK(!buckets[index].is_valid());
}
#if !PA_CONFIG(THREAD_CACHE_SUPPORTED)
// TLS in ThreadCache not supported on other OSes.
settings.with_thread_cache = false;
#else
ThreadCache::EnsureThreadSpecificDataInitialized();
settings.with_thread_cache =
(opts.thread_cache == PartitionOptions::kEnabled);
if (settings.with_thread_cache) {
ThreadCache::Init(this);
}
#endif // !PA_CONFIG(THREAD_CACHE_SUPPORTED)
#if PA_CONFIG(USE_PARTITION_ROOT_ENUMERATOR)
internal::PartitionRootEnumerator::Instance().Register(this);
#endif
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
if (internal::PartitionAddressSpace::IsShadowMetadataEnabled(
ChoosePool())) {
switch (ChoosePool()) {
case internal::kRegularPoolHandle:
settings.shadow_pool_offset_ =
internal::PartitionAddressSpace::RegularPoolShadowOffset();
break;
case internal::kBRPPoolHandle:
settings.shadow_pool_offset_ =
internal::PartitionAddressSpace::BRPPoolShadowOffset();
break;
case internal::kConfigurablePoolHandle:
settings.shadow_pool_offset_ =
internal::PartitionAddressSpace::ConfigurablePoolShadowOffset();
break;
default:
break;
}
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
initialized = true;
}
// Called without the lock, might allocate.
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
PartitionAllocMallocInitOnce();
#endif
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
if (settings.thread_isolation.enabled) {
internal::PartitionAllocThreadIsolationInit(settings.thread_isolation);
}
#endif
}
PartitionRoot::Settings::Settings() = default;
PartitionRoot::PartitionRoot() : scheduler_loop_quarantine_root(*this) {}
PartitionRoot::PartitionRoot(PartitionOptions opts)
: scheduler_loop_quarantine_root(*this) {
Init(opts);
}
PartitionRoot::~PartitionRoot() {
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
PA_CHECK(!settings.with_thread_cache)
<< "Must not destroy a partition with a thread cache";
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
#if PA_CONFIG(USE_PARTITION_ROOT_ENUMERATOR)
if (initialized) {
internal::PartitionRootEnumerator::Instance().Unregister(this);
}
#endif // PA_CONFIG(USE_PARTITION_ALLOC_ENUMERATOR)
}
void PartitionRoot::EnableThreadCacheIfSupported() {
#if PA_CONFIG(THREAD_CACHE_SUPPORTED)
::partition_alloc::internal::ScopedGuard guard{lock_};
PA_CHECK(!settings.with_thread_cache);
// By the time we get there, there may be multiple threads created in the
// process. Since `with_thread_cache` is accessed without a lock, it can
// become visible to another thread before the effects of
// `internal::ThreadCacheInit()` are visible. To prevent that, we fake thread
// cache creation being in-progress while this is running.
//
// This synchronizes with the acquire load in `MaybeInitThreadCacheAndAlloc()`
// to ensure that we don't create (and thus use) a ThreadCache before
// ThreadCache::Init()'s effects are visible.
int before =
thread_caches_being_constructed_.fetch_add(1, std::memory_order_acquire);
PA_CHECK(before == 0);
ThreadCache::Init(this);
thread_caches_being_constructed_.fetch_sub(1, std::memory_order_release);
settings.with_thread_cache = true;
#endif // PA_CONFIG(THREAD_CACHE_SUPPORTED)
}
bool PartitionRoot::TryReallocInPlaceForDirectMap(
internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>* slot_span,
size_t requested_size) {
PA_DCHECK(slot_span->bucket->is_direct_mapped());
// Slot-span metadata isn't MTE-tagged.
PA_DCHECK(
internal::IsManagedByDirectMap(reinterpret_cast<uintptr_t>(slot_span)));
size_t raw_size = AdjustSizeForExtrasAdd(requested_size);
auto* extent = ReadOnlyDirectMapExtent::FromSlotSpanMetadata(slot_span);
size_t current_reservation_size = extent->reservation_size;
// Calculate the new reservation size the way PartitionDirectMap() would, but
// skip the alignment, because this call isn't requesting it.
size_t new_reservation_size = GetDirectMapReservationSize(raw_size);
// If new reservation would be larger, there is nothing we can do to
// reallocate in-place.
if (new_reservation_size > current_reservation_size) {
return false;
}
// Don't reallocate in-place if new reservation size would be less than 80 %
// of the current one, to avoid holding on to too much unused address space.
