1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
base / big_endian_perftest.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/big_endian.h"
#include <stdint.h>
#include "base/check.h"
#include "base/containers/span.h"
#include "base/numerics/byte_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/google_benchmark/src/include/benchmark/benchmark.h"
namespace base {
namespace {
constexpr size_t kSize = 128 * 1024 * 1024;
int64_t aligned_bytes[kSize / sizeof(int64_t)];
struct {
int64_t aligment;
char padding_to_cause_misalignment;
char bytes[kSize];
} misaligned_bytes;
void DoNotOptimizeSpan(span<const uint8_t> range) {
// ::benchmark::DoNotOptimize() generates quite large code, so instead of
// calling it for every byte in the range, calculate `sum` which depends on
// every byte in the range and then call DoNotOptimise() on that.
int sum = 0;
for (char c : range) {
sum += c;
}
::benchmark::DoNotOptimize(sum);
}
template <typename T>
inline void WriteBigEndianCommon(::benchmark::State& state,
span<uint8_t, kSize> buffer) {
size_t offset = 0u;
auto value = T{0};
for (auto _ : state) {
if constexpr (sizeof(T) == 1) {
buffer.subspan(offset).copy_prefix_from(U8ToBigEndian(value));
} else if constexpr (sizeof(T) == 2) {
buffer.subspan(offset).copy_prefix_from(U16ToBigEndian(value));
} else if constexpr (sizeof(T) == 4) {
buffer.subspan(offset).copy_prefix_from(U32ToBigEndian(value));
} else {
static_assert(sizeof(T) == 8);
buffer.subspan(offset).copy_prefix_from(U64ToBigEndian(value));
}
offset += sizeof(T);
static_assert(kSize % sizeof(T) == 0u);
if (offset == kSize) {
offset = 0;
}
++value;
}
DoNotOptimizeSpan(buffer);
}
template <typename T>
void BM_WriteBigEndianAligned(::benchmark::State& state) {
span<uint8_t, kSize> buffer = as_writable_byte_span(aligned_bytes);
CHECK(reinterpret_cast<uintptr_t>(buffer.data()) % alignof(T) == 0u);
WriteBigEndianCommon<T>(state, buffer);
}
template <typename T>
void BM_WriteBigEndianMisaligned(::benchmark::State& state) {
span<uint8_t, kSize> buffer = as_writable_byte_span(misaligned_bytes.bytes);
CHECK(reinterpret_cast<uintptr_t>(buffer.data()) % alignof(T) != 0u);
WriteBigEndianCommon<T>(state, buffer);
}
template <typename T>
inline void ReadBigEndianCommon(::benchmark::State& state,
span<const uint8_t, kSize> buffer) {
size_t offset = 0;
for (auto _ : state) {
T value;
if constexpr (sizeof(T) == 1) {
value = U8FromBigEndian(buffer.subspan(offset).first<sizeof(T)>());
} else if constexpr (sizeof(T) == 2) {
value = U16FromBigEndian(buffer.subspan(offset).first<sizeof(T)>());
} else if constexpr (sizeof(T) == 4) {
value = U32FromBigEndian(buffer.subspan(offset).first<sizeof(T)>());
} else {
static_assert(sizeof(T) == 8);
value = U64FromBigEndian(buffer.subspan(offset).first<sizeof(T)>());
}
::benchmark::DoNotOptimize(value);
offset += sizeof(T);
static_assert(kSize % sizeof(T) == 0);
if (offset == kSize) {
offset = 0;
}
}
}
template <typename T>
void BM_ReadBigEndianAligned(::benchmark::State& state) {
span<const uint8_t, kSize> buffer = as_byte_span(aligned_bytes);
CHECK(reinterpret_cast<uintptr_t>(buffer.data()) % alignof(T) == 0);
ReadBigEndianCommon<T>(state, buffer);
}
template <typename T>
void BM_ReadBigEndianMisaligned(::benchmark::State& state) {
span<const uint8_t, kSize> buffer = as_byte_span(misaligned_bytes.bytes);
CHECK(reinterpret_cast<uintptr_t>(buffer.data()) % alignof(T) != 0);
ReadBigEndianCommon<T>(state, buffer);
}
#define BENCHMARK_FOR_INT_TYPES(function) \
BENCHMARK(function<int16_t>)->MinWarmUpTime(1.0); \
BENCHMARK(function<uint16_t>)->MinWarmUpTime(1.0); \
BENCHMARK(function<int32_t>)->MinWarmUpTime(1.0); \
BENCHMARK(function<uint32_t>)->MinWarmUpTime(1.0); \
BENCHMARK(function<int64_t>)->MinWarmUpTime(1.0); \
BENCHMARK(function<uint64_t>)->MinWarmUpTime(1.0);
// Register the benchmarks as a GTest test. This allows using legacy
// --gtest_filter and --gtest_list_tests.
// TODO(https://crbug.com/40251982): Clean this up after transitioning to
// --benchmark_filter and --benchmark_list_tests.
TEST(BigEndianPerfTest, All) {
BENCHMARK_FOR_INT_TYPES(BM_WriteBigEndianAligned);
BENCHMARK_FOR_INT_TYPES(BM_WriteBigEndianMisaligned);
BENCHMARK_FOR_INT_TYPES(BM_ReadBigEndianAligned);
BENCHMARK_FOR_INT_TYPES(BM_ReadBigEndianMisaligned);
}
#undef BENCHMARK_FOR_INT_TYPES
} // namespace
} // namespace base