1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158

base / containers / flat_tree.h [blame]

// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_CONTAINERS_FLAT_TREE_H_
#define BASE_CONTAINERS_FLAT_TREE_H_

#include <algorithm>
#include <array>
#include <compare>
#include <concepts>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <ranges>
#include <type_traits>
#include <utility>

#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/ranges/algorithm.h"

namespace base {

// Tag type that allows skipping the sort_and_unique step when constructing a
// flat_tree in case the underlying container is already sorted and has no
// duplicate elements.
struct sorted_unique_t {
  constexpr explicit sorted_unique_t() = default;
};
inline constexpr sorted_unique_t sorted_unique;

namespace internal {

// Helper functions used in DCHECKs below to make sure that inputs tagged with
// sorted_unique are indeed sorted and unique.
template <typename Range, typename Comp>
constexpr bool is_sorted_and_unique(const Range& range, Comp comp) {
  // Being unique implies that there are no adjacent elements that
  // compare equal. So this checks that each element is strictly less
  // than the element after it.
  return ranges::adjacent_find(range, std::not_fn(comp)) ==
         std::ranges::end(range);
}

// Helper inspired by C++20's std::to_array to convert a C-style array to a
// std::array. As opposed to the C++20 version this implementation does not
// provide an overload for rvalues and does not strip cv qualifers from the
// returned std::array::value_type. The returned value_type needs to be
// specified explicitly, allowing the construction of std::arrays with const
// elements.
//
// Reference: https://en.cppreference.com/w/cpp/container/array/to_array
template <typename U, typename T, size_t N>
  requires(std::constructible_from<U, T>)
constexpr std::array<U, N> ToArray(const T (&data)[N]) {
  auto impl = [&]<size_t... I>(std::index_sequence<I...>) {
    // SAFETY: `impl` is called with `make_index_sequence<N>`, so the largest
    // `I` will be `N - 1`.
    return std::array<U, N>({UNSAFE_BUFFERS(data[I])...});
  };
  return impl(std::make_index_sequence<N>());
}

// Helper that calls `container.reserve(std::size(source))`.
template <typename T, typename U>
void ReserveIfSupported(T& container, const U& source) {
  if constexpr (requires { container.reserve(std::size(source)); }) {
    container.reserve(std::size(source));
  }
}

// Implementation -------------------------------------------------------------

// Implementation for the sorted associative flat_set and flat_map using a
// sorted vector as the backing store. Do not use directly.
//
// The use of "value" in this is like std::map uses, meaning it's the thing
// contained (in the case of map it's a <Key, Mapped> pair). The Key is how
// things are looked up. In the case of a set, Key == Value. In the case of
// a map, the Key is a component of a Value.
//
// The helper class GetKeyFromValue provides the means to extract a key from a
// value for comparison purposes. It should implement:
//   const Key& operator()(const Value&).
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
class flat_tree {
 public:
  // --------------------------------------------------------------------------
  // Types.
  //
  using key_type = Key;
  using key_compare = KeyCompare;
  using value_type = typename Container::value_type;

  // Wraps the templated key comparison to compare values.
  struct value_compare {
    constexpr bool operator()(const value_type& left,
                              const value_type& right) const {
      GetKeyFromValue extractor;
      return comp(extractor(left), extractor(right));
    }

    NO_UNIQUE_ADDRESS key_compare comp;
  };

  using pointer = typename Container::pointer;
  using const_pointer = typename Container::const_pointer;
  using reference = typename Container::reference;
  using const_reference = typename Container::const_reference;
  using size_type = typename Container::size_type;
  using difference_type = typename Container::difference_type;
  using iterator = typename Container::iterator;
  using const_iterator = typename Container::const_iterator;
  using reverse_iterator = typename Container::reverse_iterator;
  using const_reverse_iterator = typename Container::const_reverse_iterator;
  using container_type = Container;