// Make this check before comparing slot sizes, as even with equal or similar
// slot sizes we can save a lot if the original allocation was heavily padded
// for alignment.
if ((new_reservation_size >> internal::SystemPageShift()) * 5 <
(current_reservation_size >> internal::SystemPageShift()) * 4) {
return false;
}
// Note that the new size isn't a bucketed size; this function is called
// whenever we're reallocating a direct mapped allocation, so calculate it
// the way PartitionDirectMap() would.
size_t new_slot_size = GetDirectMapSlotSize(raw_size);
if (new_slot_size < internal::kMinDirectMappedDownsize) {
return false;
}
// Past this point, we decided we'll attempt to reallocate without relocating,
// so we have to honor the padding for alignment in front of the original
// allocation, even though this function isn't requesting any alignment.
// bucket->slot_size is the currently committed size of the allocation.
size_t current_slot_size = slot_span->bucket->slot_size;
size_t current_usable_size = GetSlotUsableSize(slot_span);
uintptr_t slot_start = internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::ToSlotSpanStart(slot_span);
// This is the available part of the reservation up to which the new
// allocation can grow.
size_t available_reservation_size =
current_reservation_size - extent->padding_for_alignment -
PartitionRoot::GetDirectMapMetadataAndGuardPagesSize();
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
uintptr_t reservation_start = slot_start & internal::kSuperPageBaseMask;
PA_DCHECK(internal::IsReservationStart(reservation_start));
PA_DCHECK(slot_start + available_reservation_size ==
reservation_start + current_reservation_size -
GetDirectMapMetadataAndGuardPagesSize() +
internal::PartitionPageSize());
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
PA_DCHECK(new_slot_size > internal::kMaxMemoryTaggingSize);
if (new_slot_size == current_slot_size) {
// No need to move any memory around, but update size and cookie below.
// That's because raw_size may have changed.
} else if (new_slot_size < current_slot_size) {
// Shrink by decommitting unneeded pages and making them inaccessible.
size_t decommit_size = current_slot_size - new_slot_size;
DecommitSystemPagesForData(slot_start + new_slot_size, decommit_size,
PageAccessibilityDisposition::kRequireUpdate);
// Since the decommited system pages are still reserved, we don't need to
// change the entries for decommitted pages in the reservation offset table.
} else if (new_slot_size <= available_reservation_size) {
// Grow within the actually reserved address space. Just need to make sure
// the pages are accessible.
size_t recommit_slot_size_growth = new_slot_size - current_slot_size;
// Direct map never uses tagging, as size is always >kMaxMemoryTaggingSize.
RecommitSystemPagesForData(
slot_start + current_slot_size, recommit_slot_size_growth,
PageAccessibilityDisposition::kRequireUpdate, false);
// The recommited system pages had been already reserved and all the
// entries in the reservation offset table (for entire reservation_size
// region) have been already initialized.
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
memset(reinterpret_cast<void*>(slot_start + current_slot_size),
internal::kUninitializedByte, recommit_slot_size_growth);
#endif
} else {
// We can't perform the realloc in-place.
// TODO: support this too when possible.
return false;
}
DecreaseTotalSizeOfAllocatedBytes(reinterpret_cast<uintptr_t>(slot_span),
slot_span->bucket->slot_size);
slot_span->ToWritable(this)->SetRawSize(raw_size);
#if !PA_CONFIG(ENABLE_SHADOW_METADATA)
slot_span->bucket->slot_size = new_slot_size;
#else
internal::PartitionBucket* writable_bucket =
reinterpret_cast<internal::PartitionBucket*>(
reinterpret_cast<intptr_t>(slot_span->bucket) + ShadowPoolOffset());
writable_bucket->slot_size = new_slot_size;
#endif // !PA_CONFIG(ENABLE_SHADOW_METADATA)
IncreaseTotalSizeOfAllocatedBytes(reinterpret_cast<uintptr_t>(slot_span),
slot_span->bucket->slot_size, raw_size);
// Always record in-place realloc() as free()+malloc() pair.
