1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281

base / containers / circular_deque.h [blame]

// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_CONTAINERS_CIRCULAR_DEQUE_H_
#define BASE_CONTAINERS_CIRCULAR_DEQUE_H_

#include <algorithm>
#include <cstddef>
#include <iterator>
#include <utility>

#include "base/check.h"
#include "base/containers/span.h"
#include "base/containers/vector_buffer.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/ranges/algorithm.h"
#include "base/ranges/from_range.h"

#if DCHECK_IS_ON()
#include <ostream>
#endif

// base::circular_deque is similar to std::deque. Unlike std::deque, the
// storage is provided in a flat circular buffer conceptually similar to a
// vector. The beginning and end will wrap around as necessary so that
// pushes and pops will be constant time as long as a capacity expansion is
// not required.
//
// The API should be identical to std::deque with the following differences:
//
//  - ITERATORS ARE NOT STABLE. Mutating the container will invalidate all
//    iterators.
//
//  - Insertions may resize the vector and so are not constant time (std::deque
//    guarantees constant time for insertions at the ends).
//
//  - Container-wide comparisons are not implemented. If you want to compare
//    two containers, use an algorithm so the expensive iteration is explicit.
//
// If you want a similar container with only a queue API, use base::queue in
// base/containers/queue.h.
//
// Constructors:
//   circular_deque();
//   circular_deque(size_t count);
//   circular_deque(size_t count, const T& value);
//   circular_deque(InputIterator first, InputIterator last);
//   circular_deque(base::from_range_t, Range range);
//   circular_deque(const circular_deque&);
//   circular_deque(circular_deque&&);
//   circular_deque(std::initializer_list<value_type>);
//
// Assignment functions:
//   circular_deque& operator=(const circular_deque&);
//   circular_deque& operator=(circular_deque&&);
//   circular_deque& operator=(std::initializer_list<T>);
//   void assign(size_t count, const T& value);
//   void assign(InputIterator first, InputIterator last);
//   void assign(std::initializer_list<T> value);
//   void assign_range(Range range);
//
// Random accessors:
//   T& at(size_t);
//   const T& at(size_t) const;
//   T& operator[](size_t);
//   const T& operator[](size_t) const;
//
// End accessors:
//   T& front();
//   const T& front() const;
//   T& back();
//   const T& back() const;
//
// Iterator functions:
//   iterator               begin();
//   const_iterator         begin() const;
//   const_iterator         cbegin() const;
//   iterator               end();
//   const_iterator         end() const;
//   const_iterator         cend() const;
//   reverse_iterator       rbegin();
//   const_reverse_iterator rbegin() const;
//   const_reverse_iterator crbegin() const;
//   reverse_iterator       rend();
//   const_reverse_iterator rend() const;
//   const_reverse_iterator crend() const;
//
// Memory management:
//   void reserve(size_t);  // SEE IMPLEMENTATION FOR SOME GOTCHAS.
//   size_t capacity() const;
//   void shrink_to_fit();
//
// Size management:
//   void clear();
//   bool empty() const;
//   size_t size() const;
//   void resize(size_t);
//   void resize(size_t count, const T& value);
//
// Positional insert and erase:
//   void insert(const_iterator pos, size_type count, const T& value);
//   void insert(const_iterator pos,
//               InputIterator first, InputIterator last);
//   iterator insert(const_iterator pos, const T& value);
//   iterator insert(const_iterator pos, T&& value);
//   iterator emplace(const_iterator pos, Args&&... args);
//   iterator erase(const_iterator pos);
//   iterator erase(const_iterator first, const_iterator last);
//
// End insert and erase:
//   void push_front(const T&);
//   void push_front(T&&);
//   void push_back(const T&);
//   void push_back(T&&);
//   T& emplace_front(Args&&...);
//   T& emplace_back(Args&&...);
//   void pop_front();
//   void pop_back();
//
// General:
//   void swap(circular_deque&);

namespace base {

template <class T>
class circular_deque;

namespace internal {

// Start allocating nonempty buffers with this many entries. This is the
// external capacity so the internal buffer will be one larger (= 4) which is
// more even for the allocator. See the descriptions of internal vs. external
// capacity on the comment above the buffer_ variable below.
constexpr size_t kCircularBufferInitialCapacity = 3;

template <typename T>
class circular_deque_const_iterator {
 public:
  using difference_type = ptrdiff_t;
  using value_type = T;
  using pointer = const T*;
  using reference = const T&;
  using iterator_category = std::random_access_iterator_tag;

  circular_deque_const_iterator() = default;

  // Dereferencing.
  const T& operator*() const {
    CHECK_NE(index_, end_);
    CheckUnstableUsage();
    CheckValidIndex(index_);
    // SAFETY: Increment() and Decrement() and Add() operations ensure that
    // `index_` stays inside [begin_, end_] (while supporting wrap around for
    // the structure. This maintains that `index_` always points at a
    // valid position for the `buffer_`. We also CHECK above that `index_` is
    // not `end_` making it a valid pointer to dereference.
    return UNSAFE_BUFFERS(buffer_[index_]);
  }
  const T* operator->() const {
    CHECK_NE(index_, end_);
    CheckUnstableUsage();
    CheckValidIndex(index_);
    // SAFETY: Increment() and Decrement() and Add() operations ensure that
    // `index_` stays inside [begin_, end_] while supporting wrap around for
    // the structure. This maintains that `index_` always points at a
    // valid position for the `buffer_`. We also CHECK above that `index_` is
    // not `end_` making it a valid pointer to dereference.
    return &UNSAFE_BUFFERS(buffer_[index_]);
  }
  const value_type& operator[](difference_type i) const { return *(*this + i); }