  // --------------------------------------------------------------------------
  // Lifetime.
  //
  // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
  // and take O(N * log(N)) + O(N) if extra memory is available (N is a range
  // length).
  //
  // Assume that move constructors invalidate iterators and references.
  //
  // The constructors that take ranges, lists, and vectors do not require that
  // the input be sorted.
  //
  // When passing the base::sorted_unique tag as the first argument no sort and
  // unique step takes places. This is useful if the underlying container
  // already has the required properties.

  flat_tree() = default;
  flat_tree(const flat_tree&) = default;
  flat_tree(flat_tree&&) = default;

  explicit flat_tree(const key_compare& comp);

  template <class InputIterator>
  flat_tree(InputIterator first,
            InputIterator last,
            const key_compare& comp = key_compare());

  flat_tree(const container_type& items,
            const key_compare& comp = key_compare());

  flat_tree(container_type&& items, const key_compare& comp = key_compare());

  flat_tree(std::initializer_list<value_type> ilist,
            const key_compare& comp = key_compare());

  template <class InputIterator>
  flat_tree(sorted_unique_t,
            InputIterator first,
            InputIterator last,
            const key_compare& comp = key_compare());

  flat_tree(sorted_unique_t,
            const container_type& items,
            const key_compare& comp = key_compare());

  constexpr flat_tree(sorted_unique_t,
                      container_type&& items,
                      const key_compare& comp = key_compare());

  flat_tree(sorted_unique_t,
            std::initializer_list<value_type> ilist,
            const key_compare& comp = key_compare());

  ~flat_tree() = default;

  // --------------------------------------------------------------------------
  // Assignments.
  //
  // Assume that move assignment invalidates iterators and references.

  flat_tree& operator=(const flat_tree&) = default;
  flat_tree& operator=(flat_tree&&) = default;
  // Takes the first if there are duplicates in the initializer list.
  flat_tree& operator=(std::initializer_list<value_type> ilist);

  // --------------------------------------------------------------------------
  // Memory management.
  //
  // Beware that shrink_to_fit() simply forwards the request to the
  // container_type and its implementation is free to optimize otherwise and
  // leave capacity() to be greater that its size.
  //
  // reserve() and shrink_to_fit() invalidate iterators and references.

  void reserve(size_type new_capacity);
  size_type capacity() const;
  void shrink_to_fit();

  // --------------------------------------------------------------------------
  // Size management.
  //
  // clear() leaves the capacity() of the flat_tree unchanged.

  void clear();

  constexpr size_type size() const;
  constexpr size_type max_size() const;
  constexpr bool empty() const;

  // --------------------------------------------------------------------------
  // Iterators.
  //
  // Iterators follow the ordering defined by the key comparator used in
  // construction of the flat_tree.

  iterator begin();
  constexpr const_iterator begin() const;
  const_iterator cbegin() const;

  iterator end();
  constexpr const_iterator end() const;
  const_iterator cend() const;

  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;
  const_reverse_iterator crbegin() const;

  reverse_iterator rend();
  const_reverse_iterator rend() const;
  const_reverse_iterator crend() const;

  // --------------------------------------------------------------------------
  // Insert operations.
  //
  // Assume that every operation invalidates iterators and references.
  // Insertion of one element can take O(size). Capacity of flat_tree grows in
  // an implementation-defined manner.
  //
  // NOTE: Prefer to build a new flat_tree from a std::vector (or similar)
  // instead of calling insert() repeatedly.

  std::pair<iterator, bool> insert(const value_type& val);
  std::pair<iterator, bool> insert(value_type&& val);

  iterator insert(const_iterator position_hint, const value_type& x);
  iterator insert(const_iterator position_hint, value_type&& x);

  // This method inserts the values from the range [first, last) into the
  // current tree.
  template <class InputIterator>
    requires(std::input_iterator<InputIterator>)
  void insert(InputIterator first, InputIterator last);
  template <class InputIteratorPtr>
  UNSAFE_BUFFER_USAGE void insert(InputIteratorPtr* first,
                                  InputIteratorPtr* last);

  // Inserts the all values from the `range` into the current tree.
  template <class Range>
    requires(std::ranges::input_range<Range>)
  void insert_range(Range&& range);

  template <class... Args>
  std::pair<iterator, bool> emplace(Args&&... args);

  template <class... Args>
  iterator emplace_hint(const_iterator position_hint, Args&&... args);

  // --------------------------------------------------------------------------
  // Underlying type operations.
  //
  // Assume that either operation invalidates iterators and references.

