1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260

base / allocator / partition_allocator / src / partition_alloc / pointers / raw_ptr.h [blame]

// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// IWYU pragma: private, include "base/memory/raw_ptr.h"

#ifndef PARTITION_ALLOC_POINTERS_RAW_PTR_H_
#define PARTITION_ALLOC_POINTERS_RAW_PTR_H_

#include <cstddef>
#include <cstdint>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>

#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/flags.h"
#include "partition_alloc/partition_alloc_base/augmentations/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/component_export.h"
#include "partition_alloc/partition_alloc_base/cxx20_is_constant_evaluated.h"
#include "partition_alloc/partition_alloc_base/types/same_as_any.h"
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/partition_alloc_forward.h"
#include "partition_alloc/pointers/instance_tracer.h"

#if PA_HAVE_SPACESHIP_OPERATOR
#include <compare>
#endif

#if PA_BUILDFLAG(IS_WIN)
#include "partition_alloc/partition_alloc_base/win/win_handle_types.h"
#endif

#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
#include "partition_alloc/partition_alloc_base/check.h"
// Live implementation of MiraclePtr being built.
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) || \
    PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
#define PA_RAW_PTR_CHECK(condition) PA_BASE_CHECK(condition)
#else
// No-op implementation of MiraclePtr being built.
// Note that `PA_BASE_DCHECK()` evaporates from non-DCHECK builds,
// minimizing impact of generated code.
#define PA_RAW_PTR_CHECK(condition) PA_BASE_DCHECK(condition)
#endif  // PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||
        // PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
#else   // PA_BUILDFLAG(USE_PARTITION_ALLOC)
// Without PartitionAlloc, there's no `PA_BASE_D?CHECK()` implementation
// available.
#define PA_RAW_PTR_CHECK(condition)
#endif  // PA_BUILDFLAG(USE_PARTITION_ALLOC)

#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL)
#include "partition_alloc/pointers/raw_ptr_backup_ref_impl.h"
#elif PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL)
#include "partition_alloc/pointers/raw_ptr_asan_unowned_impl.h"
#elif PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL)
#include "partition_alloc/pointers/raw_ptr_hookable_impl.h"
#else
#include "partition_alloc/pointers/raw_ptr_noop_impl.h"
#endif

namespace cc {
class ImageDecodeCache;
class Scheduler;
class TextureLayerImpl;
}  // namespace cc
namespace base::internal {
class DelayTimerBase;
class JobTaskSource;
}  // namespace base::internal
namespace base::test {
struct RawPtrCountingImplForTest;
}
namespace content::responsiveness {
class Calculator;
}
namespace v8 {
class JobTask;
}
namespace blink::scheduler {
class MainThreadTaskQueue;
class NonMainThreadTaskQueue;
}  // namespace blink::scheduler
namespace base::sequence_manager::internal {
class TaskQueueImpl;
}
namespace mojo {
class Connector;
}

namespace partition_alloc::internal {

// NOTE: All methods should be `PA_ALWAYS_INLINE`. raw_ptr is meant to be a
// lightweight replacement of a raw pointer, hence performance is critical.

// This is a bitfield representing the different flags that can be applied to a
// raw_ptr.
//
// Internal use only: Developers shouldn't use those values directly.
//
// Housekeeping rules: Try not to change trait values, so that numeric trait
// values stay constant across builds (could be useful e.g. when analyzing stack
// traces). A reasonable exception to this rule are `*ForTest` traits. As a
// matter of fact, we propose that new non-test traits are added before the
// `*ForTest` traits.
enum class RawPtrTraits : unsigned {
  kEmpty = 0,

  // Disables dangling pointer detection, but keeps other raw_ptr protections.
  //
  // Don't use directly, use DisableDanglingPtrDetection or DanglingUntriaged
  // instead.
  kMayDangle = (1 << 0),

  // Disables any hooks, when building with
  // PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL).
  //
  // Internal use only.
  kDisableHooks = (1 << 2),

  // Pointer arithmetic is discouraged and disabled by default.
  //
  // Don't use directly, use AllowPtrArithmetic instead.
  kAllowPtrArithmetic = (1 << 3),

  // This pointer has BRP disabled for experimental rewrites of containers.
  //
  // Don't use directly.
  kDisableBRP = (1 << 4),

  // Uninitialized pointers are discouraged and disabled by default.
  //
  // Don't use directly, use AllowUninitialized instead.
  kAllowUninitialized = (1 << 5),

  // *** ForTest traits below ***

  // Adds accounting, on top of the NoOp implementation, for test purposes.
  // raw_ptr/raw_ref with this trait perform extra bookkeeping, e.g. to track
  // the number of times the raw_ptr is wrapped, unwrapped, etc.
  //
  // Test only. Include raw_ptr_counting_impl_for_test.h in your test
  // files when using this trait.
  kUseCountingImplForTest = (1 << 10),

  // Helper trait that can be used to test raw_ptr's behaviour or conversions.
  //
  // Test only.
  kDummyForTest = (1 << 11),

  kAllMask = kMayDangle | kDisableHooks | kAllowPtrArithmetic | kDisableBRP |
             kAllowUninitialized | kUseCountingImplForTest | kDummyForTest,
};
// Template specialization to use |PA_DEFINE_OPERATORS_FOR_FLAGS| without
// |kMaxValue| declaration.
template <>
constexpr inline RawPtrTraits kAllFlags<RawPtrTraits> = RawPtrTraits::kAllMask;

PA_DEFINE_OPERATORS_FOR_FLAGS(RawPtrTraits);

}  // namespace partition_alloc::internal

namespace base {
using partition_alloc::internal::RawPtrTraits;

namespace raw_ptr_traits {

// IsSupportedType<T>::value answers whether raw_ptr<T>:
//   1) compiles
//   2) is safe at runtime
//
// Templates that may end up using raw_ptr should use IsSupportedType to ensure
// that raw_ptr is not used with unsupported types. As an example, see how
// base::internal::Unretained(Ref)Wrapper uses IsSupportedType to decide whether
// it should use `raw_ptr<T>` or `T*`.
template <typename T>
struct IsSupportedType {
  static constexpr bool value =
      // raw_ptr<T> is not compatible with function pointer types. Also, they
      // don't even need the raw_ptr protection, because they don't point on
      // heap.
      !std::is_function_v<T> &&

#if __OBJC__
      // raw_ptr<T> is not compatible with pointers to Objective-C classes for a
      // multitude of reasons. They may fail to compile in many cases, and
      // wouldn't work well with tagged pointers. Anyway, Objective-C objects
      // have their own way of tracking lifespan, hence don't need the raw_ptr
      // protection as much.
      //
      // Such pointers are detected by checking if they're convertible to |id|
      // type.
      !std::is_convertible_v<T*, id> &&
#endif  // __OBJC__

