1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
base / compiler_specific.h [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_COMPILER_SPECIFIC_H_
#define BASE_COMPILER_SPECIFIC_H_
#include "build/build_config.h"
#if defined(COMPILER_MSVC) && !defined(__clang__)
#error "Only clang-cl is supported on Windows, see https://crbug.com/988071"
#endif
// A wrapper around `__has_attribute()`, which is similar to the C++20-standard
// `__has_cpp_attribute()`, but tests for support for `__attribute__(())`s.
// Compilers that do not support this (e.g. MSVC) are also assumed not to
// support `__attribute__`, so this is simply mapped to `0` there.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-attribute
#if defined(__has_attribute)
#define HAS_ATTRIBUTE(x) __has_attribute(x)
#else
#define HAS_ATTRIBUTE(x) 0
#endif
// A wrapper around `__has_builtin`, similar to `HAS_ATTRIBUTE()`.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-builtin
#if defined(__has_builtin)
#define HAS_BUILTIN(x) __has_builtin(x)
#else
#define HAS_BUILTIN(x) 0
#endif
// A wrapper around `__has_feature`, similar to `HAS_ATTRIBUTE()`.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension
#if defined(__has_feature)
#define HAS_FEATURE(FEATURE) __has_feature(FEATURE)
#else
#define HAS_FEATURE(FEATURE) 0
#endif
// Annotates a function indicating it should not be inlined.
//
// You may also want `NOOPT` if your goal is to preserve a function call even
// for the most trivial cases; see
// https://stackoverflow.com/questions/54481855/clang-ignoring-attribute-noinline/54482070#54482070.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#noinline
//
// Usage:
// ```
// NOINLINE void Func() {
// // This body will not be inlined into callers.
// }
// ```
#if __has_cpp_attribute(gnu::noinline)
#define NOINLINE [[gnu::noinline]]
#elif __has_cpp_attribute(msvc::noinline)
#define NOINLINE [[msvc::noinline]]
#else
#define NOINLINE
#endif
// Annotates a function indicating it should not be optimized.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#optnone
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-optimize-function-attribute
//
// Usage:
// ```
// NOOPT void Func() {
// // This body will not be optimized.
// }
// ```
#if __has_cpp_attribute(clang::optnone)
#define NOOPT [[clang::optnone]]
#elif __has_cpp_attribute(gnu::optimize)
#define NOOPT [[gnu::optimize(0)]]
#else
#define NOOPT
#endif
// Annotates a function indicating it should always be inlined.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline
//
// Usage:
// ```
// ALWAYS_INLINE void Func() {
// // This body will be inlined into callers whenever possible.
// }
// ```
//
// Since `ALWAYS_INLINE` is performance-oriented but can hamper debugging,
// ignore it in debug mode.
#if defined(NDEBUG)
#if __has_cpp_attribute(gnu::always_inline)
#define ALWAYS_INLINE [[gnu::always_inline]] inline
#elif defined(COMPILER_MSVC)
#define ALWAYS_INLINE __forceinline
#endif
#endif
#if !defined(ALWAYS_INLINE)
#define ALWAYS_INLINE inline
#endif
// Annotates a function indicating it should never be tail called. Useful to
// make sure callers of the annotated function are never omitted from call
// stacks. Often useful with `NOINLINE` to make sure the function itself is also
// not omitted from call stacks. Note: this does not prevent code folding of
// multiple identical callers into a single signature; to do that, see
// `NO_CODE_FOLDING()` in base/debug/alias.h.
//
// For a caller-side version of this, see `DISABLE_TAIL_CALLS`.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#not-tail-called
//
// Usage:
// ```
// // Calls to this function will not be tail calls.
// NOT_TAIL_CALLED void Func();
// ```
#if __has_cpp_attribute(clang::not_tail_called)
#define NOT_TAIL_CALLED [[clang::not_tail_called]]
#else
#define NOT_TAIL_CALLED
#endif
// Annotates a return statement indicating the compiler must convert it to a
// tail call. Can be used only on return statements, even for functions
// returning void. Caller and callee must have the same number of arguments and
// the argument types must be "similar". While the compiler may automatically
// convert compatible calls to tail calls when optimizing, this annotation
// requires it to occur if doing so is valid, and will not compile otherwise.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#musttail
//
// Usage:
// ```
// int Func1(double);
// int Func2(double d) {
// MUSTTAIL return Func1(d + 1); // `Func1()` will be tail-called.
// }
// ```
#if __has_cpp_attribute(clang::musttail)
#define MUSTTAIL [[clang::musttail]]
#else
#define MUSTTAIL
#endif
// Annotates a data member indicating it need not have an address distinct from
// all other non-static data members of the class, and its tail padding may be
// used for other objects' storage. This can have subtle and dangerous effects,
// including on containing objects; use with caution.