  // Increment and decrement.
  circular_deque_const_iterator& operator++() {
    Increment();
    return *this;
  }
  circular_deque_const_iterator operator++(int) {
    circular_deque_const_iterator ret = *this;
    Increment();
    return ret;
  }
  circular_deque_const_iterator& operator--() {
    Decrement();
    return *this;
  }
  circular_deque_const_iterator operator--(int) {
    circular_deque_const_iterator ret = *this;
    Decrement();
    return ret;
  }

  // Random access mutation.
  friend circular_deque_const_iterator operator+(
      const circular_deque_const_iterator& iter,
      difference_type offset) {
    circular_deque_const_iterator ret = iter;
    ret.Add(offset);
    return ret;
  }
  circular_deque_const_iterator& operator+=(difference_type offset) {
    Add(offset);
    return *this;
  }
  friend circular_deque_const_iterator operator-(
      const circular_deque_const_iterator& iter,
      difference_type offset) {
    circular_deque_const_iterator ret = iter;
    ret.Add(-offset);
    return ret;
  }
  circular_deque_const_iterator& operator-=(difference_type offset) {
    Add(-offset);
    return *this;
  }

  friend std::ptrdiff_t operator-(const circular_deque_const_iterator& lhs,
                                  const circular_deque_const_iterator& rhs) {
    lhs.CheckComparable(rhs);
    return static_cast<std::ptrdiff_t>(lhs.OffsetFromBegin() -
                                       rhs.OffsetFromBegin());
  }

  // Comparisons.
  friend bool operator==(const circular_deque_const_iterator& lhs,
                         const circular_deque_const_iterator& rhs) {
    lhs.CheckComparable(rhs);
    return lhs.index_ == rhs.index_;
  }
  friend std::strong_ordering operator<=>(
      const circular_deque_const_iterator& lhs,
      const circular_deque_const_iterator& rhs) {
    lhs.CheckComparable(rhs);
    // The order is based on the position of the element in the circular_dequeue
    // rather than `index_` at which the element is stored in the ring buffer.
    return lhs.OffsetFromBegin() <=> rhs.OffsetFromBegin();
  }

 protected:
  friend class circular_deque<T>;

  circular_deque_const_iterator(const circular_deque<T>* parent, size_t index)
      : buffer_(parent->buffer_.data()),
        cap_(parent->buffer_.capacity()),
        begin_(parent->begin_),
        end_(parent->end_),
        index_(index) {
    if (begin_ <= end_) {
      CHECK_GE(index_, begin_);
      CHECK_LE(index_, end_);
    } else if (index_ >= begin_) {
      CHECK(index_ < cap_);
    } else {
      CHECK(index_ <= end_);
    }
#if DCHECK_IS_ON()
    parent_deque_ = parent;
    created_generation_ = parent->generation_;
#endif  // DCHECK_IS_ON()
  }

  // Returns the offset from the beginning index of the buffer to the current
  // item.
  size_t OffsetFromBegin() const {
    if (index_ >= begin_) {
      return index_ - begin_;  // On the same side as begin.
    }
    return cap_ - begin_ + index_;
  }

  // The size of the deque, ie. the number of elements in it.
  size_t Size() const {
    if (begin_ <= end_) {
      return end_ - begin_;
    }
    return cap_ - begin_ + end_;
  }

  // Most uses will be ++ and -- so use a simplified implementation.
  void Increment() {
    CheckUnstableUsage();
    CheckValidIndex(index_);
    CHECK_NE(index_, end_);
    index_++;
    if (index_ == cap_) {
      index_ = 0u;
    }
  }
  void Decrement() {
    CheckUnstableUsage();
    CheckValidIndexOrEnd(index_);
    CHECK_NE(index_, begin_);
    if (index_ == 0u) {
      index_ = cap_ - 1u;
    } else {
      index_--;
    }
  }
  void Add(difference_type delta) {
    CheckUnstableUsage();
#if DCHECK_IS_ON()
    if (delta <= 0) {
      CheckValidIndexOrEnd(index_);
    } else {
      CheckValidIndex(index_);
    }
#endif
    // It should be valid to add 0 to any iterator, even if the container is
    // empty and the iterator points to end(). The modulo below will divide
    // by 0 if the buffer capacity is empty, so it's important to check for
    // this case explicitly.
    if (delta == 0) {
      return;
    }

    const auto offset_from_begin =
        // The max allocation size is PTRDIFF_MAX, so this value can't be larger
        // than fits in ptrdiff_t.
        static_cast<difference_type>(OffsetFromBegin());
    const auto deque_size =
        // The max allocation size is PTRDIFF_MAX, so this value can't be larger
        // than fits in ptrdiff_t.
        static_cast<difference_type>(Size());
    if (delta >= 0) {
      // Check `offset_from_begin + delta <= deque_size` without overflowing.
      CHECK_LE(delta, deque_size - offset_from_begin);
    } else {
      // Check `offset_from_begin + delta >= 0` without overflowing. We avoid
      // negating a negative `delta` which can overflow. Instead negate the
      // positive number which can not.
      CHECK_GE(delta, -offset_from_begin) << offset_from_begin;
    }
    const auto new_offset =
        // The above checks verify that `offset_from_begin + delta` is in the
        // range [0, deque_size] and does not overflow, so it also fits in
        // `size_t`.
        static_cast<size_t>(offset_from_begin + delta);
    index_ = (new_offset + begin_) % cap_;
  }

