1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
base / containers / containers_memory_benchmark.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This is a framework to measure the memory overhead of different containers.
// Under the hood, it works by logging allocations and frees using an allocator
// hook.
//
// Since the free callback does not report a size, and the allocator hooks run
// in the middle of allocation, the logger simply takes the simplest approach
// and logs out the raw data, relying on analyze_containers_memory_usage.py to
// turn the raw output into useful numbers.
//
// The output of consists of m (number of different key/value combinations being
// tested) x n (number of different map types being tested) sections:
//
// <key type 1> -> <value type 1>
// ===== <map type 1> =====
// iteration 0
// alloc <address 1> size <size 1>
// iteration 1
// alloc <address 2> size <size 2>
// free <address 1>
// iteration 2
// alloc <address 3> size <size 3>
// free <address 2>
// ...
// ...
// ...
// ===== <map type n>
// iteration 0
// alloc <address 1000> size <size 1000>
// iteration 1
// alloc <address 1001> size <size 1001>
// free <address 1000>
// iteration 2
// alloc <address 1002> size <size 1002>
// free <address 1001>
// ...
// ...
// ...
// <key type m> -> <value type m>
// ===== <map type 1> =====
// ...
// ...
// ===== <map type n> =====
//
// Alternate output strategies are possible, but most of them are worse/more
// complex, and do not eliminate the postprocessing step.
#include <array>
#include <atomic>
#include <charconv>
#include <limits>
#include <map>
#include <optional>
#include <string>
#include <unordered_map>
#include <utility>
#include "base/allocator/dispatcher/dispatcher.h"
#include "base/allocator/dispatcher/notification_data.h"
#include "base/containers/flat_map.h"
#include "base/logging.h"
#include "base/strings/safe_sprintf.h"
#include "base/unguessable_token.h"
#include "base/values.h"
#include "third_party/abseil-cpp/absl/container/btree_map.h"
#include "third_party/abseil-cpp/absl/container/flat_hash_map.h"
#include "third_party/abseil-cpp/absl/container/node_hash_map.h"
namespace {
std::atomic<bool> log_allocs_and_frees;
struct AllocationLogger {
public:
void OnAllocation(
const base::allocator::dispatcher::AllocationNotificationData&
allocation_data) {
if (log_allocs_and_frees.load(std::memory_order_acquire)) {
char buffer[128];
// Assume success; ignore return value.
base::strings::SafeSPrintf(buffer, "alloc address %p size %d\n",
allocation_data.address(),
allocation_data.size());
RAW_LOG(INFO, buffer);
}
}
void OnFree(
const base::allocator::dispatcher::FreeNotificationData& free_data) {
if (log_allocs_and_frees.load(std::memory_order_acquire)) {
char buffer[128];
// Assume success; ignore return value.
base::strings::SafeSPrintf(buffer, "freed address %p\n",
free_data.address());
RAW_LOG(INFO, buffer);
}
}
static void Install() {
static AllocationLogger logger;
base::allocator::dispatcher::Dispatcher::GetInstance().InitializeForTesting(
&logger);
}
};
class ScopedLogAllocAndFree {
public:
ScopedLogAllocAndFree() {
log_allocs_and_frees.store(true, std::memory_order_release);
}
~ScopedLogAllocAndFree() {
log_allocs_and_frees.store(false, std::memory_order_release);
}
};
// Measures the memory usage for a container with type `Container` from 0 to
// 6857 elements, using `inserter` to insert a single element at a time.
// `inserter` should be a functor that takes a `Container& container` as its
// first parameter and a `size_t current_index` as its second parameter.