//
// The early returns above (`return false`) will fall back to free()+malloc(),
// so this is consistent.
auto* thread_cache = GetOrCreateThreadCache();
if (ThreadCache::IsValid(thread_cache)) {
thread_cache->RecordDeallocation(current_usable_size);
thread_cache->RecordAllocation(GetSlotUsableSize(slot_span));
}
// Write a new trailing cookie.
if (Settings::use_cookie) {
auto* object = static_cast<unsigned char*>(SlotStartToObject(slot_start));
internal::PartitionCookieWriteValue(object + GetSlotUsableSize(slot_span));
}
return true;
}
bool PartitionRoot::TryReallocInPlaceForNormalBuckets(
void* object,
internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>* slot_span,
size_t new_size) {
uintptr_t slot_start = ObjectToSlotStart(object);
PA_DCHECK(internal::IsManagedByNormalBuckets(slot_start));
// TODO: note that tcmalloc will "ignore" a downsizing realloc() unless the
// new size is a significant percentage smaller. We could do the same if we
// determine it is a win.
if (AllocationCapacityFromRequestedSize(new_size) !=
AllocationCapacityFromSlotStart(slot_start)) {
return false;
}
size_t current_usable_size = GetSlotUsableSize(slot_span);
// Trying to allocate |new_size| would use the same amount of underlying
// memory as we're already using, so re-use the allocation after updating
// statistics (and cookie, if present).
if (slot_span->CanStoreRawSize()) {
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) && PA_BUILDFLAG(DCHECKS_ARE_ON)
internal::InSlotMetadata* old_ref_count = nullptr;
if (brp_enabled()) [[likely]] {
old_ref_count = InSlotMetadataPointerFromSlotStartAndSize(
slot_start, slot_span->bucket->slot_size);
}
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) &&
// PA_BUILDFLAG(DCHECKS_ARE_ON)
size_t new_raw_size = AdjustSizeForExtrasAdd(new_size);
slot_span->ToWritable(this)->SetRawSize(new_raw_size);
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) && PA_BUILDFLAG(DCHECKS_ARE_ON)
if (brp_enabled()) [[likely]] {
internal::InSlotMetadata* new_ref_count =
InSlotMetadataPointerFromSlotStartAndSize(
slot_start, slot_span->bucket->slot_size);
PA_DCHECK(new_ref_count == old_ref_count);
}
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) &&
// PA_BUILDFLAG(DCHECKS_ARE_ON)
// Write a new trailing cookie only when it is possible to keep track
// raw size (otherwise we wouldn't know where to look for it later).
if (Settings::use_cookie) {
internal::PartitionCookieWriteValue(static_cast<unsigned char*>(object) +
GetSlotUsableSize(slot_span));
}
}
// Always record a realloc() as a free() + malloc(), even if it's in
// place. When we cannot do it in place (`return false` above), the allocator
// falls back to free()+malloc(), so this is consistent.
ThreadCache* thread_cache = GetOrCreateThreadCache();
if (ThreadCache::IsValid(thread_cache)) [[likely]] {
thread_cache->RecordDeallocation(current_usable_size);
thread_cache->RecordAllocation(GetSlotUsableSize(slot_span));
}
return object;
}
void PartitionRoot::PurgeMemory(int flags) {
auto start = now_maybe_overridden_for_testing();
unsigned int local_purge_generation, local_purge_next_bucket_index;
{
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
local_purge_next_bucket_index = purge_next_bucket_index;
local_purge_generation = purge_generation;
if (flags & PurgeFlags::kDecommitEmptySlotSpans) {
DecommitEmptySlotSpans();
if (flags & PurgeFlags::kLimitDuration &&
(now_maybe_overridden_for_testing() - start > kMaxPurgeDuration)) {
return;
}
}
}
if (flags & PurgeFlags::kDiscardUnusedSystemPages) {
// Don't do the most expensive operation except for the largest buckets,
// where the cost of doing so is lower, and gains are likely higher,
// except in two cases
// - We don't care about reclaim duration
// - It's been a long time (16 walks through the entire bucket list)
//
// Note that in the latter case, we still limit total reclaim duration.
size_t min_bucket_size_to_purge =
internal::MinConservativePurgeableSlotSize();
if (!(flags & PurgeFlags::kLimitDuration) || !local_purge_generation) {
min_bucket_size_to_purge = internal::MinPurgeableSlotSize();
}
for (unsigned int bucket_index = local_purge_next_bucket_index;
bucket_index < internal::kNumBuckets; bucket_index++) {
// Only acquire the lock for a single iteration, so that if there is a
// waiter blocked on it, it can steal it from us before the next
// one.