      // Specific disallowed types.
      !partition_alloc::internal::base::kSameAsAny<
          T,
#if PA_BUILDFLAG(IS_WIN)
// raw_ptr<HWND__> is unsafe at runtime - if the handle happens to also
// represent a valid pointer into a PartitionAlloc-managed region then it can
// lead to manipulating random memory when treating it as BackupRefPtr
// ref-count.  See also https://crbug.com/1262017.
//
// TODO(crbug.com/40799223): Cover other handle types like HANDLE,
// HLOCAL, HINTERNET, or HDEVINFO.  Maybe we should avoid using raw_ptr<T> when
// T=void (as is the case in these handle types).  OTOH, explicit,
// non-template-based raw_ptr<void> should be allowed.  Maybe this can be solved
// by having 2 traits: IsPointeeAlwaysSafe (to be used in templates) and
// IsPointeeUsuallySafe (to be used in the static_assert in raw_ptr).  The
// upside of this approach is that it will safely handle base::Bind closing over
// HANDLE.  The downside of this approach is that base::Bind closing over a
// void* pointer will not get UaF protection.
#define PA_WINDOWS_HANDLE_TYPE(name) name##__,
#include "partition_alloc/partition_alloc_base/win/win_handle_types_list.inc"
#undef PA_WINDOWS_HANDLE_TYPE
#endif
          // Performance-sensitive types identified via sampling profiler data;
          // see crbug.com/1287151
          base::internal::DelayTimerBase,
          cc::Scheduler,
          content::responsiveness::Calculator,

          // Performance-sensitive types identified via speedometer3; see
          // crbug.com/335556942
          base::internal::JobTaskSource,
          base::sequence_manager::internal::TaskQueueImpl,
          blink::scheduler::MainThreadTaskQueue,
          blink::scheduler::NonMainThreadTaskQueue,
          mojo::Connector,
          v8::JobTask,

          // Performance-sensitive types identified via MotionMark; see
          // crbug.com/335556942
          cc::ImageDecodeCache,
          cc::TextureLayerImpl>;
};

#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL)
template <RawPtrTraits Traits>
using UnderlyingImplForTraits = internal::RawPtrBackupRefImpl<
    /*AllowDangling=*/partition_alloc::internal::ContainsFlags(
        Traits,
        RawPtrTraits::kMayDangle),
    /*DisableBRP=*/partition_alloc::internal::ContainsFlags(
        Traits,
        RawPtrTraits::kDisableBRP)>;

#elif PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL)
template <RawPtrTraits Traits>
using UnderlyingImplForTraits = internal::RawPtrAsanUnownedImpl<
    partition_alloc::internal::ContainsFlags(Traits,
                                             RawPtrTraits::kAllowPtrArithmetic),
    partition_alloc::internal::ContainsFlags(Traits, RawPtrTraits::kMayDangle)>;

#elif PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL)
template <RawPtrTraits Traits>
using UnderlyingImplForTraits = internal::RawPtrHookableImpl<
    /*EnableHooks=*/!partition_alloc::internal::ContainsFlags(
        Traits,
        RawPtrTraits::kDisableHooks)>;

#else
template <RawPtrTraits Traits>
using UnderlyingImplForTraits = internal::RawPtrNoOpImpl;
#endif

constexpr bool IsPtrArithmeticAllowed([[maybe_unused]] RawPtrTraits Traits) {
#if PA_BUILDFLAG(ENABLE_POINTER_ARITHMETIC_TRAIT_CHECK)
  return partition_alloc::internal::ContainsFlags(
      Traits, RawPtrTraits::kAllowPtrArithmetic);
#else
  return true;
#endif
}

// ImplForTraits is the struct that implements raw_ptr functions. Think of
// raw_ptr as a thin wrapper, that directs calls to ImplForTraits. ImplForTraits
// may be different from UnderlyingImplForTraits, because it may select a
// test impl instead.
template <RawPtrTraits Traits>
using ImplForTraits =
    std::conditional_t<partition_alloc::internal::ContainsFlags(
                           Traits,
                           RawPtrTraits::kUseCountingImplForTest),
                       test::RawPtrCountingImplForTest,
                       UnderlyingImplForTraits<Traits>>;

// `kTypeTraits` is a customization interface to accosiate `T` with some
// `RawPtrTraits`. Users may create specialization of this variable
// to enable some traits by default.
// Note that specialization must be declared before the first use that would
// cause implicit instantiation of `raw_ptr` or `raw_ref`, in every translation
// unit where such use occurs.
template <typename T, typename SFINAE = void>
constexpr inline auto kTypeTraits = RawPtrTraits::kEmpty;

}  // namespace raw_ptr_traits

// `raw_ptr<T>` is a non-owning smart pointer that has improved memory-safety
// over raw pointers. See the documentation for details:
// https://source.chromium.org/chromium/chromium/src/+/main:base/memory/raw_ptr.md
//
// raw_ptr<T> is marked as [[gsl::Pointer]] which allows the compiler to catch
// some bugs where the raw_ptr holds a dangling pointer to a temporary object.
// However the [[gsl::Pointer]] analysis expects that such types do not have a
// non-default move constructor/assignment. Thus, it's possible to get an error
// where the pointer is not actually dangling, and have to work around the
// compiler. We have not managed to construct such an example in Chromium yet.
template <typename T, RawPtrTraits PointerTraits = RawPtrTraits::kEmpty>
class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ptr {
 public:
  // Users may specify `RawPtrTraits` via raw_ptr's second template parameter
  // `PointerTraits`, or specialization of `raw_ptr_traits::kTypeTraits<T>`.
  constexpr static auto Traits = PointerTraits | raw_ptr_traits::kTypeTraits<T>;
  using Impl = typename raw_ptr_traits::ImplForTraits<Traits>;
  // Needed to make gtest Pointee matcher work with raw_ptr.
  using element_type = T;
  using DanglingType = raw_ptr<T, Traits | RawPtrTraits::kMayDangle>;