#if DCHECK_IS_ON()
  void CheckValidIndexOrEnd(size_t index) const {
    parent_deque_->CheckValidIndexOrEnd(index_);
  }
  void CheckValidIndex(size_t index) const {
    parent_deque_->CheckValidIndex(index_);
  }
  void CheckUnstableUsage() const {
    DCHECK(parent_deque_);
    // Since circular_deque doesn't guarantee stability, any attempt to
    // dereference this iterator after a mutation (i.e. the generation doesn't
    // match the original) in the container is illegal.
    DCHECK_EQ(created_generation_, parent_deque_->generation_)
        << "circular_deque iterator dereferenced after mutation.";
  }
  void CheckComparable(const circular_deque_const_iterator& other) const {
    DCHECK_EQ(parent_deque_, other.parent_deque_);
    // Since circular_deque doesn't guarantee stability, two iterators that
    // are compared must have been generated without mutating the container.
    // If this fires, the container was mutated between generating the two
    // iterators being compared.
    DCHECK_EQ(created_generation_, other.created_generation_);
  }
#else
  inline void CheckUnstableUsage() const {}
  inline void CheckComparable(const circular_deque_const_iterator&) const {}
  void CheckValidIndexOrEnd(size_t index) const {}
  void CheckValidIndex(size_t index) const {}
#endif  // DCHECK_IS_ON()

  // `buffer_` is not a raw_ptr<...> for performance reasons: Usually
  // on-stack pointer, pointing back to the collection being iterated, owned by
  // object that iterates over it.  Additionally this is supported by the
  // analysis of sampling profiler data and tab_search:top100:2020.
  RAW_PTR_EXCLUSION const T* buffer_ = nullptr;

  size_t cap_ = 0u;
  size_t begin_ = 0u;
  size_t end_ = 0u;
  size_t index_ = 0u;

#if DCHECK_IS_ON()
  RAW_PTR_EXCLUSION const circular_deque<T>* parent_deque_ = nullptr;
  // The generation of the parent deque when this iterator was created. The
  // container will update the generation for every modification so we can
  // test if the container was modified by comparing them.
  uint64_t created_generation_ = 0u;
#endif  // DCHECK_IS_ON()
};

template <typename T>
class circular_deque_iterator : public circular_deque_const_iterator<T> {
  using base = circular_deque_const_iterator<T>;

 public:
  friend class circular_deque<T>;

  using difference_type = std::ptrdiff_t;
  using value_type = T;
  using pointer = T*;
  using reference = T&;
  using iterator_category = std::random_access_iterator_tag;

  // Expose the base class' constructor.
  circular_deque_iterator() : circular_deque_const_iterator<T>() {}

  // Dereferencing.
  T& operator*() const { return const_cast<T&>(base::operator*()); }
  T* operator->() const { return const_cast<T*>(base::operator->()); }
  T& operator[](difference_type i) {
    return const_cast<T&>(base::operator[](i));
  }

  // Random access mutation.
  friend circular_deque_iterator operator+(const circular_deque_iterator& iter,
                                           difference_type offset) {
    circular_deque_iterator ret = iter;
    ret.Add(offset);
    return ret;
  }
  circular_deque_iterator& operator+=(difference_type offset) {
    base::Add(offset);
    return *this;
  }
  friend circular_deque_iterator operator-(const circular_deque_iterator& iter,
                                           difference_type offset) {
    circular_deque_iterator ret = iter;
    ret.Add(-offset);
    return ret;
  }
  circular_deque_iterator& operator-=(difference_type offset) {
    base::Add(-offset);
    return *this;
  }

  // Increment and decrement.
  circular_deque_iterator& operator++() {
    base::Increment();
    return *this;
  }
  circular_deque_iterator operator++(int) {
    circular_deque_iterator ret = *this;
    base::Increment();
    return ret;
  }
  circular_deque_iterator& operator--() {
    base::Decrement();
    return *this;
  }
  circular_deque_iterator operator--(int) {
    circular_deque_iterator ret = *this;
    base::Decrement();
    return ret;
  }

 private:
  circular_deque_iterator(const circular_deque<T>* parent, size_t index)
      : circular_deque_const_iterator<T>(parent, index) {}
};

}  // namespace internal

template <typename T>
class circular_deque {
 private:
  using VectorBuffer = internal::VectorBuffer<T>;

 public:
  using value_type = T;
  using size_type = size_t;
  using difference_type = std::ptrdiff_t;
  using reference = value_type&;
  using const_reference = const value_type&;
  using pointer = value_type*;
  using const_pointer = const value_type*;

  using iterator = internal::circular_deque_iterator<T>;
  using const_iterator = internal::circular_deque_const_iterator<T>;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;

  // ---------------------------------------------------------------------------
  // Constructor

  // Constructs an empty deque.
  constexpr circular_deque() = default;

  // Constructs with `count` copies of a default-constructed T.
  explicit circular_deque(size_type count) { resize(count); }