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
Bucket& bucket = buckets[bucket_index];
if (bucket.slot_size == internal::kInvalidBucketSize) {
continue;
}
if (bucket.slot_size >= min_bucket_size_to_purge) {
internal::PartitionPurgeBucket(this, &bucket);
} else {
if (sort_smaller_slot_span_free_lists_) {
bucket.SortSmallerSlotSpanFreeLists(this);
}
}
// Do it at the end, as the actions above change the status of slot
// spans (e.g. empty -> decommitted).
bucket.MaintainActiveList(this);
if (sort_active_slot_spans_) {
bucket.SortActiveSlotSpans(this);
}
// Checking at the end to make sure we make progress by processing at
// least one bucket.
if (flags & PurgeFlags::kLimitDuration &&
(now_maybe_overridden_for_testing() - start > kMaxPurgeDuration)) {
// Pick up where we stopped next time.
purge_next_bucket_index = (bucket_index + 1) % kNumBuckets;
return;
}
}
{
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
// In theory, these may have been modified since we last read them into
// the local variables at the beginning of the function. This should not
// happen (since Purge() runs on a single thread), and also does not
// matter since we just want to make sure to not do too much work and to
// make some progress.
purge_next_bucket_index = 0;
purge_generation = (purge_generation + 1) % 16;
}
}
}
void PartitionRoot::ShrinkEmptySlotSpansRing(size_t limit) {
int16_t index = global_empty_slot_span_ring_index;
int16_t starting_index = index;
while (empty_slot_spans_dirty_bytes > limit) {
internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>* slot_span =
global_empty_slot_span_ring[index];
// The ring is not always full, may be nullptr.
if (slot_span) {
slot_span->ToWritable(this)->DecommitIfPossible(this);
// DecommitIfPossible() should set the buffer to null.
PA_DCHECK(!global_empty_slot_span_ring[index]);
}
index += 1;
// Walk through the entirety of possible slots, even though the last ones
// are unused, if global_empty_slot_span_ring_size is smaller than
// kMaxEmptySlotSpanRingSize. It's simpler, and does not cost anything,
// since all the pointers are going to be nullptr.
if (index == internal::kMaxEmptySlotSpanRingSize) {
index = 0;
}
// Went around the whole ring, since this is locked,
// empty_slot_spans_dirty_bytes should be exactly 0.
if (index == starting_index) {
PA_DCHECK(empty_slot_spans_dirty_bytes == 0);
// Metrics issue, don't crash, return.
break;
}
}
}
void PartitionRoot::DumpStats(const char* partition_name,
bool is_light_dump,
PartitionStatsDumper* dumper) {
static const size_t kMaxReportableDirectMaps = 4096;
// Allocate on the heap rather than on the stack to avoid stack overflow
// skirmishes (on Windows, in particular). Allocate before locking below,
// otherwise when PartitionAlloc is malloc() we get reentrancy issues. This
// inflates reported values a bit for detailed dumps though, by 16kiB.
std::unique_ptr<uint32_t[]> direct_map_lengths;
if (!is_light_dump) {
direct_map_lengths =
std::unique_ptr<uint32_t[]>(new uint32_t[kMaxReportableDirectMaps]);
}
PartitionBucketMemoryStats bucket_stats[internal::kNumBuckets];
size_t num_direct_mapped_allocations = 0;
PartitionMemoryStats stats = {};
stats.syscall_count = syscall_count.load(std::memory_order_relaxed);
stats.syscall_total_time_ns =
syscall_total_time_ns.load(std::memory_order_relaxed);
// Collect data with the lock held, cannot allocate or call third-party code
// below.