#if !PA_BUILDFLAG(USE_PARTITION_ALLOC)
  // See comment at top about `PA_RAW_PTR_CHECK()`.
  static_assert(std::is_same_v<Impl, internal::RawPtrNoOpImpl>);
#endif  // !PA_BUILDFLAG(USE_PARTITION_ALLOC)

  static_assert(partition_alloc::internal::AreValidFlags(Traits),
                "Unknown raw_ptr trait(s)");
  static_assert(raw_ptr_traits::IsSupportedType<T>::value,
                "raw_ptr<T> doesn't work with this kind of pointee type T");

  static constexpr bool kZeroOnConstruct =
      Impl::kMustZeroOnConstruct || (PA_BUILDFLAG(RAW_PTR_ZERO_ON_CONSTRUCT) &&
                                     !partition_alloc::internal::ContainsFlags(
                                         Traits,
                                         RawPtrTraits::kAllowUninitialized));
  static constexpr bool kZeroOnMove =
      Impl::kMustZeroOnMove || PA_BUILDFLAG(RAW_PTR_ZERO_ON_MOVE);
  static constexpr bool kZeroOnDestruct =
      Impl::kMustZeroOnDestruct || PA_BUILDFLAG(RAW_PTR_ZERO_ON_DESTRUCT);

// A non-trivial default ctor is required for complex implementations (e.g.
// BackupRefPtr), or even for NoOpImpl when zeroing is requested.
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||   \
    PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) || \
    PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL) ||     \
    PA_BUILDFLAG(RAW_PTR_ZERO_ON_CONSTRUCT)
  PA_ALWAYS_INLINE constexpr raw_ptr() noexcept {
    if constexpr (kZeroOnConstruct) {
      wrapped_ptr_ = nullptr;
    }
  }
#else
  // raw_ptr can be trivially default constructed (leaving |wrapped_ptr_|
  // uninitialized).
  PA_ALWAYS_INLINE constexpr raw_ptr() noexcept = default;
  static_assert(!kZeroOnConstruct);
#endif  // PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL) ||
        // PA_BUILDFLAG(RAW_PTR_ZERO_ON_CONSTRUCT)

// A non-trivial copy ctor and assignment operator are required for complex
// implementations (e.g. BackupRefPtr). Unlike the blocks around, we don't need
// these for NoOpImpl even when zeroing is requested; better to keep them
// trivial.
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||   \
    PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) || \
    PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL)
  PA_ALWAYS_INLINE constexpr raw_ptr(const raw_ptr& p) noexcept
      : wrapped_ptr_(Impl::Duplicate(p.wrapped_ptr_)) {
    Impl::Trace(tracer_.owner_id(), p.wrapped_ptr_);
  }

  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(const raw_ptr& p) noexcept {
    // Increment the ref-count first before releasing, in case the pointer is
    // assigned to itself. (This is different from the concern in the assign-T*
    // version of this operator, where a different pointer to the same allocator
    // slot could cause trouble, which isn't a concern here at all.)
    //
    // Unlike the move version of this operator, don't add |this != &p| branch,
    // for performance reasons. Self-assignment is rare, so unconditionally
    // calling `Duplicate()` is almost certainly cheaper than adding an
    // additional branch, even if always correctly predicted.
    T* new_ptr = Impl::Duplicate(p.wrapped_ptr_);
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    wrapped_ptr_ = new_ptr;
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    return *this;
  }
#else
  PA_ALWAYS_INLINE raw_ptr(const raw_ptr&) noexcept = default;
  PA_ALWAYS_INLINE raw_ptr& operator=(const raw_ptr&) noexcept = default;
#endif  // PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL)

// A non-trivial move ctor and assignment operator are required for complex
// implementations (e.g. BackupRefPtr), or even for NoOpImpl when zeroing is
// requested.
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||   \
    PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) || \
    PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL) ||     \
    PA_BUILDFLAG(RAW_PTR_ZERO_ON_MOVE)
  PA_ALWAYS_INLINE constexpr raw_ptr(raw_ptr&& p) noexcept {
    wrapped_ptr_ = p.wrapped_ptr_;
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    if constexpr (kZeroOnMove) {
      p.wrapped_ptr_ = nullptr;
      Impl::Untrace(p.tracer_.owner_id());
    }
  }
  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(raw_ptr&& p) noexcept {
    // Unlike the the copy version of this operator, this branch is necessary
    // for correctness.
    if (this != &p) [[likely]] {
      Impl::ReleaseWrappedPtr(wrapped_ptr_);
      Impl::Untrace(tracer_.owner_id());
      wrapped_ptr_ = p.wrapped_ptr_;
      Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
      if constexpr (kZeroOnMove) {
        p.wrapped_ptr_ = nullptr;
        Impl::Untrace(p.tracer_.owner_id());
      }
    }
    return *this;
  }
#else
  PA_ALWAYS_INLINE raw_ptr(raw_ptr&&) noexcept = default;
  PA_ALWAYS_INLINE raw_ptr& operator=(raw_ptr&&) noexcept = default;
  static_assert(!kZeroOnMove);
#endif  // PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL) ||
        // PA_BUILDFLAG(RAW_PTR_ZERO_ON_MOVE)

// A non-trivial default dtor is required for complex implementations (e.g.
// BackupRefPtr), or even for NoOpImpl when zeroing is requested.
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||   \
    PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) || \
    PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL) ||     \
    PA_BUILDFLAG(RAW_PTR_ZERO_ON_DESTRUCT)
  PA_ALWAYS_INLINE PA_CONSTEXPR_DTOR ~raw_ptr() noexcept {
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    // Work around external issues where raw_ptr is used after destruction.
    if constexpr (kZeroOnDestruct) {
      wrapped_ptr_ = nullptr;
    }
  }
#else
  PA_ALWAYS_INLINE ~raw_ptr() noexcept = default;
  static_assert(!kZeroOnDestruct);
#endif  // PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_ASAN_UNOWNED_IMPL) ||
        // PA_BUILDFLAG(USE_RAW_PTR_HOOKABLE_IMPL) ||
        // PA_BUILDFLAG(RAW_PTR_ZERO_ON_DESTRUCT)

  // Cross-kind copy constructor.
  // Move is not supported as different traits may use different ref-counts, so
  // let move operations degrade to copy, which handles it well.
  template <RawPtrTraits PassedTraits,
            typename = std::enable_if_t<Traits != PassedTraits>>
  PA_ALWAYS_INLINE constexpr explicit raw_ptr(
      const raw_ptr<T, PassedTraits>& p) noexcept
      : wrapped_ptr_(Impl::WrapRawPtrForDuplication(
            raw_ptr_traits::ImplForTraits<raw_ptr<T, PassedTraits>::Traits>::
                UnsafelyUnwrapPtrForDuplication(p.wrapped_ptr_))) {
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    // Limit cross-kind conversions only to cases where `kMayDangle` gets added,
    // because that's needed for ExtractAsDangling() and Unretained(Ref)Wrapper.
    // Use a static_assert, instead of disabling via SFINAE, so that the
    // compiler catches other conversions. Otherwise the implicits
    // `raw_ptr<T> -> T* -> raw_ptr<>` route will be taken.
    static_assert(Traits == (raw_ptr<T, PassedTraits>::Traits |
                             RawPtrTraits::kMayDangle));
  }