  // Extracts the container_type and returns it to the caller. Ensures that
  // `this` is `empty()` afterwards.
  container_type extract() &&;

  // Replaces the container_type with `body`. Expects that `body` is sorted
  // and has no repeated elements with regard to value_comp().
  void replace(container_type&& body);

  // --------------------------------------------------------------------------
  // Erase operations.
  //
  // Assume that every operation invalidates iterators and references.
  //
  // erase(position), erase(first, last) can take O(size).
  // erase(key) may take O(size) + O(log(size)).
  //
  // Prefer base::EraseIf() or some other variation on erase(remove(), end())
  // idiom when deleting multiple non-consecutive elements.

  iterator erase(iterator position);
  // Artificially templatized to break ambiguity if `iterator` and
  // `const_iterator` are the same type.
  template <typename DummyT = void>
  iterator erase(const_iterator position);
  iterator erase(const_iterator first, const_iterator last);
  size_type erase(const Key& key);
  template <typename K>
  size_type erase(const K& key);

  // --------------------------------------------------------------------------
  // Comparators.

  constexpr key_compare key_comp() const;
  constexpr value_compare value_comp() const;

  // --------------------------------------------------------------------------
  // Search operations.
  //
  // Search operations have O(log(size)) complexity.

  size_type count(const Key& key) const;
  template <typename K>
  size_type count(const K& key) const;

  iterator find(const Key& key);
  const_iterator find(const Key& key) const;
  template <typename K>
  iterator find(const K& key);
  template <typename K>
  const_iterator find(const K& key) const;

  bool contains(const Key& key) const;
  template <typename K>
  bool contains(const K& key) const;

  std::pair<iterator, iterator> equal_range(const Key& key);
  std::pair<const_iterator, const_iterator> equal_range(const Key& key) const;
  template <typename K>
  std::pair<iterator, iterator> equal_range(const K& key);
  template <typename K>
  std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

  iterator lower_bound(const Key& key);
  const_iterator lower_bound(const Key& key) const;
  template <typename K>
  iterator lower_bound(const K& key);
  template <typename K>
  const_iterator lower_bound(const K& key) const;

  iterator upper_bound(const Key& key);
  const_iterator upper_bound(const Key& key) const;
  template <typename K>
  iterator upper_bound(const K& key);
  template <typename K>
  const_iterator upper_bound(const K& key) const;

  // --------------------------------------------------------------------------
  // General operations.
  //
  // Assume that swap invalidates iterators and references.
  //
  // Implementation note: currently we use operator==() and operator<() on
  // std::vector, because they have the same contract we need, so we use them
  // directly for brevity and in case it is more optimal than calling equal()
  // and lexicograhpical_compare(). If the underlying container type is changed,
  // this code may need to be modified.

  void swap(flat_tree& other) noexcept;

  friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) {
    return lhs.body_ == rhs.body_;
  }

  friend auto operator<=>(const flat_tree& lhs, const flat_tree& rhs) {
    return lhs.body_ <=> rhs.body_;
  }

  friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); }

 protected:
  // Emplaces a new item into the tree that is known not to be in it. This
  // is for implementing map operator[].
  template <class... Args>
  iterator unsafe_emplace(const_iterator position, Args&&... args);

  // Attempts to emplace a new element with key |key|. Only if |key| is not yet
  // present, construct value_type from |args| and insert it. Returns an
  // iterator to the element with key |key| and a bool indicating whether an
  // insertion happened.
  template <class K, class... Args>
  std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args);