  // Constructs with `count` copies of `value`.
  circular_deque(size_type count, const T& value) { resize(count, value); }

  // Construct a deque by constructing its elements from each element in
  // `[first, last)`.
  //
  // Prefer using the `from_range_t` constructor, which builds a deque from a
  // range, instead of from problematic iterator pairs.
  //
  // # Safety
  // The `first` and `last` iterators must be from the same container, with
  // `first <= last`.
  template <class InputIterator>
    requires(std::input_iterator<InputIterator>)
  UNSAFE_BUFFER_USAGE circular_deque(InputIterator first, InputIterator last)
      : circular_deque() {
    // SAFETY: The caller is responsible for giving iterator from the same
    // container.
    UNSAFE_BUFFERS(assign(first, last));
  }

  // Constructs a deque from the elements in a range (a container or span),
  // typically by copy-constructing if the range also holds objects of type
  // `T`.
  //
  // Example:
  // ```
  // int values[] = {1, 3};
  // circular_deque<int> deq(base::from_range, values);
  // ```
  template <typename Range>
    requires(std::ranges::input_range<Range>)
  circular_deque(base::from_range_t, Range&& value) : circular_deque() {
    assign_range(std::forward<Range>(value));
  }

  // Copy/move.
  circular_deque(const circular_deque& other) : buffer_(other.size() + 1) {
    assign_range(other);
  }
  circular_deque(circular_deque&& other) noexcept
      : buffer_(std::move(other.buffer_)),
        begin_(std::exchange(other.begin_, 0u)),
        end_(std::exchange(other.end_, 0u)) {}

  circular_deque(std::initializer_list<value_type> init) { assign(init); }

  ~circular_deque() { DestructRange(begin_, end_); }

  // ---------------------------------------------------------------------------
  // Assignments.
  //
  // All of these may invalidate iterators and references.

  circular_deque& operator=(const circular_deque& other) {
    if (&other == this) {
      return *this;
    }

    reserve(other.size());
    assign_range(other);
    return *this;
  }
  circular_deque& operator=(circular_deque&& other) noexcept {
    if (&other == this) {
      return *this;
    }

    // We're about to overwrite the buffer, so don't free it in clear to
    // avoid doing it twice.
    ClearRetainCapacity();
    buffer_ = std::move(other.buffer_);
    begin_ = std::exchange(other.begin_, 0u);
    end_ = std::exchange(other.end_, 0u);
    IncrementGeneration();
    return *this;
  }
  circular_deque& operator=(std::initializer_list<value_type> ilist) {
    reserve(ilist.size());
    assign_range(ilist);
    return *this;
  }

  void assign(size_type count, const value_type& value) {
    ClearRetainCapacity();
    reserve(count);
    for (size_t i = 0; i < count; i++) {
      emplace_back(value);
    }
    IncrementGeneration();
  }

  // Constructs and appends new elements into the container from each element in
  // `[first, last)`, typically by copy-constructing if the iterators are also
  // over objects of type `T`.
  //
  // # Safety
  // Requires that `first` and `last` are valid iterators into a container, with
  // `first <= last`.
  template <typename InputIterator>
    requires(std::forward_iterator<InputIterator>)
  UNSAFE_BUFFER_USAGE void assign(InputIterator first, InputIterator last) {
    // Possible future enhancement, dispatch on iterator tag type. For forward
    // iterators we can use std::difference to preallocate the space required
    // and only do one copy.
    ClearRetainCapacity();
    // SAFETY: Pointers are iterators, so `first` may be a pointer. We require
    // the caller to provide valid pointers such that `last` is for the same
    // allocation and `first <= last`, and we've checked in the loop condition
    // that `first != last` so incrementing will stay a valid pointer for the
    // allocation.
    for (; first != last; UNSAFE_BUFFERS(++first)) {
      emplace_back(*first);
    }
    IncrementGeneration();
  }

  // Copies and appends new elements into the container from each element in
  // the initializer list.
  void assign(std::initializer_list<value_type> value) { assign_range(value); }

  // Constructs and appends new elements into the container from each element in
  // a range (a container or span), typically by copy-constructing if
  // the range also holds objects of type `T`.
  template <typename Range>
    requires(std::ranges::input_range<Range>)
  void assign_range(Range&& range) {
    reserve(std::ranges::distance(range));
    // SAFETY: begin() and end() produce iterators from the same container with
    // begin <= end.
    UNSAFE_BUFFERS(assign(std::ranges::begin(range), std::ranges::end(range)));
  }

  // ---------------------------------------------------------------------------
  // Accessors.
  //
  // Since this class assumes no exceptions, at() and operator[] are equivalent.

  const value_type& at(size_type i) const {
    CHECK_LT(i, size());
    size_t right_size = buffer_.capacity() - begin_;
    if (begin_ <= end_ || i < right_size) {
      return buffer_[begin_ + i];
    }
    return buffer_[i - right_size];
  }
  value_type& at(size_type i) {
    return const_cast<value_type&>(std::as_const(*this).at(i));
  }

  const value_type& operator[](size_type i) const { return at(i); }
  value_type& operator[](size_type i) { return at(i); }

  value_type& front() {
    CHECK(!empty());
    return buffer_[begin_];
  }
  const value_type& front() const {
    CHECK(!empty());
    return buffer_[begin_];
  }

  value_type& back() {
    CHECK(!empty());
    return *(end() - 1);
  }
  const value_type& back() const {
    CHECK(!empty());
    return *(end() - 1);
  }

  // ---------------------------------------------------------------------------
  // Iterators.

  iterator begin() { return iterator(this, begin_); }
  const_iterator begin() const { return const_iterator(this, begin_); }
  const_iterator cbegin() const { return const_iterator(this, begin_); }

  iterator end() { return iterator(this, end_); }
  const_iterator end() const { return const_iterator(this, end_); }
  const_iterator cend() const { return const_iterator(this, end_); }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  const_reverse_iterator crbegin() const { return rbegin(); }

  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }
  const_reverse_iterator crend() const { return rend(); }

  // ---------------------------------------------------------------------------
  // Memory management.