//
// See also:
// https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
// https://wg21.link/dcl.attr.nouniqueaddr
// Usage:
// ```
// // In the following struct, `t` might not have a unique address from `i`,
// // and `t`'s tail padding (if any) may be reused by subsequent objects.
// struct S {
// int i;
// NO_UNIQUE_ADDRESS T t;
// };
// ```
//
// Unfortunately MSVC ignores [[no_unique_address]] (see
// https://devblogs.microsoft.com/cppblog/msvc-cpp20-and-the-std-cpp20-switch/#msvc-extensions-and-abi),
// and clang-cl matches it for ABI compatibility reasons. We need to prefer
// [[msvc::no_unique_address]] when available if we actually want any effect.
#if __has_cpp_attribute(msvc::no_unique_address)
#define NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
#elif __has_cpp_attribute(no_unique_address)
#define NO_UNIQUE_ADDRESS [[no_unique_address]]
#else
#define NO_UNIQUE_ADDRESS
#endif
// Annotates a function indicating it takes a `printf()`-style format string.
// The compiler will check that the provided arguments match the type specifiers
// in the format string. Useful to detect mismatched format strings/args.
//
// `format_param` is the one-based index of the format string parameter;
// `dots_param` is the one-based index of the "..." parameter.
// For `v*printf()` functions (which take a `va_list`), `dots_param` should be
// 0. For member functions, the implicit `this` parameter is at index 1.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#format
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-format-function-attribute
//
// Usage:
// ```
// PRINTF_FORMAT(1, 2)
// void Print(const char* format, ...);
// void Func() {
// // The following call will not compile; diagnosed as format and argument
// // types mismatching.
// Print("%s", 1);
// }
// ```
#if __has_cpp_attribute(gnu::format)
#define PRINTF_FORMAT(format_param, dots_param) \
[[gnu::format(printf, format_param, dots_param)]]
#else
#define PRINTF_FORMAT(format_param, dots_param)
#endif
// Annotates a function disabling the named sanitizer within its body.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#no-sanitize
// https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
//
// Usage:
// ```
// NO_SANITIZE("cfi-icall") void Func() {
// // CFI indirect call checks will not be performed in this body.
// }
// ```
#if __has_cpp_attribute(clang::no_sanitize)
#define NO_SANITIZE(sanitizer) [[clang::no_sanitize(sanitizer)]]
#else
#define NO_SANITIZE(sanitizer)
#endif
// Annotates a pointer and size directing MSAN to treat that memory region as
// fully initialized. Useful for e.g. code that deliberately reads uninitialized
// data, such as a GC scavenging root set pointers from the stack.
//
// See also:
// https://github.com/google/sanitizers/wiki/MemorySanitizer
//
// Usage:
// ```
// T* ptr = ...;
// // After the next statement, MSAN will assume `ptr` points to an
// // initialized `T`.
// MSAN_UNPOISON(ptr, sizeof(T));
// ```
#if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL)
#include <sanitizer/msan_interface.h>
#define MSAN_UNPOISON(p, size) __msan_unpoison(p, size)
#else
#define MSAN_UNPOISON(p, size)
#endif
// Annotates a pointer and size directing MSAN to check whether that memory
// region is initialized, as if it was being read from. If any bits are
// uninitialized, crashes with an MSAN report. Useful for e.g. sanitizing data
// MSAN won't be able to track, such as data that is about to be passed to
// another process via shared memory.
//
// See also:
// https://www.chromium.org/developers/testing/memorysanitizer/#debugging-msan-reports
//
// Usage:
// ```
// T* ptr = ...;
// // The following line will crash at runtime in MSAN builds if `ptr` does
// // not point to an initialized `T`.
// MSAN_CHECK_MEM_IS_INITIALIZED(ptr, sizeof(T));
// ```
#if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL)
#define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) \
__msan_check_mem_is_initialized(p, size)
#else
#define MSAN_CHECK_MEM_IS_INITIALIZED(p, size)
#endif
// Annotates a function disabling Control Flow Integrity checks due to perf
// impact.
//
// See also:
// https://clang.llvm.org/docs/ControlFlowIntegrity.html#performance
// https://www.chromium.org/developers/testing/control-flow-integrity/#overhead-only-tested-on-x64
//
// Usage:
// ```
// DISABLE_CFI_PERF void Func() {
// // CFI checks will not be performed in this body, due to perf reasons.
// }
// ```
#if !defined(DISABLE_CFI_PERF)
#if defined(__clang__) && defined(OFFICIAL_BUILD)
#define DISABLE_CFI_PERF NO_SANITIZE("cfi")
#else
#define DISABLE_CFI_PERF
#endif
#endif
// Annotates a function disabling Control Flow Integrity indirect call checks.