{
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
PA_DCHECK(total_size_of_allocated_bytes <= max_size_of_allocated_bytes);
stats.total_mmapped_bytes =
total_size_of_super_pages.load(std::memory_order_relaxed) +
total_size_of_direct_mapped_pages.load(std::memory_order_relaxed);
stats.total_committed_bytes =
total_size_of_committed_pages.load(std::memory_order_relaxed);
stats.max_committed_bytes =
max_size_of_committed_pages.load(std::memory_order_relaxed);
stats.total_allocated_bytes = total_size_of_allocated_bytes;
stats.max_allocated_bytes = max_size_of_allocated_bytes;
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
stats.total_brp_quarantined_bytes =
total_size_of_brp_quarantined_bytes.load(std::memory_order_relaxed);
stats.total_brp_quarantined_count =
total_count_of_brp_quarantined_slots.load(std::memory_order_relaxed);
stats.cumulative_brp_quarantined_bytes =
cumulative_size_of_brp_quarantined_bytes.load(
std::memory_order_relaxed);
stats.cumulative_brp_quarantined_count =
cumulative_count_of_brp_quarantined_slots.load(
std::memory_order_relaxed);
#endif
size_t direct_mapped_allocations_total_size = 0;
for (size_t i = 0; i < internal::kNumBuckets; ++i) {
const Bucket* bucket = &bucket_at(i);
// Don't report the pseudo buckets that the generic allocator sets up in
// order to preserve a fast size->bucket map (see
// PartitionRoot::Init() for details).
if (!bucket->is_valid()) {
bucket_stats[i].is_valid = false;
} else {
internal::PartitionDumpBucketStats(&bucket_stats[i], this, bucket);
}
if (bucket_stats[i].is_valid) {
stats.total_resident_bytes += bucket_stats[i].resident_bytes;
stats.total_active_bytes += bucket_stats[i].active_bytes;
stats.total_active_count += bucket_stats[i].active_count;
stats.total_decommittable_bytes += bucket_stats[i].decommittable_bytes;
stats.total_discardable_bytes += bucket_stats[i].discardable_bytes;
}
}
for (const ReadOnlyDirectMapExtent* extent = direct_map_list;
extent && num_direct_mapped_allocations < kMaxReportableDirectMaps;
extent = extent->next_extent, ++num_direct_mapped_allocations) {
PA_DCHECK(!extent->next_extent ||
extent->next_extent->prev_extent == extent);
size_t slot_size = extent->bucket->slot_size;
direct_mapped_allocations_total_size += slot_size;
if (is_light_dump) {
continue;
}
direct_map_lengths[num_direct_mapped_allocations] = slot_size;
}
stats.total_resident_bytes += direct_mapped_allocations_total_size;
stats.total_active_bytes += direct_mapped_allocations_total_size;
stats.total_active_count += num_direct_mapped_allocations;
stats.has_thread_cache = settings.with_thread_cache;
if (stats.has_thread_cache) {
ThreadCacheRegistry::Instance().DumpStats(
true, &stats.current_thread_cache_stats);
ThreadCacheRegistry::Instance().DumpStats(false,
&stats.all_thread_caches_stats);
}
stats.has_scheduler_loop_quarantine = settings.scheduler_loop_quarantine;
if (stats.has_scheduler_loop_quarantine) {
memset(
reinterpret_cast<void*>(&stats.scheduler_loop_quarantine_stats_total),
0, sizeof(LightweightQuarantineStats));
scheduler_loop_quarantine_root.AccumulateStats(
stats.scheduler_loop_quarantine_stats_total);
}
}
// Do not hold the lock when calling |dumper|, as it may allocate.