  // Cross-kind assignment.
  // Move is not supported as different traits may use different ref-counts, so
  // let move operations degrade to copy, which handles it well.
  template <RawPtrTraits PassedTraits,
            typename = std::enable_if_t<Traits != PassedTraits>>
  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(
      const raw_ptr<T, PassedTraits>& p) noexcept {
    // Limit cross-kind assignments only to cases where `kMayDangle` gets added,
    // because that's needed for ExtractAsDangling() and Unretained(Ref)Wrapper.
    // Use a static_assert, instead of disabling via SFINAE, so that the
    // compiler catches other conversions. Otherwise the implicit
    // `raw_ptr<T> -> T* -> raw_ptr<>` route will be taken.
    static_assert(Traits == (raw_ptr<T, PassedTraits>::Traits |
                             RawPtrTraits::kMayDangle));
    // If it was the same type, another overload would've been used.
    static_assert(!std::is_same_v<raw_ptr, std::decay_t<decltype(p)>>);

    // Unlike the regular varsion of operator=, we don't have an issue of
    // `*this` and `ptr` being the same object (because it isn't even the same
    // type, as asserted above), so no need to increment the ref-count first.
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    wrapped_ptr_ = Impl::WrapRawPtrForDuplication(
        raw_ptr_traits::ImplForTraits<raw_ptr<T, PassedTraits>::Traits>::
            UnsafelyUnwrapPtrForDuplication(p.wrapped_ptr_));
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    return *this;
  }

  // Deliberately implicit, because raw_ptr is supposed to resemble raw ptr.
  // Ignore kZeroOnConstruct, because here the caller explicitly wishes to
  // initialize with nullptr.
  // NOLINTNEXTLINE(google-explicit-constructor)
  PA_ALWAYS_INLINE constexpr raw_ptr(std::nullptr_t) noexcept
      : wrapped_ptr_(nullptr) {}

  // Deliberately implicit, because raw_ptr is supposed to resemble raw ptr.
  // NOLINTNEXTLINE(google-explicit-constructor)
  PA_ALWAYS_INLINE constexpr raw_ptr(T* p) noexcept
      : wrapped_ptr_(Impl::WrapRawPtr(p)) {
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
  }

  // Deliberately implicit in order to support implicit upcast.
  template <typename U,
            typename = std::enable_if_t<
                std::is_convertible_v<U*, T*> &&
                !std::is_void_v<typename std::remove_cv<T>::type>>>
  // NOLINTNEXTLINE(google-explicit-constructor)
  PA_ALWAYS_INLINE constexpr raw_ptr(const raw_ptr<U, Traits>& ptr) noexcept
      : wrapped_ptr_(
            Impl::Duplicate(Impl::template Upcast<T, U>(ptr.wrapped_ptr_))) {
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
  }
  // Deliberately implicit in order to support implicit upcast.
  template <typename U,
            typename = std::enable_if_t<
                std::is_convertible_v<U*, T*> &&
                !std::is_void_v<typename std::remove_cv<T>::type>>>
  // NOLINTNEXTLINE(google-explicit-constructor)
  PA_ALWAYS_INLINE constexpr raw_ptr(raw_ptr<U, Traits>&& ptr) noexcept
      : wrapped_ptr_(Impl::template Upcast<T, U>(ptr.wrapped_ptr_)) {
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    if constexpr (kZeroOnMove) {
      ptr.wrapped_ptr_ = nullptr;
      Impl::Untrace(ptr.tracer_.owner_id());
    }
  }

  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(std::nullptr_t) noexcept {
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    wrapped_ptr_ = nullptr;
    return *this;
  }
  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(T* p) noexcept {
    // Duplicate before releasing, in case the pointers point to the same
    // allocator slot. Releasing the pointer first could lead to dropping the
    // ref-count to 0 for the slot, immediately unqurantining and releasing it,
    // just to immediately reacquire the the ref-count on that slot, leading to
    // correctness issues.
    T* new_ptr = Impl::WrapRawPtr(p);
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    wrapped_ptr_ = new_ptr;
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    return *this;
  }

  // Upcast assignment
  template <typename U,
            typename = std::enable_if_t<
                std::is_convertible_v<U*, T*> &&
                !std::is_void_v<typename std::remove_cv<T>::type>>>
  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(
      const raw_ptr<U, Traits>& ptr) noexcept {
    // If it was the same type, another overload would've been used.
    static_assert(!std::is_same_v<raw_ptr, std::decay_t<decltype(ptr)>>);

    // Unlike the regular varsion of operator=, we don't have an issue of
    // `*this` and `ptr` being the same object (because it isn't even the same
    // type, as asserted above), so no need to increment the ref-count first.
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    wrapped_ptr_ =
        Impl::Duplicate(Impl::template Upcast<T, U>(ptr.wrapped_ptr_));
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    return *this;
  }
  template <typename U,
            typename = std::enable_if_t<
                std::is_convertible_v<U*, T*> &&
                !std::is_void_v<typename std::remove_cv<T>::type>>>
  PA_ALWAYS_INLINE constexpr raw_ptr& operator=(
      raw_ptr<U, Traits>&& ptr) noexcept {
    // If it was the same type, another overload would've been used.
    static_assert(!std::is_same_v<raw_ptr, std::decay_t<decltype(ptr)>>);

    // Unlike the regular varsion of operator=, we don't have an issue of
    // `*this` and `ptr` being the same object (because it isn't even the same
    // type, as asserted above), so no need to increment the ref-count first.
    Impl::ReleaseWrappedPtr(wrapped_ptr_);
    Impl::Untrace(tracer_.owner_id());
    wrapped_ptr_ = Impl::template Upcast<T, U>(ptr.wrapped_ptr_);
    Impl::Trace(tracer_.owner_id(), wrapped_ptr_);
    if constexpr (kZeroOnMove) {
      ptr.wrapped_ptr_ = nullptr;
      Impl::Untrace(ptr.tracer_.owner_id());
    }
    return *this;
  }

  // Avoid using. The goal of raw_ptr is to be as close to raw pointer as
  // possible, so use it only if absolutely necessary (e.g. for const_cast).
  PA_ALWAYS_INLINE constexpr T* get() const { return GetForExtraction(); }