// NOTE: Prefer `DISABLE_CFI_DLSYM()` if you just need to allow calling of dlsym
// functions.
//
// See also:
// https://clang.llvm.org/docs/ControlFlowIntegrity.html#available-schemes
// https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures
//
// Usage:
// ```
// DISABLE_CFI_ICALL void Func() {
// // CFI indirect call checks will not be performed in this body.
// }
// ```
#if !defined(DISABLE_CFI_ICALL)
#if BUILDFLAG(IS_WIN)
#define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") __declspec(guard(nocf))
#else
#define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall")
#endif
#endif
// Annotates a function disabling Control Flow Integrity indirect call checks if
// doing so is necessary to call dlsym functions. The checks are retained on
// platforms where loaded modules participate in CFI (viz. Windows).
//
// See also:
// https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures
//
// Usage:
// ```
// DISABLE_CFI_DLSYM void Func() {
// // On non-Windows platforms, CFI indirect call checks will not be
// // performed in this body.
// }
// ```
#if !defined(DISABLE_CFI_DLSYM)
#if BUILDFLAG(IS_WIN)
#define DISABLE_CFI_DLSYM
#else
#define DISABLE_CFI_DLSYM DISABLE_CFI_ICALL
#endif
#endif
// Evaluates to a string constant containing the function signature.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#source-location-builtins
// https://en.cppreference.com/w/c/language/function_definition#func
//
// Usage:
// ```
// void Func(int arg) {
// std::cout << PRETTY_FUNCTION; // Prints `void Func(int)` or similar.
// }
// ```
#if defined(COMPILER_GCC)
#define PRETTY_FUNCTION __PRETTY_FUNCTION__
#elif defined(COMPILER_MSVC)
#define PRETTY_FUNCTION __FUNCSIG__
#else
#define PRETTY_FUNCTION __func__
#endif
// Annotates a variable indicating that its storage should not be filled with a
// fixed pattern when uninitialized.
//
// The `init_stack_vars` gn arg (enabled on most build configs) causes the
// compiler to generate code that writes a fixed pattern into uninitialized
// parts of all local variables, to mitigate security risks. In most cases, e.g.
// when such memory is either never accessed or will be initialized later before
// reading, the compiler is able to remove the additional stores, and any
// remaining stores are unlikely to affect program performance.
//
// If hot code suffers unavoidable perf penalties, this can disable the
// pattern-filling there. This should only be done when necessary, since reads
// from uninitialized variables are not only UB, they can in practice allow
// attackers to control logic by pre-filling the variable's memory with a
// desirable value.
//
// NOTE: This behavior also increases the likelihood the compiler will generate
// `memcpy()`/`memset()` calls to init variables. If this causes link errors for
// targets that don't link against the CRT, this macro can help; you may instead
// want 'configs -= [ "//build/config/compiler:default_init_stack_vars" ]' in
// the relevant .gn file to disable this on the whole target.
//
// See also:
// https://source.chromium.org/chromium/chromium/src/+/main:build/config/compiler/BUILD.gn;l=3088;drc=24ccaf63ff5b1883be1ebe5f979d917ce28b0131
// https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-ftrivial-auto-var-init
// https://clang.llvm.org/docs/AttributeReference.html#uninitialized
//
// Usage:
// ```
// // The following line declares `i` without ensuring it initially contains
// // any particular pattern.
// STACK_UNINITIALIZED int i;
// ```
#if __has_cpp_attribute(clang::uninitialized)
#define STACK_UNINITIALIZED [[clang::uninitialized]]
#elif __has_cpp_attribute(gnu::uninitialized)
#define STACK_UNINITIALIZED [[gnu::uninitialized]]
#else
#define STACK_UNINITIALIZED
#endif
// Annotates a function disabling stack canary checks.
//
// The `-fstack-protector` compiler flag (passed on most non-Windows builds)
// causes the compiler to extend some function prologues and epilogues to set
// and check a canary value, to detect stack buffer overflows and crash in
// response. If hot code suffers unavoidable perf penalties, or intentionally
// modifies the canary value, this can disable the behavior there.
//
// See also:
// https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector
// https://clang.llvm.org/docs/AttributeReference.html#no-stack-protector-safebuffers
//
// Usage:
// ```
// NO_STACK_PROTECTOR void Func() {
// // Stack canary checks will not be performed in this body.