  // Similar to |emplace_key_args|, but checks |hint| first as a possible
  // insertion position.
  template <class K, class... Args>
  std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint,
                                                  const K& key,
                                                  Args&&... args);

 private:
  // Helper class for e.g. lower_bound that can compare a value on the left
  // to a key on the right.
  struct KeyValueCompare {
    // The key comparison object must outlive this class.
    explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {}

    template <typename T, typename U>
    bool operator()(const T& lhs, const U& rhs) const {
      return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs));
    }

   private:
    const key_type& extract_if_value_type(const value_type& v) const {
      GetKeyFromValue extractor;
      return extractor(v);
    }

    template <typename K>
    const K& extract_if_value_type(const K& k) const {
      return k;
    }
    // RAW_PTR_EXCLUSION: Binary size increase. There's also little value to
    // rewriting this member as it points to `flat_tree::comp_` and flat_tree
    // itself should be holding raw_ptr/raw_ref if necessary.
    RAW_PTR_EXCLUSION const key_compare& comp_;
  };

  iterator const_cast_it(const_iterator c_it) {
    auto distance = std::distance(cbegin(), c_it);
    return std::next(begin(), distance);
  }

  // This method is inspired by both std::map::insert(P&&) and
  // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent
  // element is not present yet, otherwise it overwrites. It returns an iterator
  // to the modified element and a flag indicating whether insertion or
  // assignment happened.
  template <class V>
  std::pair<iterator, bool> insert_or_assign(V&& val) {
    auto position = lower_bound(GetKeyFromValue()(val));

    if (position == end() || value_comp()(val, *position))
      return {body_.emplace(position, std::forward<V>(val)), true};

    *position = std::forward<V>(val);
    return {position, false};
  }

  // This method is similar to insert_or_assign, with the following differences:
  // - Instead of searching [begin(), end()) it only searches [first, last).
  // - In case no equivalent element is found, val is appended to the end of the
  //   underlying body and an iterator to the next bigger element in [first,
  //   last) is returned.
  template <class V>
  std::pair<iterator, bool> append_or_assign(iterator first,
                                             iterator last,
                                             V&& val) {
    auto position = std::lower_bound(first, last, val, value_comp());

    if (position == last || value_comp()(val, *position)) {
      // emplace_back might invalidate position, which is why distance needs to
      // be cached.
      const difference_type distance = std::distance(begin(), position);
      body_.emplace_back(std::forward<V>(val));
      return {std::next(begin(), distance), true};
    }

    *position = std::forward<V>(val);
    return {position, false};
  }

  // This method is similar to insert, with the following differences:
  // - Instead of searching [begin(), end()) it only searches [first, last).
  // - In case no equivalent element is found, val is appended to the end of the
  //   underlying body and an iterator to the next bigger element in [first,
  //   last) is returned.
  template <class V>
  std::pair<iterator, bool> append_unique(iterator first,
                                          iterator last,
                                          V&& val) {
    auto position = std::lower_bound(first, last, val, value_comp());

    if (position == last || value_comp()(val, *position)) {
      // emplace_back might invalidate position, which is why distance needs to
      // be cached.
      const difference_type distance = std::distance(begin(), position);
      body_.emplace_back(std::forward<V>(val));
      return {std::next(begin(), distance), true};
    }

    return {position, false};
  }

  void sort_and_unique(iterator first, iterator last) {
    // Preserve stability for the unique code below.
    std::stable_sort(first, last, value_comp());

    // lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs.
    auto equal_comp = std::not_fn(value_comp());
    erase(std::unique(first, last, equal_comp), last);
  }

  void sort_and_unique() { sort_and_unique(begin(), end()); }

  // To support comparators that may not be possible to default-construct, we
  // have to store an instance of Compare. Since Compare commonly is stateless,
  // we use the NO_UNIQUE_ADDRESS attribute to save space.
  NO_UNIQUE_ADDRESS key_compare comp_;
  // Declare after |key_compare_comp_| to workaround GCC ICE. For details
  // see https://crbug.com/1156268
  container_type body_;

  // If the compare is not transparent we want to construct key_type once.
  template <typename K>
  using KeyTypeOrK = std::conditional_t<requires {
    typename key_compare::is_transparent;
  }, K, key_type>;
};