if (!is_light_dump) {
for (auto& stat : bucket_stats) {
if (stat.is_valid) {
dumper->PartitionsDumpBucketStats(partition_name, &stat);
}
}
for (size_t i = 0; i < num_direct_mapped_allocations; ++i) {
uint32_t size = direct_map_lengths[i];
PartitionBucketMemoryStats mapped_stats = {};
mapped_stats.is_valid = true;
mapped_stats.is_direct_map = true;
mapped_stats.num_full_slot_spans = 1;
mapped_stats.allocated_slot_span_size = size;
mapped_stats.bucket_slot_size = size;
mapped_stats.active_bytes = size;
mapped_stats.active_count = 1;
mapped_stats.resident_bytes = size;
dumper->PartitionsDumpBucketStats(partition_name, &mapped_stats);
}
}
dumper->PartitionDumpTotals(partition_name, &stats);
}
// static
void PartitionRoot::DeleteForTesting(PartitionRoot* partition_root) {
if (partition_root->settings.with_thread_cache) {
ThreadCache::SwapForTesting(nullptr);
partition_root->settings.with_thread_cache = false;
}
{
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(partition_root)};
partition_root->DestructForTesting(); // IN-TEST
}
delete partition_root;
}
void PartitionRoot::ResetForTesting(bool allow_leaks) {
if (settings.with_thread_cache) {
ThreadCache::SwapForTesting(nullptr);
settings.with_thread_cache = false;
}
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
if (!allow_leaks) {
unsigned num_allocated_slots = 0;
for (Bucket& bucket : buckets) {
if (bucket.active_slot_spans_head !=
internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span()) {
for (const internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>* slot_span =
bucket.active_slot_spans_head;
slot_span; slot_span = slot_span->next_slot_span) {
num_allocated_slots += slot_span->num_allocated_slots;
}
}
// Full slot spans are nowhere. Need to see bucket.num_full_slot_spans
// to count the number of full slot spans' slots.
if (bucket.num_full_slot_spans) {
num_allocated_slots +=
bucket.num_full_slot_spans * bucket.get_slots_per_span();
}
}
PA_DCHECK(num_allocated_slots == 0);
// Check for direct-mapped allocations.
PA_DCHECK(!direct_map_list);
}
#endif
DestructForTesting(); // IN-TEST
#if PA_CONFIG(USE_PARTITION_ROOT_ENUMERATOR)
if (initialized) {
internal::PartitionRootEnumerator::Instance().Unregister(this);
}
#endif // PA_CONFIG(USE_PARTITION_ROOT_ENUMERATOR)
for (Bucket& bucket : buckets) {
bucket.active_slot_spans_head = internal::SlotSpanMetadata<
internal::MetadataKind::kReadOnly>::get_sentinel_slot_span_non_const();
bucket.empty_slot_spans_head = nullptr;
bucket.decommitted_slot_spans_head = nullptr;
bucket.num_full_slot_spans = 0;
}
next_super_page = 0;
next_partition_page = 0;
next_partition_page_end = 0;
current_extent = nullptr;
first_extent = nullptr;
direct_map_list = nullptr;
for (auto*& entity : global_empty_slot_span_ring) {
entity = nullptr;
}
global_empty_slot_span_ring_index = 0;
global_empty_slot_span_ring_size = internal::kDefaultEmptySlotSpanRingSize;
initialized = false;
}
void PartitionRoot::ResetBookkeepingForTesting() {
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
max_size_of_allocated_bytes = total_size_of_allocated_bytes;
max_size_of_committed_pages.store(total_size_of_committed_pages);
}
void PartitionRoot::SetGlobalEmptySlotSpanRingIndexForTesting(int16_t index) {
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
global_empty_slot_span_ring_index = index;
}
ThreadCache* PartitionRoot::MaybeInitThreadCache() {
auto* tcache = ThreadCache::Get();
// See comment in `EnableThreadCacheIfSupport()` for why this is an acquire
// load.
if (ThreadCache::IsTombstone(tcache) ||
thread_caches_being_constructed_.load(std::memory_order_acquire)) {
// Two cases:
// 1. Thread is being terminated, don't try to use the thread cache, and
// don't try to resurrect it.
// 2. Someone, somewhere is currently allocating a thread cache. This may
// be us, in which case we are re-entering and should not create a thread
// cache. If it is not us, then this merely delays thread cache
// construction a bit, which is not an issue.
return nullptr;
}
// There is no per-thread ThreadCache allocated here yet, and this partition
// has a thread cache, allocate a new one.
//
// The thread cache allocation itself will not reenter here, as it sidesteps
// the thread cache by using placement new and |RawAlloc()|. However,
// internally to libc, allocations may happen to create a new TLS
// variable. This would end up here again, which is not what we want (and
// likely is not supported by libc).
//
// To avoid this sort of reentrancy, increase the count of thread caches that
// are currently allocating a thread cache.