// }
// ```
#if __has_cpp_attribute(gnu::no_stack_protector)
#define NO_STACK_PROTECTOR [[gnu::no_stack_protector]]
#elif __has_cpp_attribute(gnu::optimize)
#define NO_STACK_PROTECTOR [[gnu::optimize("-fno-stack-protector")]]
#else
#define NO_STACK_PROTECTOR
#endif
// Annotates a codepath suppressing static analysis along that path. Useful when
// code is safe in practice for reasons the analyzer can't detect, e.g. because
// the condition leading to that path guarantees a param is non-null.
//
// Usage:
// ```
// if (cond) {
// ANALYZER_SKIP_THIS_PATH();
// // Static analysis will be disabled for the remainder of this block.
// delete ptr;
// }
// ```
#if defined(__clang_analyzer__)
inline constexpr bool AnalyzerNoReturn()
#if HAS_ATTRIBUTE(analyzer_noreturn)
__attribute__((analyzer_noreturn))
#endif
{
return false;
}
#define ANALYZER_SKIP_THIS_PATH() static_cast<void>(::AnalyzerNoReturn())
#else
// The above definition would be safe even outside the analyzer, but defining
// the macro away entirely avoids the need for the optimizer to eliminate it.
#define ANALYZER_SKIP_THIS_PATH()
#endif
// Annotates a condition directing static analysis to assume it is always true.
// Evaluates to the provided `arg` as a `bool`.
//
// Usage:
// ```
// // Static analysis will assume the following condition always holds.
// if (ANALYZER_ASSUME_TRUE(cond)) ...
// ```
#if defined(__clang_analyzer__)
inline constexpr bool AnalyzerAssumeTrue(bool arg) {
return arg || AnalyzerNoReturn();
}
#define ANALYZER_ASSUME_TRUE(arg) ::AnalyzerAssumeTrue(!!(arg))
#else
// Again, the above definition is safe, this is just simpler for the optimizer.
#define ANALYZER_ASSUME_TRUE(arg) (arg)
#endif
// Annotates a function, function pointer, or statement to disallow
// optimizations that merge calls. Useful to ensure the source locations of such
// calls are not obscured.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#nomerge
//
// Usage:
// ```
// NOMERGE void Func(); // No direct calls to `Func()` will be merged.
//
// using Ptr = decltype(&Func);
// NOMERGE Ptr ptr = &Func; // No calls through `ptr` will be merged.
//
// NOMERGE if (cond) {
// // No calls in this block will be merged.
// }
// ```
#if __has_cpp_attribute(clang::nomerge)
#define NOMERGE [[clang::nomerge]]
#else
#define NOMERGE
#endif
// Annotates a type as being suitable for passing in registers despite having a
// non-trivial copy or move constructor or destructor. This requires the type
// not be concerned about its address remaining constant, be safely usable after
// copying its memory, and have a destructor that may be safely omitted on
// moved-from instances; an example is `std::unique_ptr`. Unnecessary if the
// copy/move constructor(s) and destructor are unconditionally trivial; likely
// ineffective if the type is too large to be passed in one or two registers
// with the target ABI. However, annotating a type this way will also cause
// `IS_TRIVIALLY_RELOCATABLE()` to return true for that type, and so may be
// desirable even for large types, if they are placed in containers that
// optimize based on that check.
//
// NOTE: Use with caution; this has subtle effects on constructor/destructor
// ordering. When used with types passed or returned by value, values may be
// constructed in the source stack frame, passed in a register, and then used
// and destroyed in the target stack frame.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#trivial-abi
// https://libcxx.llvm.org/docs/DesignDocs/UniquePtrTrivialAbi.html
//
// Usage:
// ```
// // Instances of type `S` will be eligible to be passed in registers despite
// // `S`'s nontrivial destructor.
// struct TRIVIAL_ABI S { ~S(); }
// ```
#if __has_cpp_attribute(clang::trivial_abi)
#define TRIVIAL_ABI [[clang::trivial_abi]]
#else
#define TRIVIAL_ABI
#endif
// Determines whether a type is trivially relocatable, i.e. a move-and-destroy
// sequence can safely be replaced with `memcpy()`. This is true of types with
// trivial copy or move construction plus trivial destruction, as well as types
// marked `TRIVIAL_ABI`. Useful to optimize container implementations.
//
// See also:
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r8.html
// https://clang.llvm.org/docs/LanguageExtensions.html#:~:text=__is_trivially_relocatable
//
// Usage:
// ```
// if constexpr (IS_TRIVIALLY_RELOCATABLE(T)) {
// // This block will only be executed if type `T` is trivially relocatable.
// }
// ```
#if HAS_BUILTIN(__is_trivially_relocatable)
#define IS_TRIVIALLY_RELOCATABLE(t) __is_trivially_relocatable(t)
#else
#define IS_TRIVIALLY_RELOCATABLE(t) false
#endif
// Annotates a member function as safe to call on a moved-from object, which it
// will reinitialize.