  // You may use |raw_ptr<T>::AsEphemeralRawAddr()| to obtain |T**| or |T*&|
  // from |raw_ptr<T>|, as long as you follow these requirements:
  // - DO NOT carry T**/T*& obtained via AsEphemeralRawAddr() out of
  //   expression.
  // - DO NOT use raw_ptr or T**/T*& multiple times within an expression.
  //
  // https://chromium.googlesource.com/chromium/src/+/main/base/memory/raw_ptr.md#in_out-arguments-need-to-be-refactored
  class EphemeralRawAddr {
   public:
    EphemeralRawAddr(const EphemeralRawAddr&) = delete;
    EphemeralRawAddr& operator=(const EphemeralRawAddr&) = delete;
    void* operator new(size_t) = delete;
    void* operator new(size_t, void*) = delete;
    PA_ALWAYS_INLINE PA_CONSTEXPR_DTOR ~EphemeralRawAddr() { original = copy; }

    PA_ALWAYS_INLINE constexpr T** operator&() && PA_LIFETIME_BOUND {
      return ©
    }
    // NOLINTNEXTLINE(google-explicit-constructor)
    PA_ALWAYS_INLINE constexpr operator T*&() && PA_LIFETIME_BOUND {
      return copy;
    }

   private:
    friend class raw_ptr;
    PA_ALWAYS_INLINE constexpr explicit EphemeralRawAddr(raw_ptr& ptr)
        : copy(ptr.get()), original(ptr) {}
    T* copy;
    raw_ptr& original;  // Original pointer.
  };
  PA_ALWAYS_INLINE PA_CONSTEXPR_DTOR EphemeralRawAddr AsEphemeralRawAddr() & {
    return EphemeralRawAddr(*this);
  }

  PA_ALWAYS_INLINE constexpr explicit operator bool() const {
    return !!wrapped_ptr_;
  }

  template <typename U = T,
            typename = std::enable_if_t<
                !std::is_void_v<typename std::remove_cv<U>::type>>>
  PA_ALWAYS_INLINE constexpr U& operator*() const {
    return *GetForDereference();
  }
  PA_ALWAYS_INLINE constexpr T* operator->() const {
    return GetForDereference();
  }

  // Deliberately implicit, because raw_ptr is supposed to resemble raw ptr.
  // NOLINTNEXTLINE(google-explicit-constructor)
  PA_ALWAYS_INLINE constexpr operator T*() const { return GetForExtraction(); }
  template <typename U>
  PA_ALWAYS_INLINE constexpr explicit operator U*() const {
    // This operator may be invoked from static_cast, meaning the types may not
    // be implicitly convertible, hence the need for static_cast here.
    return static_cast<U*>(GetForExtraction());
  }

  PA_ALWAYS_INLINE constexpr raw_ptr& operator++() {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot increment raw_ptr unless AllowPtrArithmetic trait is present.");
    wrapped_ptr_ = Impl::Advance(wrapped_ptr_, 1, true);
    return *this;
  }
  PA_ALWAYS_INLINE constexpr raw_ptr& operator--() {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot decrement raw_ptr unless AllowPtrArithmetic trait is present.");
    wrapped_ptr_ = Impl::Retreat(wrapped_ptr_, 1, true);
    return *this;
  }
  PA_ALWAYS_INLINE constexpr raw_ptr operator++(int /* post_increment */) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot increment raw_ptr unless AllowPtrArithmetic trait is present.");
    raw_ptr result = *this;
    ++(*this);
    return result;
  }
  PA_ALWAYS_INLINE constexpr raw_ptr operator--(int /* post_decrement */) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot decrement raw_ptr unless AllowPtrArithmetic trait is present.");
    raw_ptr result = *this;
    --(*this);
    return result;
  }
  template <
      typename Z,
      typename = std::enable_if_t<partition_alloc::internal::is_offset_type<Z>>>
  PA_ALWAYS_INLINE constexpr raw_ptr& operator+=(Z delta_elems) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot increment raw_ptr unless AllowPtrArithmetic trait is present.");
    wrapped_ptr_ = Impl::Advance(wrapped_ptr_, delta_elems, true);
    return *this;
  }
  template <
      typename Z,
      typename = std::enable_if_t<partition_alloc::internal::is_offset_type<Z>>>
  PA_ALWAYS_INLINE constexpr raw_ptr& operator-=(Z delta_elems) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot decrement raw_ptr unless AllowPtrArithmetic trait is present.");
    wrapped_ptr_ = Impl::Retreat(wrapped_ptr_, delta_elems, true);
    return *this;
  }

  template <typename Z,
            typename U = T,
            typename = std::enable_if_t<
                !std::is_void_v<typename std::remove_cv<U>::type> &&
                partition_alloc::internal::is_offset_type<Z>>>
  PA_ALWAYS_INLINE constexpr U& operator[](Z delta_elems) const {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot index raw_ptr unless AllowPtrArithmetic trait is present.");
    // Call SafelyUnwrapPtrForDereference() to simulate what GetForDereference()
    // does, but without creating a temporary.
    return *Impl::SafelyUnwrapPtrForDereference(
        Impl::Advance(wrapped_ptr_, delta_elems, false));
  }

  // Do not disable operator+() and operator-().
  // They provide OOB checks, which prevent from assigning an arbitrary value to
  // raw_ptr, leading BRP to modifying arbitrary memory thinking it's ref-count.
  // Keep them enabled, which may be blocked later when attempting to apply the
  // += or -= operation, when disabled. In the absence of operators +/-, the
  // compiler is free to implicitly convert to the underlying T* representation
  // and perform ordinary pointer arithmetic, thus invalidating the purpose
  // behind disabling them.
  //
  // For example, disabling these when `!is_offset_type<Z>` would remove the
  // operators for Z=uint64_t on 32-bit systems. The compiler instead would
  // generate code that converts `raw_ptr<T>` to `T*` and adds uint64_t to that,
  // bypassing the OOB protection entirely.
  template <typename Z>
  PA_ALWAYS_INLINE friend constexpr raw_ptr operator+(const raw_ptr& p,
                                                      Z delta_elems) {
    // Don't check `is_offset_type<Z>` here, as existence of `Advance` is
    // already gated on that, and we'd get double errors.
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot add to raw_ptr unless AllowPtrArithmetic trait is present.");
    raw_ptr result = Impl::Advance(p.wrapped_ptr_, delta_elems, false);
    return result;
  }
  template <typename Z>
  PA_ALWAYS_INLINE friend constexpr raw_ptr operator+(Z delta_elems,
                                                      const raw_ptr& p) {
    return p + delta_elems;
  }
  template <typename Z>
  PA_ALWAYS_INLINE friend constexpr raw_ptr operator-(const raw_ptr& p,
                                                      Z delta_elems) {
    // Don't check `is_offset_type<Z>` here, as existence of `Retreat` is
    // already gated on that, and we'd get double errors.
    static_assert(raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
                  "cannot subtract from raw_ptr unless AllowPtrArithmetic "
                  "trait is present.");
    raw_ptr result = Impl::Retreat(p.wrapped_ptr_, delta_elems, false);
    return result;
  }