// ----------------------------------------------------------------------------
// Lifetime.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    const KeyCompare& comp)
    : comp_(comp) {}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    InputIterator first,
    InputIterator last,
    const KeyCompare& comp)
    : comp_(comp), body_(first, last) {
  sort_and_unique();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    const container_type& items,
    const KeyCompare& comp)
    : comp_(comp), body_(items) {
  sort_and_unique();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    container_type&& items,
    const KeyCompare& comp)
    : comp_(comp), body_(std::move(items)) {
  sort_and_unique();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    std::initializer_list<value_type> ilist,
    const KeyCompare& comp)
    : flat_tree(std::ranges::begin(ilist), std::ranges::end(ilist), comp) {}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    sorted_unique_t,
    InputIterator first,
    InputIterator last,
    const KeyCompare& comp)
    : comp_(comp), body_(first, last) {
  DCHECK(is_sorted_and_unique(*this, value_comp()));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    sorted_unique_t,
    const container_type& items,
    const KeyCompare& comp)
    : comp_(comp), body_(items) {
  DCHECK(is_sorted_and_unique(*this, value_comp()));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    sorted_unique_t,
    container_type&& items,
    const KeyCompare& comp)
    : comp_(comp), body_(std::move(items)) {
  DCHECK(is_sorted_and_unique(*this, value_comp()));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
    sorted_unique_t,
    std::initializer_list<value_type> ilist,
    const KeyCompare& comp)
    : flat_tree(sorted_unique,
                std::ranges::begin(ilist),
                std::ranges::end(ilist),
                comp) {}

// ----------------------------------------------------------------------------
// Assignments.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=(
    std::initializer_list<value_type> ilist) -> flat_tree& {
  body_ = ilist;
  sort_and_unique();
  return *this;
}

// ----------------------------------------------------------------------------
// Memory management.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve(
    size_type new_capacity) {
  body_.reserve(new_capacity);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const
    -> size_type {
  return body_.capacity();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() {
  body_.shrink_to_fit();
}

// ----------------------------------------------------------------------------
// Size management.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() {
  body_.clear();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size()
    const -> size_type {
  return body_.size();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const
    -> size_type {
  return body_.max_size();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty()
    const {
  return body_.empty();
}

// ----------------------------------------------------------------------------
// Iterators.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
    -> iterator {
  return body_.begin();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
    const -> const_iterator {
  return std::ranges::begin(body_);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const
    -> const_iterator {
  return body_.cbegin();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator {
  return body_.end();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end()
    const -> const_iterator {
  return std::ranges::end(body_);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const
    -> const_iterator {
  return body_.cend();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin()
    -> reverse_iterator {
  return body_.rbegin();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const
    -> const_reverse_iterator {
  return body_.rbegin();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const
    -> const_reverse_iterator {
  return body_.crbegin();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend()
    -> reverse_iterator {
  return body_.rend();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const
    -> const_reverse_iterator {
  return body_.rend();
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const
    -> const_reverse_iterator {
  return body_.crend();
}

// ----------------------------------------------------------------------------
// Insert operations.
//
// Currently we use position_hint the same way as eastl or boost:
// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
    const value_type& val) -> std::pair<iterator, bool> {
  return emplace_key_args(GetKeyFromValue()(val), val);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
    value_type&& val) -> std::pair<iterator, bool> {
  return emplace_key_args(GetKeyFromValue()(val), std::move(val));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
    const_iterator position_hint,
    const value_type& val) -> iterator {
  return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val)
      .first;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
    const_iterator position_hint,
    value_type&& val) -> iterator {
  return emplace_hint_key_args(position_hint, GetKeyFromValue()(val),
                               std::move(val))
      .first;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIteratorPtr>
UNSAFE_BUFFER_USAGE void
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
    InputIteratorPtr* input_begin,
    InputIteratorPtr* input_end) {
  // SAFETY: The caller must ensure the pointers are a valid pair.
  auto s = UNSAFE_BUFFERS(base::span(input_begin, input_end));
  insert(s.begin(), s.end());
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
  requires(std::input_iterator<InputIterator>)
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
    InputIterator input_begin,
    InputIterator input_end) {
  if (input_begin == input_end) {
    return;
  }