//
// See also:
// https://clang.llvm.org/extra/clang-tidy/checks/bugprone/use-after-move.html#reinitialization
//
// Usage:
// ```
// struct S {
// REINITIALIZES_AFTER_MOVE void Reset();
// };
// void Func1(const S&);
// void Func2() {
// S s1;
// S s2 = std::move(s1);
// s1.Reset();
// // clang-tidy's `bugprone-use-after-move` check will not flag the
// // following call as a use-after-move, due to the intervening `Reset()`.
// Func1(s1);
// }
// ```
#if __has_cpp_attribute(clang::reinitializes)
#define REINITIALIZES_AFTER_MOVE [[clang::reinitializes]]
#else
#define REINITIALIZES_AFTER_MOVE
#endif
// Annotates a type as owning an object or memory region whose address may be
// vended to or stored by other objects. For example, `std::unique_ptr<T>` owns
// a `T` and vends its address via `.get()`, and `std::string` owns a block of
// `char` and vends its address via `.data()`. Used to detect lifetime errors in
// conjunction with `GSL_POINTER`; see documentation there.
//
// See also:
// https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-ownership
// https://clang.llvm.org/docs/AttributeReference.html#owner
// https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl
//
// Usage:
// ```
// // Marking `S` as `GSL_OWNER` enables `-Wdangling-gsl` to detect misuse by
// // types annotated as `GSL_POINTER`.
// struct GSL_OWNER S;
// ```
#if __has_cpp_attribute(gsl::Owner)
#define GSL_OWNER [[gsl::Owner]]
#else
#define GSL_OWNER
#endif
// Annotates a type as holding a pointer into an owner object (an appropriate
// STL or `GSL_OWNER`-annotated type). If an instance of the pointer type is
// constructed from an instance of the owner type, and the owner instance is
// destroyed, the pointer instance is considered to be dangling. Useful to
// diagnose some cases of lifetime errors.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#pointer
//
// Usage:
// ```
// struct GSL_OWNER T {};
// struct GSL_POINTER S {
// S(const T&);
// };
// S Func() {
// // The following return will not compile; diagnosed as returning address
// // of local temporary.
// return S(T());
// }
// ```
#if __has_cpp_attribute(gsl::Pointer)
#define GSL_POINTER [[gsl::Pointer]]
#else
#define GSL_POINTER
#endif
// Annotates a type or variable to add a "logically_const" ABI tag to any
// corresponding mangled symbol name(s). Useful to suppress warnings from the
// "Mutable Constants" trybot check [1] when logically const instances are named
// like `kConstants` but for some reason should not be marked `const`.
//
// [1]:
// https://chromium.googlesource.com/chromium/src/+/main/docs/speed/binary_size/android_binary_size_trybot.md#Mutable-Constants
//
// Usage:
// ```
// struct S {};
// S kConstS; // Fails on some trybots.
// LOGICALLY_CONST S kAlsoConstS; // OK
//
// struct LOGICALLY_CONST T {};
// T kConstT; // OK
// ```
#if __has_cpp_attribute(gnu::abi_tag)
#define LOGICALLY_CONST [[gnu::abi_tag("logically_const")]]
#else
#define LOGICALLY_CONST
#endif
// Annotates a function indicating it is cold, but called from hot functions.
// Useful when a performance-sensitive function is usually simple, but in edge
// cases must fall back to a more complex handler.
//
// On X86-64 and AArch64, this changes the calling convention so most registers
// are callee-saved, reducing register spills in the caller. This can improve
// caller performance in the common case, at the cost of pessimizing the callee.
// On other platforms, this attribute has no effect as of Clang 20.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#preserve-most
//
// Usage:
// ```
// // Calls to this function will not require most registers to be saved.
// PRESERVE_MOST void Func();
// ```
//
// Disable `PRESERVE_MOST` in component builds, since `_dl_runtime_resolve()`
// clobbers registers on platforms where it's used, and the component build is
// not perf-critical anyway; see
// https://github.com/llvm/llvm-project/issues/105588.
//
// Also disable for Win ARM64 due to as-yet-uninvestigated crashes.
// TODO(crbug.com/42204008): Investigate, fix, and re-enable.
#if __has_cpp_attribute(clang::preserve_most) && \
(defined(ARCH_CPU_ARM64) || defined(ARCH_CPU_X86_64)) && \
!defined(COMPONENT_BUILD) && \
!(BUILDFLAG(IS_WIN) && defined(ARCH_CPU_ARM64))
#define PRESERVE_MOST [[clang::preserve_most]]
#else
#define PRESERVE_MOST
#endif
// Annotates a pointer or reference parameter or return value for a member
// function as having lifetime intertwined with the instance on which the
// function is called. For parameters, the function is assumed to store the
// value into the called-on object, so if the referred-to object is later
// destroyed, the called-on object is also considered to be dangling. For return
// values, the value is assumed to point into the called-on object, so if that
// object is destroyed, the returned value is also considered to be dangling.