  // The "Do not disable operator+() and operator-()" comment above doesn't
  // apply to the delta operator-() below.
  PA_ALWAYS_INLINE friend constexpr ptrdiff_t operator-(const raw_ptr& p1,
                                                        const raw_ptr& p2) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot subtract raw_ptrs unless AllowPtrArithmetic trait is present.");
    return Impl::GetDeltaElems(p1.wrapped_ptr_, p2.wrapped_ptr_);
  }
  PA_ALWAYS_INLINE friend constexpr ptrdiff_t operator-(T* p1,
                                                        const raw_ptr& p2) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot subtract raw_ptrs unless AllowPtrArithmetic trait is present.");
    return Impl::GetDeltaElems(p1, p2.wrapped_ptr_);
  }
  PA_ALWAYS_INLINE friend constexpr ptrdiff_t operator-(const raw_ptr& p1,
                                                        T* p2) {
    static_assert(
        raw_ptr_traits::IsPtrArithmeticAllowed(Traits),
        "cannot subtract raw_ptrs unless AllowPtrArithmetic trait is present.");
    return Impl::GetDeltaElems(p1.wrapped_ptr_, p2);
  }

  // Stop referencing the underlying pointer and free its memory. Compared to
  // raw delete calls, this avoids the raw_ptr to be temporarily dangling
  // during the free operation, which will lead to taking the slower path that
  // involves quarantine.
  PA_ALWAYS_INLINE constexpr void ClearAndDelete() noexcept {
    delete GetForExtractionAndReset();
  }
  PA_ALWAYS_INLINE constexpr void ClearAndDeleteArray() noexcept {
    delete[] GetForExtractionAndReset();
  }

  // Clear the underlying pointer and return another raw_ptr instance
  // that is allowed to dangle.
  // This can be useful in cases such as:
  // ```
  //  ptr.ExtractAsDangling()->SelfDestroy();
  // ```
  // ```
  //  c_style_api_do_something_and_destroy(ptr.ExtractAsDangling());
  // ```
  // NOTE, avoid using this method as it indicates an error-prone memory
  // ownership pattern. If possible, use smart pointers like std::unique_ptr<>
  // instead of raw_ptr<>.
  // If you have to use it, avoid saving the return value in a long-lived
  // variable (or worse, a field)! It's meant to be used as a temporary, to be
  // passed into a cleanup & freeing function, and destructed at the end of the
  // statement.
  PA_ALWAYS_INLINE constexpr DanglingType ExtractAsDangling() noexcept {
    DanglingType res(std::move(*this));
    // Not all implementation clear the source pointer on move. Furthermore,
    // even for implemtantions that do, cross-kind conversions (that add
    // kMayDangle) fall back to a copy, instead of move. So do it here just in
    // case. Should be cheap.
    operator=(nullptr);
    return res;
  }

  // Comparison operators between raw_ptr and raw_ptr<U>/U*/std::nullptr_t.
  // Strictly speaking, it is not necessary to provide these: the compiler can
  // use the conversion operator implicitly to allow comparisons to fall back to
  // comparisons between raw pointers. However, `operator T*`/`operator U*` may
  // perform safety checks with a higher runtime cost, so to avoid this, provide
  // explicit comparison operators for all combinations of parameters.

  // Comparisons between `raw_ptr`s. Typically, these would be defined inline as
  // comparisons between `raw_ptr` and `raw_ptr<U>`. Unfortunately, the friend
  // declaration grants access to `raw_ptr::GetForComparison()`, but not
  // `raw_ptr<U>::GetForComparison()`, since that's an unrelated type; both
  // instantiations must declare the same signature as a friend for it to access
  // both private methods. Switching to `raw_ptr<U>, raw_ptr<V>` achieves this,
  // but then if the implementation is inline, the compile will generate it for
  // both instantiations, and not know which (identical) instance to resolve to,
  // causing a compile error. Thus the definitions must also be out-of-lined
  // below, so they are only instantiated once.
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr bool operator==(const raw_ptr<U, R1>& lhs,
                                   const raw_ptr<V, R2>& rhs);
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr bool operator!=(const raw_ptr<U, R1>& lhs,
                                   const raw_ptr<V, R2>& rhs);
#if PA_HAVE_SPACESHIP_OPERATOR
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr auto operator<=>(const raw_ptr<U, R1>& lhs,
                                    const raw_ptr<V, R2>& rhs);
#else
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr bool operator<(const raw_ptr<U, R1>& lhs,
                                  const raw_ptr<V, R2>& rhs);
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr bool operator>(const raw_ptr<U, R1>& lhs,
                                  const raw_ptr<V, R2>& rhs);
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr bool operator<=(const raw_ptr<U, R1>& lhs,
                                   const raw_ptr<V, R2>& rhs);
  template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
  friend constexpr bool operator>=(const raw_ptr<U, R1>& lhs,
                                   const raw_ptr<V, R2>& rhs);
#endif

  // Comparisons with U*. These operators also handle the case where the RHS is
  // T*. Because these only call `raw_ptr::GetForComparison()`, they can be
  // written inline in the typical way.
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator==(const raw_ptr& lhs,
                                                    U* rhs) {
    return lhs.GetForComparison() == rhs;
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator!=(const raw_ptr& lhs,
                                                    U* rhs) {
    return !(lhs == rhs);
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator==(U* lhs,
                                                    const raw_ptr& rhs) {
    return rhs == lhs;  // Reverse order to call the operator above.
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator!=(U* lhs,
                                                    const raw_ptr& rhs) {
    return rhs != lhs;  // Reverse order to call the operator above.
  }
#if PA_HAVE_SPACESHIP_OPERATOR
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr auto operator<=>(const raw_ptr& lhs,
                                                     U* rhs) {
    return lhs.GetForComparison() <=> rhs;
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr auto operator<=>(U* lhs,
                                                     const raw_ptr& rhs) {
    return lhs <=> rhs.GetForComparison();
  }
#else
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator<(const raw_ptr& lhs, U* rhs) {
    return lhs.GetForComparison() < rhs;
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator<=(const raw_ptr& lhs,
                                                    U* rhs) {
    return lhs.GetForComparison() <= rhs;
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator>(const raw_ptr& lhs, U* rhs) {
    return lhs.GetForComparison() > rhs;
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator>=(const raw_ptr& lhs,
                                                    U* rhs) {
    return lhs.GetForComparison() >= rhs;
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator<(U* lhs, const raw_ptr& rhs) {
    return lhs < rhs.GetForComparison();
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator<=(U* lhs,
                                                    const raw_ptr& rhs) {
    return lhs <= rhs.GetForComparison();
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator>(U* lhs, const raw_ptr& rhs) {
    return lhs > rhs.GetForComparison();
  }
  template <typename U>
  PA_ALWAYS_INLINE friend constexpr bool operator>=(U* lhs,
                                                    const raw_ptr& rhs) {
    return lhs >= rhs.GetForComparison();
  }
#endif