  // Dispatch to single element insert if the input range contains a single
  // element.
  if (std::next(input_begin) == input_end) {
    insert(end(), *input_begin);
    return;
  }

  // Provide a convenience lambda to obtain an iterator pointing past the last
  // old element. This needs to be dymanic due to possible re-allocations.
  auto prior_end = [this, size = size()] {
    return std::next(begin(), static_cast<difference_type>(size));
  };

  // For batch updates initialize the first insertion point.
  auto pos_first_new = static_cast<difference_type>(size());

  // Loop over the input range while appending new values and overwriting
  // existing ones, if applicable. Keep track of the first insertion point.
  for (auto it = input_begin; it != input_end; ++it) {
    auto [inserted_at, inserted] = append_unique(begin(), prior_end(), *it);
    if (inserted) {
      pos_first_new =
          std::min(pos_first_new, std::distance(begin(), inserted_at));
    }
  }

  // The new elements might be unordered and contain duplicates, so post-process
  // the just inserted elements and merge them with the rest, inserting them at
  // the previously found spot.
  sort_and_unique(prior_end(), end());
  std::inplace_merge(std::next(begin(), pos_first_new), prior_end(), end(),
                     value_comp());
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class Range>
  requires(std::ranges::input_range<Range>)
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert_range(
    Range&& range) {
  // SAFETY: A range should return a valid begin/end even if they are pointers.
  UNSAFE_BUFFERS(insert(std::ranges::begin(range), std::ranges::end(range)));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace(
    Args&&... args) -> std::pair<iterator, bool> {
  return insert(value_type(std::forward<Args>(args)...));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint(
    const_iterator position_hint,
    Args&&... args) -> iterator {
  return insert(position_hint, value_type(std::forward<Args>(args)...));
}

// ----------------------------------------------------------------------------
// Underlying type operations.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
    extract() && -> container_type {
  return std::exchange(body_, container_type());
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace(
    container_type&& body) {
  // Ensure that `body` is sorted and has no repeated elements according to
  // `value_comp()`.
  DCHECK(is_sorted_and_unique(body, value_comp()));
  body_ = std::move(body);
}

// ----------------------------------------------------------------------------
// Erase operations.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
    iterator position) -> iterator {
  CHECK(position != body_.end());
  return body_.erase(position);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename DummyT>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
    const_iterator position) -> iterator {
  CHECK(position != body_.end());
  return body_.erase(position);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
    const Key& val) -> size_type {
  auto eq_range = equal_range(val);
  auto res =
      static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
  erase(eq_range.first, eq_range.second);
  return res;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val)
    -> size_type {
  auto eq_range = equal_range(val);
  auto res =
      static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
  erase(eq_range.first, eq_range.second);
  return res;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
    const_iterator first,
    const_iterator last) -> iterator {
  return body_.erase(first, last);
}

// ----------------------------------------------------------------------------
// Comparators.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const
    -> key_compare {
  return comp_;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const
    -> value_compare {
  return value_compare{comp_};
}

// ----------------------------------------------------------------------------
// Search operations.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
    const K& key) const -> size_type {
  auto eq_range = equal_range(key);
  return static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
    const Key& key) const -> size_type {
  auto eq_range = equal_range(key);
  return static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
    const Key& key) -> iterator {
  return const_cast_it(std::as_const(*this).find(key));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
    const Key& key) const -> const_iterator {
  auto eq_range = equal_range(key);
  return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key)
    -> iterator {
  return const_cast_it(std::as_const(*this).find(key));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
    const K& key) const -> const_iterator {
  auto eq_range = equal_range(key);
  return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
    const Key& key) const {
  auto lower = lower_bound(key);
  return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
    const K& key) const {
  auto lower = lower_bound(key);
  return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
    const Key& key) -> std::pair<iterator, iterator> {
  auto res = std::as_const(*this).equal_range(key);
  return {const_cast_it(res.first), const_cast_it(res.second)};
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
    const Key& key) const -> std::pair<const_iterator, const_iterator> {
  auto lower = lower_bound(key);

