1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174

base / base64_unittest.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#include "base/base64.h"

#include <string_view>

#include "base/numerics/checked_math.h"
#include "base/strings/escape.h"
#include "base/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/modp_b64/modp_b64.h"

namespace base {

TEST(Base64Test, Basic) {
  const std::string kText = "hello world";
  const std::string kBase64Text = "aGVsbG8gd29ybGQ=";

  std::string decoded;
  bool ok;

  std::string encoded = Base64Encode(kText);
  EXPECT_EQ(kBase64Text, encoded);

  ok = Base64Decode(encoded, &decoded);
  EXPECT_TRUE(ok);
  EXPECT_EQ(kText, decoded);
}

TEST(Base64Test, ForgivingAndStrictDecode) {
  struct {
    const char* in;

    // nullptr indicates a decode failure.
    const char* expected_out_forgiving;
    const char* expected_out_strict;
  } kTestCases[] = {
      // Failures that should apply in all decoding modes:
      //
      // - Characters not in the base64 alphabet
      {"abc&", nullptr, nullptr},
      {"ab-d", nullptr, nullptr},
      // - input len % 4 == 1
      {"abcde", nullptr, nullptr},
      {"a", nullptr, nullptr},

      // Invalid padding causes failure if kForgiving is set.
      {"abcd=", nullptr, nullptr},
      {"abcd==", nullptr, nullptr},
      {"abcd===", nullptr, nullptr},
      {"abcd====", nullptr, nullptr},
      {"abcd==============", nullptr, nullptr},
      {"abcde===", nullptr, nullptr},
      {"=", nullptr, nullptr},
      {"====", nullptr, nullptr},

      // Otherwise, inputs that are multiples of 4 always succeed, this matches
      // kStrict mode.
      {"abcd", "i\xB7\x1D", "i\xB7\x1D"},
      {"abc=", "i\xB7", "i\xB7"},
      {"abcdefgh", "i\xB7\x1Dy\xF8!", "i\xB7\x1Dy\xF8!"},

      // kForgiving mode allows for omitting padding (to a multiple of 4) if
      // len % 4 != 1.
      {"abcdef", "i\xB7\x1Dy", nullptr},
      {"abc", "i\xB7", nullptr},
      {"ab", "i", nullptr},

      // Whitespace should be allowed if kForgiving is set, matching
      // https://infra.spec.whatwg.org/#ascii-whitespace:
      // ASCII whitespace is U+0009 TAB '\t', U+000A LF '\n', U+000C FF '\f',
      // U+000D CR '\r', or U+0020 SPACE ' '.
      {" a bcd", "i\xB7\x1D", nullptr},
      {"ab\t\tc=", "i\xB7", nullptr},
      {"ab c\ndefgh", "i\xB7\x1Dy\xF8!", nullptr},
      {"a\tb\nc\f d\r", "i\xB7\x1D", nullptr},
      {"this should fail", "\xB6\x18\xAC\xB2\x1A.\x95\xD7\xDA\x8A", nullptr},

      // U+000B VT '\v' is _not_ valid whitespace to be stripped.
      {"ab\vcd", nullptr, nullptr},

      // Empty string should yield an empty result.
      {"", "", ""},
  };
  for (const auto& test_case : kTestCases) {
    SCOPED_TRACE(::testing::Message()
                 << "Forgiving: " << EscapeAllExceptUnreserved(test_case.in));
    std::string output;
    bool success =
        Base64Decode(test_case.in, &output, Base64DecodePolicy::kForgiving);
    bool expected_success = test_case.expected_out_forgiving != nullptr;
    EXPECT_EQ(success, expected_success);
    if (expected_success) {
      EXPECT_EQ(output, test_case.expected_out_forgiving);
    }
  }
  for (const auto& test_case : kTestCases) {
    SCOPED_TRACE(::testing::Message()
                 << "Strict: " << EscapeAllExceptUnreserved(test_case.in));
    std::string output;
    bool success =
        Base64Decode(test_case.in, &output, Base64DecodePolicy::kStrict);
    bool expected_success = test_case.expected_out_strict != nullptr;
    EXPECT_EQ(success, expected_success);
    if (expected_success) {
      EXPECT_EQ(output, test_case.expected_out_strict);
    }
  }
}

TEST(Base64Test, Binary) {
  const uint8_t kData[] = {0x00, 0x01, 0xFE, 0xFF};

  std::string binary_encoded = Base64Encode(kData);

  // Check that encoding the same data through the std::string_view interface
  // gives the same results.
  std::string string_piece_encoded = Base64Encode(
      std::string_view(reinterpret_cast<const char*>(kData), sizeof(kData)));

  EXPECT_EQ(binary_encoded, string_piece_encoded);

  EXPECT_THAT(Base64Decode(binary_encoded),
              testing::Optional(testing::ElementsAreArray(kData)));
  EXPECT_FALSE(Base64Decode("invalid base64!"));

  std::string encoded_with_prefix = "PREFIX";
  Base64EncodeAppend(kData, &encoded_with_prefix);
  EXPECT_EQ(encoded_with_prefix, "PREFIX" + binary_encoded);
}

TEST(Base64Test, InPlace) {
  const std::string kText = "hello world";
  const std::string kBase64Text = "aGVsbG8gd29ybGQ=";

  std::string text = Base64Encode(kText);
  EXPECT_EQ(kBase64Text, text);

  bool ok = Base64Decode(text, &text);
  EXPECT_TRUE(ok);
  EXPECT_EQ(text, kText);
}

TEST(Base64Test, Overflow) {
  // `Base64Encode` makes the input larger, which means inputs whose base64
  // output overflows `size_t`. Actually allocating a span of this size will
  // likely fail, but we test it with a fake span and assume a correct
  // implementation will check for overflow before touching the input.
  //
  // Note that, with or without an overflow check, the function will still
  // crash. This test is only meaningful because `EXPECT_CHECK_DEATH` looks for
  // a `CHECK`-based failure.
  uint8_t b;
  auto large_span = span(&b, MODP_B64_MAX_INPUT_LEN + 1);
  EXPECT_CHECK_DEATH(Base64Encode(large_span));

  std::string output = "PREFIX";
  EXPECT_CHECK_DEATH(Base64EncodeAppend(large_span, &output));

  // `modp_b64_encode_data_len` is a macro, so check `MODP_B64_MAX_INPUT_LEN` is
  // correct be verifying the computation doesn't overflow.
  base::CheckedNumeric<size_t> max_len = MODP_B64_MAX_INPUT_LEN;
  EXPECT_TRUE(modp_b64_encode_data_len(max_len).IsValid());
}

}  // namespace base