  // IMPORTANT NOTE ON reserve(...): This class implements auto-shrinking of
  // the buffer when elements are deleted and there is "too much" wasted space.
  // So if you call reserve() with a large size in anticipation of pushing many
  // elements, but pop an element before the queue is full, the capacity you
  // reserved may be lost.
  //
  // As a result, it's only worthwhile to call reserve() when you're adding
  // many things at once with no intermediate operations.
  void reserve(size_type new_capacity) {
    if (new_capacity > capacity()) {
      SetCapacityTo(new_capacity);
    }
  }

  size_type capacity() const {
    // One item is wasted to indicate end().
    return buffer_.capacity() == 0 ? 0 : buffer_.capacity() - 1;
  }

  void shrink_to_fit() {
    if (empty()) {
      // Optimize empty case to really delete everything if there was
      // something.
      if (buffer_.capacity()) {
        buffer_ = VectorBuffer();
      }
    } else {
      SetCapacityTo(size());
    }
  }

  // ---------------------------------------------------------------------------
  // Size management.

  // This will additionally reset the capacity() to 0.
  void clear() {
    // This can't resize(0) because that requires a default constructor to
    // compile, which not all contained classes may implement.
    ClearRetainCapacity();
    buffer_ = VectorBuffer();
  }

  bool empty() const { return begin_ == end_; }

  size_type size() const {
    if (begin_ <= end_) {
      return end_ - begin_;
    }
    return buffer_.capacity() - begin_ + end_;
  }

  // When reducing size, the elements are deleted from the end. When expanding
  // size, elements are added to the end with |value| or the default
  // constructed version. Even when using resize(count) to shrink, a default
  // constructor is required for the code to compile, even though it will not
  // be called.
  //
  // There are two versions rather than using a default value to avoid
  // creating a temporary when shrinking (when it's not needed). Plus if
  // the default constructor is desired when expanding usually just calling it
  // for each element is faster than making a default-constructed temporary and
  // copying it.
  void resize(size_type count) {
    // SEE BELOW VERSION if you change this. The code is mostly the same.
    if (count > size()) {
      // This could be slighly more efficient but expanding a queue with
      // identical elements is unusual and the extra computations of emplacing
      // one-by-one will typically be small relative to calling the constructor
      // for every item.
      ExpandCapacityIfNecessary(count - size());
      while (size() < count) {
        emplace_back();
      }
    } else if (count < size()) {
      size_t new_end = (begin_ + count) % buffer_.capacity();
      DestructRange(new_end, end_);
      end_ = new_end;

      ShrinkCapacityIfNecessary();
    }
    IncrementGeneration();
  }
  void resize(size_type count, const value_type& value) {
    // SEE ABOVE VERSION if you change this. The code is mostly the same.
    if (count > size()) {
      ExpandCapacityIfNecessary(count - size());
      while (size() < count) {
        emplace_back(value);
      }
    } else if (count < size()) {
      size_t new_end = (begin_ + count) % buffer_.capacity();
      DestructRange(new_end, end_);
      end_ = new_end;

      ShrinkCapacityIfNecessary();
    }
    IncrementGeneration();
  }

  // ---------------------------------------------------------------------------
  // Insert and erase.
  //
  // Insertion and deletion in the middle is O(n) and invalidates all existing
  // iterators.
  //
  // The implementation of insert isn't optimized as much as it could be. If
  // the insertion requires that the buffer be grown, it will first be grown
  // and everything moved, and then the items will be inserted, potentially
  // moving some items twice. This simplifies the implemntation substantially
  // and means less generated templatized code. Since this is an uncommon
  // operation for deques, and already relatively slow, it doesn't seem worth
  // the benefit to optimize this.

  void insert(const_iterator pos, size_type count, const T& value) {
    ValidateIterator(pos);

    // Optimize insert at the beginning.
    if (pos == begin()) {
      ExpandCapacityIfNecessary(count);
      for (size_t i = 0; i < count; i++) {
        push_front(value);
      }
      return;
    }

    CHECK_LT(pos.index_, buffer_.capacity());
    iterator insert_cur(this, pos.index_);
    iterator insert_end;
    MakeRoomFor(count, &insert_cur, &insert_end);
    while (insert_cur < insert_end) {
      std::construct_at(buffer_.get_at(insert_cur.index_), value);
      ++insert_cur;
    }

    IncrementGeneration();
  }

  template <class InputIterator>
    requires(std::forward_iterator<InputIterator>)
  void insert(const_iterator pos, InputIterator first, InputIterator last) {
    ValidateIterator(pos);

    const size_t inserted_items =
        checked_cast<size_t>(std::distance(first, last));
    if (inserted_items == 0u) {
      return;  // Can divide by 0 when doing modulo below, so return early.
    }