  // Comparisons with `std::nullptr_t`.
  PA_ALWAYS_INLINE friend constexpr bool operator==(const raw_ptr& lhs,
                                                    std::nullptr_t) {
    return !lhs;
  }
  PA_ALWAYS_INLINE friend constexpr bool operator!=(const raw_ptr& lhs,
                                                    std::nullptr_t) {
    return !!lhs;  // Use !! otherwise the costly implicit cast will be used.
  }
  PA_ALWAYS_INLINE friend constexpr bool operator==(std::nullptr_t,
                                                    const raw_ptr& rhs) {
    return !rhs;
  }
  PA_ALWAYS_INLINE friend constexpr bool operator!=(std::nullptr_t,
                                                    const raw_ptr& rhs) {
    return !!rhs;  // Use !! otherwise the costly implicit cast will be used.
  }

  PA_ALWAYS_INLINE friend constexpr void swap(raw_ptr& lhs,
                                              raw_ptr& rhs) noexcept {
    Impl::IncrementSwapCountForTest();
    std::swap(lhs.wrapped_ptr_, rhs.wrapped_ptr_);
  }

  PA_ALWAYS_INLINE void ReportIfDangling() const noexcept {
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL)
    Impl::ReportIfDangling(wrapped_ptr_);
#endif
  }

 private:
  // This getter is meant for situations where the pointer is meant to be
  // dereferenced. It is allowed to crash on nullptr (it may or may not),
  // because it knows that the caller will crash on nullptr.
  PA_ALWAYS_INLINE constexpr T* GetForDereference() const {
    return Impl::SafelyUnwrapPtrForDereference(wrapped_ptr_);
  }
  // This getter is meant for situations where the raw pointer is meant to be
  // extracted outside of this class, but not necessarily with an intention to
  // dereference. It mustn't crash on nullptr.
  PA_ALWAYS_INLINE constexpr T* GetForExtraction() const {
    return Impl::SafelyUnwrapPtrForExtraction(wrapped_ptr_);
  }
  // This getter is meant *only* for situations where the pointer is meant to be
  // compared (guaranteeing no dereference or extraction outside of this class).
  // Any verifications can and should be skipped for performance reasons.
  PA_ALWAYS_INLINE constexpr T* GetForComparison() const {
    return Impl::UnsafelyUnwrapPtrForComparison(wrapped_ptr_);
  }

  PA_ALWAYS_INLINE constexpr T* GetForExtractionAndReset() {
    T* ptr = GetForExtraction();
    operator=(nullptr);
    return ptr;
  }

  T* wrapped_ptr_;
  PA_NO_UNIQUE_ADDRESS internal::InstanceTracer tracer_;

  template <typename U, base::RawPtrTraits R>
  friend class raw_ptr;
};

template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator==(const raw_ptr<U, Traits1>& lhs,
                                           const raw_ptr<V, Traits2>& rhs) {
  return lhs.GetForComparison() == rhs.GetForComparison();
}

template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator!=(const raw_ptr<U, Traits1>& lhs,
                                           const raw_ptr<V, Traits2>& rhs) {
  return !(lhs == rhs);
}

#if PA_HAVE_SPACESHIP_OPERATOR
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr auto operator<=>(const raw_ptr<U, Traits1>& lhs,
                                            const raw_ptr<V, Traits2>& rhs) {
  return lhs.GetForComparison() <=> rhs.GetForComparison();
}
#else
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator<(const raw_ptr<U, Traits1>& lhs,
                                          const raw_ptr<V, Traits2>& rhs) {
  return lhs.GetForComparison() < rhs.GetForComparison();
}

template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator>(const raw_ptr<U, Traits1>& lhs,
                                          const raw_ptr<V, Traits2>& rhs) {
  return lhs.GetForComparison() > rhs.GetForComparison();
}

template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator<=(const raw_ptr<U, Traits1>& lhs,
                                           const raw_ptr<V, Traits2>& rhs) {
  return lhs.GetForComparison() <= rhs.GetForComparison();
}

template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator>=(const raw_ptr<U, Traits1>& lhs,
                                           const raw_ptr<V, Traits2>& rhs) {
  return lhs.GetForComparison() >= rhs.GetForComparison();
}
#endif

template <typename T>
inline constexpr bool IsRawPtr = false;
template <typename T, RawPtrTraits Traits>
inline constexpr bool IsRawPtr<raw_ptr<T, Traits>> = true;

template <typename T>
inline constexpr bool IsRawPtrMayDangle = false;
template <typename T, RawPtrTraits Traits>
inline constexpr bool IsRawPtrMayDangle<raw_ptr<T, Traits>> =
    partition_alloc::internal::ContainsFlags(Traits, RawPtrTraits::kMayDangle);

template <typename T>
inline constexpr bool IsPointerOrRawPtr = std::is_pointer_v<T>;
template <typename T, RawPtrTraits Traits>
inline constexpr bool IsPointerOrRawPtr<raw_ptr<T, Traits>> = true;

// Like `std::remove_pointer_t<>`, but also converts `raw_ptr<T>` => `T`.
template <typename T>
struct RemovePointer {
  using type = std::remove_pointer_t<T>;
};
template <typename T, RawPtrTraits Traits>
struct RemovePointer<raw_ptr<T, Traits>> {
  using type = T;
};
template <typename T>
using RemovePointerT = typename RemovePointer<T>::type;

}  // namespace base

using base::raw_ptr;

// DisableDanglingPtrDetection option for raw_ptr annotates
// "intentional-and-safe" dangling pointers. It is meant to be used at the
// margin, only if there is no better way to re-architecture the code.
//
// Usage:
// raw_ptr<T, DisableDanglingPtrDetection> dangling_ptr;
//
// When using it, please provide a justification about what guarantees that it
// will never be dereferenced after becoming dangling.
constexpr inline auto DisableDanglingPtrDetection =
    base::RawPtrTraits::kMayDangle;