// Useful to diagnose some cases of lifetime errors.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#lifetimebound
//
// Usage:
// ```
// struct S {
// S(int* p LIFETIME_BOUND);
// int* Get() LIFETIME_BOUND;
// };
// S Func1() {
// int i = 0;
// // The following return will not compile; diagnosed as returning address
// // of a stack object.
// return S(&i);
// }
// int* Func2(int* p) {
// // The following return will not compile; diagnosed as returning address
// // of a local temporary.
// return S(p).Get();
// }
// ```
#if __has_cpp_attribute(clang::lifetimebound)
#define LIFETIME_BOUND [[clang::lifetimebound]]
#else
#define LIFETIME_BOUND
#endif
// Annotates a function or variable to indicate that it should have weak
// linkage. Useful for library code that wants code linking against it to be
// able to override its functionality; inside a single target, this is better
// accomplished via virtual methods and other more standard mechanisms.
//
// Any weak definition of a symbol will be overridden at link time by a non-weak
// definition. Marking a `const` or `constexpr` variable weak makes it no longer
// be considered a compile-time constant, since its value may be different after
// linking.
//
// Multiple weak definitions of a symbol may exist, in which case the linker is
// free to select any when there are no non-weak definitions. Like with symbols
// marked `inline`, this can lead to subtle, difficult-to-diagnose bugs if not
// all definitions are identical.
//
// A weak declaration that has no definitions at link time will be linked as if
// the corresponding address is null. Therefore library code can use weak
// declarations and conditionals to allow consumers to provide optional
// customizations.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#weak
//
// Usage:
// ```
// // The following definition defaults `x` to 10, but allows other object
// // files to override its value. Thus, despite `constexpr`, `x` is not
// // considered a compile-time constant (and cannot be used in a `constexpr`
// // context).
// extern const int x;
// WEAK_SYMBOL constexpr int x = 10;
//
// // The following declaration allows linking to occur whether a definition
// // of `Func()` is provided or not; if none is present, `&Func` will
// // evaluate to `nullptr` at runtime.
// WEAK_SYMBOL void Func();
//
// // The following definition provides a default implementation of `Func2()`,
// // but allows other object files to override.
// WEAK_SYMBOL void Func2() { ... }
// ```
#if __has_cpp_attribute(gnu::weak)
#define WEAK_SYMBOL [[gnu::weak]]
#else
#define WEAK_SYMBOL
#endif
// Annotates a function indicating that the compiler should not convert calls
// within it to tail calls.
//
// For a callee-side version of this, see `NOT_TAIL_CALLED`.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#disable-tail-calls
// Usage:
// ```
// DISABLE_TAIL_CALLS void Func() {
// // Function calls in this body will not be tail calls.
// }
// ```
#if __has_cpp_attribute(clang::disable_tail_calls)
#define DISABLE_TAIL_CALLS [[clang::disable_tail_calls]]
#else
#define DISABLE_TAIL_CALLS
#endif
// Annotates a type or member indicating the minimum possible alignment (one bit
// for bitfields, one byte otherwise) should be used. This can be used to
// eliminate padding inside objects, at the cost of potentially pessimizing
// code, or even generating invalid code (depending on platform restrictions) if
// underaligned objects have their addresses taken and passed elsewhere.
//
// This is similar to the more-broadly-supported `#pragma pack(1)`.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-packed-variable-attribute
//
// Usage:
// ```
// struct PACKED_OBJ S1 {
// int8_t a; // Alignment 1, offset 0, size 1
// int32_t b; // Alignment 1, offset 1 (0 bytes padding), size 4
// }; // Overall alignment 1, 0 bytes trailing padding, overall size 5
//
// struct S2 {
// int8_t a; // Alignment 1, offset 0, size 1
// int32_t b; // Alignment 4, offset 4 (3 bytes padding), size 4
// int8_t c; // Alignment 1, offset 8 (0 bytes padding), size 1
// PACKED_OBJ int32_t d; // Alignment 1, offset 9 (0 bytes padding), size 4
// }; // Overall alignment 4, 3 bytes trailing padding, overall size 16
// ```
#if __has_cpp_attribute(gnu::packed)
#define PACKED_OBJ [[gnu::packed]]
#else
#define PACKED_OBJ
#endif
// Annotates a function indicating that the returned pointer will never be null.
// This may allow the compiler to assume null checks on the caller side are
// unnecessary.