    // Make a hole to copy the items into.
    iterator insert_cur;
    iterator insert_end;
    if (pos == begin()) {
      // Optimize insert at the beginning, nothing needs to be shifted and the
      // hole is the |inserted_items| block immediately before |begin_|.
      ExpandCapacityIfNecessary(inserted_items);
      const size_t old_begin = begin_;
      begin_ = (old_begin + buffer_.capacity() - inserted_items) %
               buffer_.capacity();
      insert_cur = begin();
      insert_end = iterator(this, old_begin);
    } else {
      CHECK_LT(pos.index_, buffer_.capacity());
      insert_cur = iterator(this, pos.index_);
      MakeRoomFor(inserted_items, &insert_cur, &insert_end);
    }

    // Copy the items.
    while (insert_cur < insert_end) {
      std::construct_at(buffer_.get_at(insert_cur.index_), *first);
      ++insert_cur;
      // SAFETY: The input iterator may be a pointer, in which case we will
      // produce UB if `first` is incremented past `last`. We use checked_cast
      // of std::distance to an unsigned value above, which ensures that `last
      // >= first`. Then we need that `insert_end - insert_cur <= last - first`:
      // - If inserting at the start, pos == begin() and `insert_cur` is
      //   positioned at `begin_ - (last - first)`, and `insert_end` is
      //   positioned at `begin_` so we have
      //   `insert_end - insert_cur == last - first`.
      // - If inserting elsewhere, `MakeRoomFor(last - first, ...)` returns an
      // iterator
      //   pair with distance of `last - first`, so we have
      //   `insert_end - insert_cur == last - first`.
      UNSAFE_BUFFERS(++first);
    }

    IncrementGeneration();
  }

  // These all return an iterator to the inserted item. Existing iterators will
  // be invalidated.
  iterator insert(const_iterator pos, const T& value) {
    return emplace(pos, value);
  }
  iterator insert(const_iterator pos, T&& value) {
    return emplace(pos, std::move(value));
  }
  template <class... Args>
  iterator emplace(const_iterator pos, Args&&... args) {
    ValidateIterator(pos);

    // Optimize insert at beginning which doesn't require shifting.
    if (pos == cbegin()) {
      emplace_front(std::forward<Args>(args)...);
      return begin();
    }

    // Do this before we make the new iterators we return.
    IncrementGeneration();

    CHECK_LT(pos.index_, buffer_.capacity());
    iterator insert_begin(this, pos.index_);
    iterator insert_end;
    MakeRoomFor(1, &insert_begin, &insert_end);
    std::construct_at(buffer_.get_at(insert_begin.index_),
                      std::forward<Args>(args)...);

    return insert_begin;
  }

  // Calling erase() won't automatically resize the buffer smaller like resize
  // or the pop functions. Erase is slow and relatively uncommon, and for
  // normal deque usage a pop will normally be done on a regular basis that
  // will prevent excessive buffer usage over long periods of time. It's not
  // worth having the extra code for every template instantiation of erase()
  // to resize capacity downward to a new buffer.
  iterator erase(const_iterator pos) { return erase(pos, pos + 1); }
  iterator erase(const_iterator pos_begin, const_iterator pos_end) {
    ValidateIterator(pos_begin);
    ValidateIterator(pos_end);

    IncrementGeneration();

    if (pos_begin.index_ == pos_end.index_) {
      // Nothing deleted. Need to return early to avoid falling through to
      // moving items on top of themselves.
      return iterator(this, pos_begin.index_);
    }

    // First, call the destructor on the deleted items.
    DestructRange(pos_begin.index_, pos_end.index_);

    if (pos_begin.index_ == begin_) {
      // This deletion is from the beginning. Nothing needs to be copied, only
      // begin_ needs to be updated.
      begin_ = pos_end.index_;
      return iterator(this, pos_end.index_);
    }

    // In an erase operation, the shifted items all move logically to the left,
    // so move them from left-to-right.
    //
    // The elements are being moved to memory where the T objects were
    // previously destroyed.
    //
    // TODO(danakj): We could skip destruction and do MoveAssignRange here, for
    // the elements that are being replaced.
    size_t move_src = pos_end.index_;
    const size_t move_src_end = end_;
    size_t move_dest = pos_begin.index_;
    const size_t cap = buffer_.capacity();
    while (move_src != move_src_end) {
      VectorBuffer::MoveConstructRange(buffer_.subspan(move_src, 1u),
                                       buffer_.subspan(move_dest, 1u));
      move_src = (move_src + 1u) % cap;
      move_dest = (move_dest + 1u) % cap;
    }

    end_ = move_dest;

    // Since we did not reallocate and only changed things after the erase
    // element(s), the input iterator's index points to the thing following the
    // deletion.
    return iterator(this, pos_begin.index_);
  }

  // ---------------------------------------------------------------------------
  // Begin/end operations.