// See `docs/dangling_ptr.md`
// Annotates known dangling raw_ptr. Those haven't been triaged yet. All the
// occurrences are meant to be removed. See https://crbug.com/1291138.
constexpr inline auto DanglingUntriaged = base::RawPtrTraits::kMayDangle;

// Unlike DanglingUntriaged, this annotates raw_ptrs that are known to
// dangle only occasionally on the CQ.
//
// These were found from CQ runs and analysed in this dashboard:
// https://docs.google.com/spreadsheets/d/1k12PQOG4y1-UEV9xDfP1F8FSk4cVFywafEYHmzFubJ8/
//
// This is not meant to be added manually. You can ignore this flag.
constexpr inline auto FlakyDanglingUntriaged = base::RawPtrTraits::kMayDangle;

// Dangling raw_ptr that is more likely to cause UAF: its memory was freed in
// one task, and the raw_ptr was released in a different one.
//
// This is not meant to be added manually. You can ignore this flag.
constexpr inline auto AcrossTasksDanglingUntriaged =
    base::RawPtrTraits::kMayDangle;

// The use of pointer arithmetic with raw_ptr is strongly discouraged and
// disabled by default. Usually a container like span<> should be used
// instead of the raw_ptr.
constexpr inline auto AllowPtrArithmetic =
    base::RawPtrTraits::kAllowPtrArithmetic;

// The use of uninitialized pointers is strongly discouraged. raw_ptrs will
// be initialized to nullptr by default in all cases when building against
// Chromium. However, third-party projects built in a standalone manner may
// wish to opt out where possible. One way to do this is via buildflags,
// thus affecting all raw_ptrs, but a finer-grained mechanism is the use
// of the kAllowUninitialized trait.
//
// Note that opting out may not always be effective, given that algorithms
// like BackupRefPtr require nullptr initializaion for correctness and thus
// silently enforce it.
constexpr inline auto AllowUninitialized =
    base::RawPtrTraits::kAllowUninitialized;

// This flag is used to tag a subset of dangling pointers. Similarly to
// DanglingUntriaged, those pointers are known to be dangling. However, we also
// detected that those raw_ptr's were never released (either by calling
// raw_ptr's destructor or by resetting its value), which can ultimately put
// pressure on the BRP quarantine.
//
// This is not meant to be added manually. You can ignore this flag.
constexpr inline auto LeakedDanglingUntriaged = base::RawPtrTraits::kMayDangle;

// Temporary introduced alias in the context of rewriting std::vector<T*> into
// std::vector<raw_ptr<T>> and in order to temporarily bypass the dangling ptr
// checks on the CQ. This alias will be removed gradually after the cl lands and
// will be replaced by DanglingUntriaged where necessary.
constexpr inline auto VectorExperimental = base::RawPtrTraits::kMayDangle;

// Temporary alias introduced in the context of rewriting std::set<T*> into
// std::set<raw_ptr<T>> and in order to temporarily bypass the dangling ptr
// checks on the CQ. This alias will be removed gradually after the rewrite cl
// lands and will be replaced by DanglingUntriaged where necessary.
constexpr inline auto SetExperimental = base::RawPtrTraits::kMayDangle;

// Temporary alias introduced in the context of rewriting more containers and in
// order to temporarily bypass the dangling ptr checks on the CQ. This alias
// will be removed gradually after the rewrite cl lands and will be replaced by
// DanglingUntriaged where necessary.
constexpr inline auto CtnExperimental = base::RawPtrTraits::kMayDangle;

// Public verson used in callbacks arguments when it is known that they might
// receive dangling pointers. In any other cases, please
// use one of:
// - raw_ptr<T, DanglingUntriaged>
// - raw_ptr<T, DisableDanglingPtrDetection>
template <typename T, base::RawPtrTraits Traits = base::RawPtrTraits::kEmpty>
using MayBeDangling = base::raw_ptr<T, Traits | base::RawPtrTraits::kMayDangle>;

namespace std {

// Override so set/map lookups do not create extra raw_ptr. This also allows
// dangling pointers to be used for lookup.
template <typename T, base::RawPtrTraits Traits>
struct less<raw_ptr<T, Traits>> {
  using Impl = typename raw_ptr<T, Traits>::Impl;
  using is_transparent = void;

  bool operator()(const raw_ptr<T, Traits>& lhs,
                  const raw_ptr<T, Traits>& rhs) const {
    Impl::IncrementLessCountForTest();
    return lhs < rhs;
  }

  bool operator()(T* lhs, const raw_ptr<T, Traits>& rhs) const {
    Impl::IncrementLessCountForTest();
    return lhs < rhs;
  }

  bool operator()(const raw_ptr<T, Traits>& lhs, T* rhs) const {
    Impl::IncrementLessCountForTest();
    return lhs < rhs;
  }
};

template <typename T, base::RawPtrTraits Traits>
struct hash<raw_ptr<T, Traits>> {
  typedef raw_ptr<T, Traits> argument_type;
  typedef std::size_t result_type;
  result_type operator()(argument_type const& ptr) const {
    return hash<T*>()(ptr.get());
  }
};

// Define for cases where raw_ptr<T> holds a pointer to an array of type T.
// This is consistent with definition of std::iterator_traits<T*>.
// Algorithms like std::binary_search need that.
template <typename T, base::RawPtrTraits Traits>
struct iterator_traits<raw_ptr<T, Traits>> {
  using difference_type = ptrdiff_t;
  using value_type = std::remove_cv_t<T>;
  using pointer = T*;
  using reference = T&;
  using iterator_category = std::random_access_iterator_tag;
};

// Specialize std::pointer_traits. The latter is required to obtain the
// underlying raw pointer in the std::to_address(pointer) overload.
// Implementing the pointer_traits is the standard blessed way to customize
// `std::to_address(pointer)` in C++20 [3].
//
// [1] https://wg21.link/pointer.traits.optmem
template <typename T, ::base::RawPtrTraits Traits>
struct pointer_traits<::raw_ptr<T, Traits>> {
  using pointer = ::raw_ptr<T, Traits>;
  using element_type = T;
  using difference_type = ptrdiff_t;

  template <typename U>
  using rebind = ::raw_ptr<U, Traits>;

  static constexpr pointer pointer_to(element_type& r) noexcept {
    return pointer(&r);
  }

  static constexpr element_type* to_address(pointer p) noexcept {
    return p.get();
  }
};

}  // namespace std

#endif  // PARTITION_ALLOC_POINTERS_RAW_PTR_H_