//
// Note that there is no deadlock or data inconsistency concern, since we do
// not hold the lock, and has such haven't touched any internal data.
int before =
thread_caches_being_constructed_.fetch_add(1, std::memory_order_relaxed);
PA_CHECK(before < std::numeric_limits<int>::max());
tcache = ThreadCache::Create(this);
thread_caches_being_constructed_.fetch_sub(1, std::memory_order_relaxed);
return tcache;
}
// static
void PartitionRoot::SetStraightenLargerSlotSpanFreeListsMode(
StraightenLargerSlotSpanFreeListsMode new_value) {
straighten_larger_slot_span_free_lists_ = new_value;
}
// static
void PartitionRoot::SetSortSmallerSlotSpanFreeListsEnabled(bool new_value) {
sort_smaller_slot_span_free_lists_ = new_value;
}
// static
void PartitionRoot::SetSortActiveSlotSpansEnabled(bool new_value) {
sort_active_slot_spans_ = new_value;
}
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
PA_NOINLINE void PartitionRoot::QuarantineForBrp(
internal::SlotSpanMetadata<internal::MetadataKind::kReadOnly>* slot_span,
void* object) {
auto usable_size = GetSlotUsableSize(slot_span);
auto hook = PartitionAllocHooks::GetQuarantineOverrideHook();
if (hook) [[unlikely]] {
hook(object, usable_size);
} else {
internal::SecureMemset(object, internal::kQuarantinedByte, usable_size);
}
}
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
// static
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
void PartitionRoot::EnableShadowMetadata(internal::PoolHandleMask mask) {
#if PA_BUILDFLAG(IS_LINUX)
// TODO(crbug.com/40238514): implement ModuleCache() or something to
// load required shared libraries in advance.
// Since memfd_create() causes dlsym(), it is not possible to invoke
// memfd_create() while PartitionRoot-s are locked.
// So invoke memfd_create() here and invoke dysym() in advance.
// This is required to enable ShadowMetadata on utility processes.
{ close(memfd_create("module_cache", MFD_CLOEXEC)); }
#endif
internal::UniqueLock unique_lock(g_shadow_metadata_init_mutex_);
internal::ScopedGuard guard(g_root_enumerator_lock);
// Must lock all PartitionRoot-s and ThreadCache.
internal::PartitionRootEnumerator::Instance().Enumerate(
LockRoot, false,
internal::PartitionRootEnumerator::EnumerateOrder::kNormal);
{
internal::ScopedGuard thread_cache_guard(ThreadCacheRegistry::GetLock());
internal::PartitionAddressSpace::InitShadowMetadata(mask);
internal::PartitionRootEnumerator::Instance().Enumerate(
MakeSuperPageExtentEntriesShared, mask,
internal::PartitionRootEnumerator::EnumerateOrder::kNormal);
}
internal::PartitionRootEnumerator::Instance().Enumerate(
UnlockOrReinitRoot, false,
internal::PartitionRootEnumerator::EnumerateOrder::kReverse);
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
// Explicitly define common template instantiations to reduce compile time.
#define EXPORT_TEMPLATE \
template PA_EXPORT_TEMPLATE_DEFINE(PA_COMPONENT_EXPORT(PARTITION_ALLOC))
EXPORT_TEMPLATE void* PartitionRoot::Alloc<AllocFlags::kNone>(size_t,
const char*);
EXPORT_TEMPLATE void* PartitionRoot::Alloc<AllocFlags::kReturnNull>(
size_t,
const char*);
EXPORT_TEMPLATE void*
PartitionRoot::Realloc<AllocFlags::kNone, FreeFlags::kNone>(void*,
size_t,
const char*);
EXPORT_TEMPLATE void*
PartitionRoot::Realloc<AllocFlags::kReturnNull, FreeFlags::kNone>(void*,
size_t,
const char*);
EXPORT_TEMPLATE void* PartitionRoot::AlignedAlloc<AllocFlags::kNone>(size_t,
size_t);
#undef EXPORT_TEMPLATE
// TODO(crbug.com/40940915) Stop ignoring the -Winvalid-offsetof warning.
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
#endif
static_assert(offsetof(PartitionRoot, sentinel_bucket) ==
offsetof(PartitionRoot, buckets) +
internal::kNumBuckets * sizeof(PartitionRoot::Bucket),
"sentinel_bucket must be just after the regular buckets.");
static_assert(
offsetof(PartitionRoot, lock_) >= internal::kPartitionCachelineSize,
"The lock should not be on the same cacheline as the read-mostly flags");
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
} // namespace partition_alloc