//
// Note that `inserter` can't use `base::FunctionRef` since the inserter is
// passed through several layers before actually being instantiated below in
// this function.
template <typename Container, typename Inserter>
void MeasureOneContainer(const Inserter& inserter) {
char buffer[128];
RAW_LOG(INFO, "iteration 0");
// Record any initial allocations made by an empty container.
std::optional<ScopedLogAllocAndFree> base_size_logger;
base_size_logger.emplace();
Container c;
base_size_logger.reset();
// As a hack, also log out sizeof(c) since the initial base size of the
// container should be counted too. The exact placeholder used for the address
// (in this case "(stack)") isn't important as long as it will not have a
// corresponding free line logged for it.
base::strings::SafeSPrintf(buffer, "alloc address (stack) size %d",
sizeof(c));
RAW_LOG(INFO, buffer);
// Swisstables resizes the backing store around 6858 elements.
for (size_t i = 1; i <= 6857; ++i) {
base::strings::SafeSPrintf(buffer, "iteration %d", i);
RAW_LOG(INFO, buffer);
inserter(c, i);
}
}
// Measures the memory usage for all the container types under test. `inserter`
// is used to insert a single element at a time into the tested container.
template <typename K, typename V, typename Inserter>
void Measure(const Inserter& inserter) {
using Hasher = std::conditional_t<std::is_same_v<base::UnguessableToken, K>,
base::UnguessableTokenHash, std::hash<K>>;
RAW_LOG(INFO, "===== base::flat_map =====");
MeasureOneContainer<base::flat_map<K, V>>(inserter);
RAW_LOG(INFO, "===== std::map =====");
MeasureOneContainer<std::map<K, V>>(inserter);
RAW_LOG(INFO, "===== std::unordered_map =====");
MeasureOneContainer<std::unordered_map<K, V, Hasher>>(inserter);
RAW_LOG(INFO, "===== absl::btree_map =====");
MeasureOneContainer<absl::btree_map<K, V>>(inserter);
RAW_LOG(INFO, "===== absl::flat_hash_map =====");
MeasureOneContainer<absl::flat_hash_map<K, V, Hasher>>(inserter);
RAW_LOG(INFO, "===== absl::node_hash_map =====");
MeasureOneContainer<absl::node_hash_map<K, V, Hasher>>(inserter);
}
} // namespace
int main() {
AllocationLogger::Install();
RAW_LOG(INFO, "int -> int");
Measure<int, int>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, 0});
});
RAW_LOG(INFO, "int -> void*");
Measure<int, void*>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, nullptr});
});
RAW_LOG(INFO, "int -> std::string");
Measure<int, std::string>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, ""});
});
RAW_LOG(INFO, "size_t -> int");
Measure<size_t, int>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, 0});
});
RAW_LOG(INFO, "size_t -> void*");
Measure<size_t, void*>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, nullptr});
});
RAW_LOG(INFO, "size_t -> std::string");
Measure<size_t, std::string>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, ""});
});
RAW_LOG(INFO, "std::string -> std::string");
Measure<std::string, std::string>([](auto& container, size_t i) {
std::string key;
key.resize(std::numeric_limits<size_t>::digits10 + 1);
auto result = std::to_chars(&key.front(), &key.back(), i);
key.resize(result.ptr - &key.front());
ScopedLogAllocAndFree scoped_logging;
container.insert({key, ""});
});
RAW_LOG(INFO, "base::UnguessableToken -> void*");
Measure<base::UnguessableToken, void*>([](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, nullptr});
});
RAW_LOG(INFO, "base::UnguessableToken -> base::Value");
Measure<base::UnguessableToken, base::Value>([](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
base::Value value;
ScopedLogAllocAndFree scoped_logging;
container.insert({token, std::move(value)});
});
RAW_LOG(INFO, "base::UnguessableToken -> std::array<std::string, 4>");
Measure<base::UnguessableToken, std::array<std::string, 4>>(
[](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, {}});
});
RAW_LOG(INFO, "base::UnguessableToken -> std::array<std::string, 8>");
Measure<base::UnguessableToken, std::array<std::string, 8>>(
[](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, {}});
});
RAW_LOG(INFO, "base::UnguessableToken -> std::array<std::string, 16>");
Measure<base::UnguessableToken, std::array<std::string, 16>>(
[](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, {}});
});
return 0;
}