//
// In practice, this is usually better-handled by returning a value or
// reference, which enforce such guarantees at the type level.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-returns_005fnonnull-function-attribute
// https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes
//
// Usage:
// ```
// // The following function will never return `nullptr`.
// RETURNS_NONNULL int* Func();
// ```
#if __has_cpp_attribute(gnu::returns_nonnull)
#define RETURNS_NONNULL [[gnu::returns_nonnull]]
#else
#define RETURNS_NONNULL
#endif
// Annotates a function indicating it is const, meaning that it has no
// observable side effects and its return value depends only on its arguments.
// Const functions may not read external memory other than unchanging objects
// (e.g. non-volatile constants), and the compiler is free to replace calls to
// them with the return values of earlier calls with the same arguments no
// matter what other state might have changed in the meantime.
//
// This is a much stronger restriction than `const`-qualified functions, and is
// rarely appropriate outside small local helpers, which are frequently
// inlineable anyway and would not really benefit.
//
// WARNING: Misusing this attribute can lead to silent miscompilation, UB, and
// difficult-to-diagnose bugs. For this and the above reason, usage should be
// very rare.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-const-function-attribute
//
// Usage:
// ```
// // The compiler may replace calls to this function with values returned
// // from earlier calls, assuming the args match.
// CONST_FUNCTION int Func(int);
// ```
#if __has_cpp_attribute(gnu::const)
#define CONST_FUNCTION [[gnu::const]]
#else
#define CONST_FUNCTION
#endif
// Annotates a function indicating it is pure, meaning that it has no observable
// side effects. Unlike functions annotated `CONST_FUNCTION`, pure functions may
// still read external memory, and thus their return values may change between
// calls. `strlen()` and `memcmp()` are examples of pure functions. Useful to
// allow folding/reordering calls for optimization purposes.
//
// WARNING: Misusing this attribute can lead to silent miscompilation, UB, and
// difficult-to-diagnose bugs. Because apparently-safe invocations can sometimes
// have side effects (especially when invoking "overridable" functionality like
// virtual or templated methods), such misuse is far more likely than it seems.
// Therefore, this macro should generally be used only in key vocabulary types,
// where the perf and ergonomic benefits of callers not needing to worry about
// caching results in local variables in hot code outweighs the risks.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-pure-function-attribute
//
// Usage:
// ```
// // Calls to this function may be subject to more aggressive common
// // subexpression (CSE) optimization.
// PURE_FUNCTION int Func(int);
// ```
#if __has_cpp_attribute(gnu::pure)
#define PURE_FUNCTION [[gnu::pure]]
#else
#define PURE_FUNCTION
#endif
// Annotates a function or class data member indicating it can lead to
// out-of-bounds accesses (OOB) if given incorrect inputs.
//
// For functions, this commonly includes functions which take pointers, sizes,
// iterators, sentinels, etc. and cannot fully check their preconditions (e.g.
// that the provided pointer actually points to an allocation of at least the
// provided size). Useful to diagnose potential misuse via
// `-Wunsafe-buffer-usage`, as well as to mark functions potentially in need of
// safer alternatives.
//
// For fields, this would be used to annotate both pointer and size fields that
// have not yet been converted to a span.
//
// All functions or fields annotated with this macro should come with a `#
// Safety` comment that explains what the caller must guarantee to prevent OOB.
// Ideally, unsafe functions should also be paired with a safer version, e.g.
// one that replaces pointer parameters with `span`s; otherwise, document safer
// replacement coding patterns callers can migrate to.
//
// Annotating a function `UNSAFE_BUFFER_USAGE` means all call sites (that do not
// disable the warning) must wrap calls in `UNSAFE_BUFFERS()`; see documentation
// there. Annotating a field `UNSAFE_BUFFER_USAGE` means that `UNSAFE_BUFFERS()`
// must wrap expressions that mutate of the field.
//
// See also:
// https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md
// https://clang.llvm.org/docs/SafeBuffers.html
// https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage
//
// Usage:
// ```
// // Calls to this function must be wrapped in `UNSAFE_BUFFERS()`.
// UNSAFE_BUFFER_USAGE void Func(T* input, T* end);
//
// struct S {
// // Changing this pointer requires `UNSAFE_BUFFERS()`.
// UNSAFE_BUFFER_USAGE int* p;
// };
// ```
#if __has_cpp_attribute(clang::unsafe_buffer_usage)
#define UNSAFE_BUFFER_USAGE [[clang::unsafe_buffer_usage]]
#else
#define UNSAFE_BUFFER_USAGE
#endif
// Annotates code indicating that it should be permanently exempted from
// `-Wunsafe-buffer-usage`. For temporary cases such as migrating callers to
// safer patterns, use `UNSAFE_TODO()` instead; see documentation there.