  void push_front(const T& value) { emplace_front(value); }
  void push_front(T&& value) { emplace_front(std::move(value)); }

  void push_back(const T& value) { emplace_back(value); }
  void push_back(T&& value) { emplace_back(std::move(value)); }

  template <class... Args>
  reference emplace_front(Args&&... args) {
    ExpandCapacityIfNecessary(1);
    if (begin_ == 0) {
      begin_ = buffer_.capacity() - 1;
    } else {
      begin_--;
    }
    IncrementGeneration();
    std::construct_at(buffer_.get_at(begin_), std::forward<Args>(args)...);
    return front();
  }

  template <class... Args>
  reference emplace_back(Args&&... args) {
    ExpandCapacityIfNecessary(1);
    std::construct_at(buffer_.get_at(end_), std::forward<Args>(args)...);
    if (end_ == buffer_.capacity() - 1) {
      end_ = 0;
    } else {
      end_++;
    }
    IncrementGeneration();
    return back();
  }

  void pop_front() {
    CHECK(!empty());
    DestructRange(begin_, begin_ + 1u);
    begin_++;
    if (begin_ == buffer_.capacity()) {
      begin_ = 0;
    }

    ShrinkCapacityIfNecessary();

    // Technically popping will not invalidate any iterators since the
    // underlying buffer will be stable. But in the future we may want to add a
    // feature that resizes the buffer smaller if there is too much wasted
    // space. This ensures we can make such a change safely.
    IncrementGeneration();
  }
  void pop_back() {
    CHECK(!empty());
    if (end_ == 0) {
      end_ = buffer_.capacity() - 1;
    } else {
      end_--;
    }
    DestructRange(end_, end_ + 1u);

    ShrinkCapacityIfNecessary();

    // See pop_front comment about why this is here.
    IncrementGeneration();
  }

  // ---------------------------------------------------------------------------
  // General operations.

  void swap(circular_deque& other) {
    std::swap(buffer_, other.buffer_);
    std::swap(begin_, other.begin_);
    std::swap(end_, other.end_);
    IncrementGeneration();
  }

  friend void swap(circular_deque& lhs, circular_deque& rhs) { lhs.swap(rhs); }

 private:
  friend internal::circular_deque_iterator<T>;
  friend internal::circular_deque_const_iterator<T>;

  // Moves the items in the given circular buffer to the current one. The source
  // is moved from so will become invalid. The destination buffer must have
  // already been allocated with enough size.
  //
  // # Safety
  // `from_begin` and `from_end` must be less-than and less-than-or-equal-to the
  // capacity of `from_buf` respectively, with `from_begin <= from_end`, or
  // Undefined Behaviour may result.
  UNSAFE_BUFFER_USAGE static void MoveBuffer(VectorBuffer& from_buf,
                                             size_t from_begin,
                                             size_t from_end,
                                             VectorBuffer& to_buf,
                                             size_t* to_begin,
                                             size_t* to_end) {
    *to_begin = 0;
    if (from_begin < from_end) {
      // Contiguous.
      VectorBuffer::MoveConstructRange(
          from_buf.subspan(from_begin, from_end - from_begin),
          to_buf.subspan(0u, from_end - from_begin));
      *to_end = from_end - from_begin;
    } else if (from_begin > from_end) {
      // Discontiguous, copy the right side to the beginning of the new buffer.
      span<T> right_side = from_buf.subspan(from_begin);
      VectorBuffer::MoveConstructRange(right_side,
                                       to_buf.subspan(0u, right_side.size()));
      // Append the left side.
      span<T> left_side = from_buf.subspan(0u, from_end);
      VectorBuffer::MoveConstructRange(
          left_side, to_buf.subspan(right_side.size(), left_side.size()));
      *to_end = left_side.size() + right_side.size();
    } else {
      // No items.
      *to_end = 0;
    }
  }

  // Expands the buffer size. This assumes the size is larger than the
  // number of elements in the vector (it won't call delete on anything).
  void SetCapacityTo(size_t new_capacity) {
    // Use the capacity + 1 as the internal buffer size to differentiate
    // empty and full (see definition of buffer_ below).
    VectorBuffer new_buffer(new_capacity + 1u);
    // SAFETY: This class maintains an invariant that `begin_` and `end_` are
    // less than `buffer_`'s capacity.
    UNSAFE_BUFFERS(
        MoveBuffer(buffer_, begin_, end_, new_buffer, &begin_, &end_));
    buffer_ = std::move(new_buffer);
  }
  void ExpandCapacityIfNecessary(size_t additional_elts) {
    const size_t cur_size = size();
    const size_t cur_capacity = capacity();

    // Protect against overflow when adding `additional_elts`, and exceeding the
    // max allocation size.
    CHECK_LE(additional_elts, PTRDIFF_MAX - cur_size);

    size_t min_new_capacity = cur_size + additional_elts;
    if (cur_capacity >= min_new_capacity) {
      return;  // Already enough room.
    }

    min_new_capacity =
        std::max(min_new_capacity, internal::kCircularBufferInitialCapacity);

    // std::vector always grows by at least 50%. WTF::Deque grows by at least
    // 25%. We expect queue workloads to generally stay at a similar size and
    // grow less than a vector might, so use 25%.
    SetCapacityTo(std::max(min_new_capacity, cur_capacity + cur_capacity / 4u));
  }

  void ShrinkCapacityIfNecessary() {
    // Don't auto-shrink below this size.
    if (capacity() <= internal::kCircularBufferInitialCapacity) {
      return;
    }

    // Shrink when 100% of the size() is wasted.
    size_t sz = size();
    size_t empty_spaces = capacity() - sz;
    if (empty_spaces < sz) {
      return;
    }

    // Leave 1/4 the size as free capacity, not going below the initial
    // capacity.
    size_t new_capacity =
        std::max(internal::kCircularBufferInitialCapacity, sz + sz / 4);
    if (new_capacity < capacity()) {
      // Count extra item to convert to internal capacity.
      SetCapacityTo(new_capacity);
    }
  }

  // Backend for clear() but does not resize the internal buffer.
  void ClearRetainCapacity() {
    // This can't resize(0) because that requires a default constructor to
    // compile, which not all contained classes may implement.