  KeyValueCompare comp(comp_);
  if (lower == end() || comp(key, *lower))
    return {lower, lower};

  return {lower, std::next(lower)};
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
    const K& key) -> std::pair<iterator, iterator> {
  auto res = std::as_const(*this).equal_range(key);
  return {const_cast_it(res.first), const_cast_it(res.second)};
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
    const K& key) const -> std::pair<const_iterator, const_iterator> {
  auto lower = lower_bound(key);

  KeyValueCompare comp(comp_);
  if (lower == end() || comp(key, *lower))
    return {lower, lower};

  return {lower, std::next(lower)};
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
    const Key& key) -> iterator {
  return const_cast_it(std::as_const(*this).lower_bound(key));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
    const Key& key) const -> const_iterator {
  KeyValueCompare comp(comp_);
  return ranges::lower_bound(*this, key, comp);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
    const K& key) -> iterator {
  return const_cast_it(std::as_const(*this).lower_bound(key));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
    const K& key) const -> const_iterator {
  static_assert(std::is_convertible_v<const KeyTypeOrK<K>&, const K&>,
                "Requested type cannot be bound to the container's key_type "
                "which is required for a non-transparent compare.");

  const KeyTypeOrK<K>& key_ref = key;

  KeyValueCompare comp(comp_);
  return ranges::lower_bound(*this, key_ref, comp);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
    const Key& key) -> iterator {
  return const_cast_it(std::as_const(*this).upper_bound(key));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
    const Key& key) const -> const_iterator {
  KeyValueCompare comp(comp_);
  return ranges::upper_bound(*this, key, comp);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
    const K& key) -> iterator {
  return const_cast_it(std::as_const(*this).upper_bound(key));
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
    const K& key) const -> const_iterator {
  static_assert(std::is_convertible_v<const KeyTypeOrK<K>&, const K&>,
                "Requested type cannot be bound to the container's key_type "
                "which is required for a non-transparent compare.");

  const KeyTypeOrK<K>& key_ref = key;

  KeyValueCompare comp(comp_);
  return ranges::upper_bound(*this, key_ref, comp);
}

// ----------------------------------------------------------------------------
// General operations.

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap(
    flat_tree& other) noexcept {
  std::swap(*this, other);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace(
    const_iterator position,
    Args&&... args) -> iterator {
  return body_.emplace(position, std::forward<Args>(args)...);
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class K, class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args(
    const K& key,
    Args&&... args) -> std::pair<iterator, bool> {
  auto lower = lower_bound(key);
  if (lower == end() || comp_(key, GetKeyFromValue()(*lower)))
    return {unsafe_emplace(lower, std::forward<Args>(args)...), true};
  return {lower, false};
}

template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class K, class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
    emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args)
        -> std::pair<iterator, bool> {
  KeyValueCompare comp(comp_);
  if ((hint == begin() || comp(*std::prev(hint), key))) {
    if (hint == end() || comp(key, *hint)) {
      // *(hint - 1) < key < *hint => key did not exist and hint is correct.
      return {unsafe_emplace(hint, std::forward<Args>(args)...), true};
    }
    if (!comp(*hint, key)) {
      // key == *hint => no-op, return correct hint.
      return {const_cast_it(hint), false};
    }
  }
  // hint was not helpful, dispatch to hintless version.
  return emplace_key_args(key, std::forward<Args>(args)...);
}

}  // namespace internal

// ----------------------------------------------------------------------------
// Free functions.

// Erases all elements that match predicate. It has O(size) complexity.
template <class Key,
          class GetKeyFromValue,
          class KeyCompare,
          class Container,
          typename Predicate>
size_t EraseIf(
    base::internal::flat_tree<Key, GetKeyFromValue, KeyCompare, Container>&
        container,
    Predicate pred) {
  auto it = ranges::remove_if(container, pred);
  size_t removed = std::distance(it, container.end());
  container.erase(it, container.end());
  return removed;
}

}  // namespace base

#endif  // BASE_CONTAINERS_FLAT_TREE_H_