1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
base / containers / adapters_unittest.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/containers/adapters.h"
#include <array>
#include <ranges>
#include <utility>
#include <vector>
#include "base/containers/span.h"
#include "base/containers/to_vector.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
class UnsizedVector {
public:
UnsizedVector() = default;
UnsizedVector(std::initializer_list<int> il) : v_(il) {}
// Sentinel iterator type that wraps `end()` to ensure this type doesn't
// satisfy the `sized_range` concept.
template <typename Iterator>
class Sentinel {
public:
Sentinel() = default;
explicit Sentinel(Iterator it) : wrapped_it_(it) {}
bool operator==(Iterator it) const { return wrapped_it_ == it; }
private:
Iterator wrapped_it_;
};
auto begin() const { return v_.begin(); }
auto end() const { return Sentinel(v_.end()); }
auto rbegin() const { return v_.rbegin(); }
auto rend() const { return Sentinel(v_.rend()); }
auto begin() { return v_.begin(); }
auto end() { return Sentinel(v_.end()); }
auto rbegin() { return v_.rbegin(); }
auto rend() { return Sentinel(v_.rend()); }
auto operator[](size_t pos) const { return v_[pos]; }
auto operator[](size_t pos) { return v_[pos]; }
private:
std::vector<int> v_;
};
[[maybe_unused]] void StaticAsserts() {
{
// Named local variables are more readable than std::declval<T>().
std::vector<int> v;
static_assert(std::ranges::range<decltype(base::Reversed(v))>);
static_assert(std::ranges::sized_range<decltype(base::Reversed(v))>);
// `base::Reversed()` takes a const ref to the vector, which is, by
// definition, a borrowed range.
static_assert(std::ranges::borrowed_range<decltype(base::Reversed(v))>);
auto make_vector = [] { return std::vector<int>(); };
static_assert(std::ranges::range<decltype(base::Reversed(make_vector()))>);
static_assert(
std::ranges::sized_range<decltype(base::Reversed(make_vector()))>);
static_assert(
!std::ranges::borrowed_range<decltype(base::Reversed(make_vector()))>);
}
{
base::span<int> s;
static_assert(std::ranges::range<decltype(base::Reversed(s))>);
static_assert(std::ranges::sized_range<decltype(base::Reversed(s))>);
static_assert(std::ranges::borrowed_range<decltype(base::Reversed(s))>);
auto rvalue_span = [] { return base::span<int>(); };
static_assert(std::ranges::range<decltype(base::Reversed(rvalue_span()))>);
static_assert(
std::ranges::sized_range<decltype(base::Reversed(rvalue_span()))>);
static_assert(
std::ranges::borrowed_range<decltype(base::Reversed(rvalue_span()))>);
}
{
// A named local variable is more readable than std::declval<T>().
UnsizedVector v;
static_assert(std::ranges::range<decltype(v)>);
static_assert(!std::ranges::sized_range<decltype(v)>);
static_assert(std::ranges::range<decltype(base::Reversed(v))>);
static_assert(!std::ranges::sized_range<decltype(base::Reversed(v))>);
// `base::Reversed()` takes a const ref to the vector, which is, by
// definition, a borrowed range.
static_assert(std::ranges::borrowed_range<decltype(base::Reversed(v))>);
auto make_vector = [] { return UnsizedVector(); };
static_assert(std::ranges::range<decltype(base::Reversed(make_vector()))>);
static_assert(
!std::ranges::sized_range<decltype(base::Reversed(make_vector()))>);
static_assert(!std::ranges::borrowed_range<decltype(make_vector())>);
}
}
TEST(AdaptersTest, Reversed) {
std::vector<int> v = {3, 2, 1};
int j = 0;
for (int& i : base::Reversed(v)) {
EXPECT_EQ(++j, i);
i += 100;
}
EXPECT_EQ(103, v[0]);
EXPECT_EQ(102, v[1]);
EXPECT_EQ(101, v[2]);
}
TEST(AdaptersTest, ReversedUnsized) {
UnsizedVector v = {3, 2, 1};
int j = 0;
for (int& i : base::Reversed(v)) {
EXPECT_EQ(++j, i);
i += 100;
}
EXPECT_EQ(103, v[0]);
EXPECT_EQ(102, v[1]);
EXPECT_EQ(101, v[2]);
}
TEST(AdaptersTest, ReversedArray) {
std::array<int, 3> v = {3, 2, 1};
int j = 0;
for (int& i : base::Reversed(v)) {
EXPECT_EQ(++j, i);
i += 100;
}
EXPECT_EQ(103, v[0]);
EXPECT_EQ(102, v[1]);
EXPECT_EQ(101, v[2]);
}
TEST(AdaptersTest, ReversedConst) {
std::vector<int> v = {3, 2, 1};
const std::vector<int>& cv = v;
int j = 0;
for (int i : base::Reversed(cv)) {
EXPECT_EQ(++j, i);
}
}
TEST(AdaptersTest, RangeAsRvalues) {
std::vector<std::unique_ptr<int>> v;
v.push_back(std::make_unique<int>(1));
v.push_back(std::make_unique<int>(2));
v.push_back(std::make_unique<int>(3));
auto v2 = base::ToVector(base::RangeAsRvalues(std::move(v)));
EXPECT_EQ(1, *v2[0]);
EXPECT_EQ(2, *v2[1]);
EXPECT_EQ(3, *v2[2]);
// The old vector should be consumed. The standard guarantees that a
// moved-from std::unique_ptr will be null.
EXPECT_EQ(nullptr, v[0]); // NOLINT(bugprone-use-after-move)
EXPECT_EQ(nullptr, v[1]); // NOLINT(bugprone-use-after-move)
EXPECT_EQ(nullptr, v[2]); // NOLINT(bugprone-use-after-move)
}
} // namespace