//
// All calls to functions annotated with `UNSAFE_BUFFER_USAGE` must be marked
// with one of these two macros; they can also be used around pointer
// arithmetic, pointer subscripting, and the like.
//
// ** USE OF THIS MACRO SHOULD BE VERY RARE.** Using this macro indicates that
// the compiler cannot verify that the code avoids OOB, and manual review is
// required. Even with manual review, it's easy for assumptions to change and
// security bugs to creep in over time. Prefer safer patterns instead.
//
// Usage should wrap the minimum necessary code, and *must* include a
// `// SAFETY: ...` comment that explains how the code guarantees safety or
// meets the requirements of called `UNSAFE_BUFFER_USAGE` functions. Guarantees
// must be manually verifiable by the Chrome security team using only local
// invariants; contact security@chromium.org to schedule such a review. Valid
// invariants include:
// - Runtime conditions or `CHECK()`s nearby
// - Invariants guaranteed by types in the surrounding code
// - Invariants guaranteed by function calls in the surrounding code
// - Caller requirements, if the containing function is itself annotated with
// `UNSAFE_BUFFER_USAGE`; this is less safe and should be a last resort
//
// See also:
// https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md
// https://clang.llvm.org/docs/SafeBuffers.html
// https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage
//
// Usage:
// ```
// // The following call will not trigger a compiler warning even if `Func()`
// // is annotated `UNSAFE_BUFFER_USAGE`.
// return UNSAFE_BUFFERS(Func(input, end));
// ```
//
// Test for `__clang__` directly, as there's no `__has_pragma` or similar (see
// https://github.com/llvm/llvm-project/issues/51887).
#if defined(__clang__)
// Disabling `clang-format` allows each `_Pragma` to be on its own line, as
// recommended by https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html.
// clang-format off
#define UNSAFE_BUFFERS(...) \
_Pragma("clang unsafe_buffer_usage begin") \
__VA_ARGS__ \
_Pragma("clang unsafe_buffer_usage end")
// clang-format on
#else
#define UNSAFE_BUFFERS(...) __VA_ARGS__
#endif
// Annotates code indicating that it should be temporarily exempted from
// `-Wunsafe-buffer-usage`. While this is functionally the same as
// `UNSAFE_BUFFERS()`, semantically it indicates that this is for migration
// purposes, and should be cleaned up as soon as possible.
//
// Usage:
// ```
// // The following call will not trigger a compiler warning even if `Func()`
// // is annotated `UNSAFE_BUFFER_USAGE`.
// return UNSAFE_TODO(Func(input, end));
// ```
#define UNSAFE_TODO(...) UNSAFE_BUFFERS(__VA_ARGS__)
// Annotates a function restricting its availability based on compile-time
// information in the evaluated context. Useful to convert runtime errors to
// compile-time errors if functions' arguments are always known at compile time.
//
// SFINAE and `requires` clauses can restrict function availability based on the
// unevaluated context (type information and syntactic correctness). This
// provides a similar capability based on the evaluated context (variable
// values). If the condition fails, or cannot be determined at compile time, the
// function is excluded from the overload set.
//
// Some use cases could be satisfied without this by marking the function
// `consteval` and breaking compile when the condition fails (e.g. via
// `CHECK()`/`assert()`). However, `ENABLE_IF_ATTR()` is generally superior:
// - Not all desired functions can be made `consteval`; e.g. most
// constructors.
// - The error message in the macro case is clearer and more actionable.
// - `ENABLE_IF_ATTR()` interacts better with template metaprogramming.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#enable-if
// https://github.com/chromium/subspace/issues/266
//
// Usage:
// ```
// void NotConsteval(int a) {
// assert(a > 0);
// }
// consteval void WithoutEnableIf(int a) {
// assert(a > 0);
// }
// void WithEnableIf(int a) ENABLE_IF_ATTR(a > 0, "arg must be positive") {}
// void Func(int i) {
// // Compiles; assertion fails at runtime.
// NotConsteval(-1);
//
// // Will not compile; diagnosed as not a constant expression.
// WithoutEnableIf(-1);
//
// // Will not compile; diagnosed as no matching function call with
// // "note: candidate disabled: arg must be positive".
// WithEnableIf(-1);
//
// // Will not compile (same reason). Marking `Func()` as
// // `ENABLE_IF_ATTR(i > 0, ...)` will not help; the compiler's analysis is
// // not sufficiently sophisticated to propagate this constraint.
// WithEnableIf(i);
// }
// ```
#if HAS_ATTRIBUTE(enable_if)
#define ENABLE_IF_ATTR(cond, msg) __attribute__((enable_if(cond, msg)))
#else
#define ENABLE_IF_ATTR(cond, msg)
#endif
#endif // BASE_COMPILER_SPECIFIC_H_