    // SAFETY: This class maintains an invariant that `begin_` and `end_` are
    // less than `buffer_`'s capacity. `new_end` is computed modulo the capacity
    // so it is in range.
    DestructRange(begin_, end_);
    begin_ = 0;
    end_ = 0;
    IncrementGeneration();
  }

  // Calls destructors for the given begin->end indices. The indices may wrap
  // around. The buffer is not resized, and the begin_ and end_ members are
  // not changed.
  void DestructRange(size_t begin, size_t end) {
    if (end == begin) {
      return;
    } else if (end > begin) {
      VectorBuffer::DestructRange(buffer_.subspan(begin, end - begin));
    } else {
      VectorBuffer::DestructRange(buffer_.subspan(begin));
      VectorBuffer::DestructRange(buffer_.subspan(0u, end));
    }
  }

  // Makes room for |count| items starting at |*insert_begin|. Since iterators
  // are not stable across buffer resizes, |*insert_begin| will be updated to
  // point to the beginning of the newly opened position in the new array (it's
  // in/out), and the end of the newly opened position (it's out-only).
  void MakeRoomFor(size_t count, iterator* insert_begin, iterator* insert_end) {
    if (count == 0) {
      *insert_end = *insert_begin;
      return;
    }

    // The offset from the beginning will be stable across reallocations.
    size_t begin_offset = insert_begin->OffsetFromBegin();
    ExpandCapacityIfNecessary(count);

    // Update the new end and prepare the iterators for copying. The newly
    // used space contains uninitialized memory.
    const size_t cap = buffer_.capacity();
    size_t src = end_;
    end_ = (end_ + count) % cap;
    size_t dest = end_;

    *insert_begin = iterator(this, (begin_ + begin_offset) % cap);
    *insert_end = iterator(this, (insert_begin->index_ + count) % cap);

    // Move the elements. This will always involve shifting logically to the
    // right, so move in a right-to-left order.
    while (true) {
      if (src == insert_begin->index_) {
        break;
      }
      src = (src + cap - 1u) % cap;
      dest = (dest + cap - 1u) % cap;
      VectorBuffer::MoveConstructRange(buffer_.subspan(src, 1u),
                                       buffer_.subspan(dest, 1u));
    }
  }

#if DCHECK_IS_ON()
  // Asserts the given index is dereferencable. The index is an index into the
  // buffer, not an index used by operator[] or at() which will be offsets from
  // begin.
  void CheckValidIndex(size_t i) const {
    if (begin_ <= end_) {
      DCHECK(i >= begin_ && i < end_);
    } else {
      DCHECK((i >= begin_ && i < buffer_.capacity()) || i < end_);
    }
  }

  // Asserts the given index is either dereferencable or points to end().
  void CheckValidIndexOrEnd(size_t i) const {
    if (i != end_) {
      CheckValidIndex(i);
    }
  }

  void ValidateIterator(const const_iterator& i) const {
    DCHECK(i.parent_deque_ == this);
    i.CheckUnstableUsage();
  }

  // See generation_ below.
  void IncrementGeneration() { generation_++; }
#else
  // No-op versions of these functions for release builds.
  void CheckValidIndex(size_t) const {}
  void CheckValidIndexOrEnd(size_t) const {}
  void ValidateIterator(const const_iterator& i) const {}
  void IncrementGeneration() {}
#endif

  // Danger, the buffer_.capacity() is the "internal capacity" which is
  // capacity() + 1 since there is an extra item to indicate the end. Otherwise
  // being completely empty and completely full are indistinguishable (begin ==
  // end). We could add a separate flag to avoid it, but that adds significant
  // extra complexity since every computation will have to check for it. Always
  // keeping one extra unused element in the buffer makes iterator computations
  // much simpler.
  //
  // Container internal code will want to use buffer_.capacity() for offset
  // computations rather than capacity().
  VectorBuffer buffer_;
  size_type begin_ = 0;
  size_type end_ = 0;

#if DCHECK_IS_ON()
  // Incremented every time a modification is made that could affect iterator
  // invalidations.
  uint64_t generation_ = 0;
#endif
};

// Implementations of base::Erase[If] (see base/stl_util.h).
template <class T, class Value>
size_t Erase(circular_deque<T>& container, const Value& value) {
  auto it = ranges::remove(container, value);
  size_t removed = std::distance(it, container.end());
  container.erase(it, container.end());
  return removed;
}

template <class T, class Predicate>
size_t EraseIf(circular_deque<T>& container, Predicate pred) {
  auto it = ranges::remove_if(container, pred);
  size_t removed = std::distance(it, container.end());
  container.erase(it, container.end());
  return removed;
}

}  // namespace base

#endif  // BASE_CONTAINERS_CIRCULAR_DEQUE_H_