1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
base / containers / flat_tree.h [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_FLAT_TREE_H_
#define BASE_CONTAINERS_FLAT_TREE_H_
#include <algorithm>
#include <array>
#include <compare>
#include <concepts>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <ranges>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/ranges/algorithm.h"
namespace base {
// Tag type that allows skipping the sort_and_unique step when constructing a
// flat_tree in case the underlying container is already sorted and has no
// duplicate elements.
struct sorted_unique_t {
constexpr explicit sorted_unique_t() = default;
};
inline constexpr sorted_unique_t sorted_unique;
namespace internal {
// Helper functions used in DCHECKs below to make sure that inputs tagged with
// sorted_unique are indeed sorted and unique.
template <typename Range, typename Comp>
constexpr bool is_sorted_and_unique(const Range& range, Comp comp) {
// Being unique implies that there are no adjacent elements that
// compare equal. So this checks that each element is strictly less
// than the element after it.
return ranges::adjacent_find(range, std::not_fn(comp)) ==
std::ranges::end(range);
}
// Helper inspired by C++20's std::to_array to convert a C-style array to a
// std::array. As opposed to the C++20 version this implementation does not
// provide an overload for rvalues and does not strip cv qualifers from the
// returned std::array::value_type. The returned value_type needs to be
// specified explicitly, allowing the construction of std::arrays with const
// elements.
//
// Reference: https://en.cppreference.com/w/cpp/container/array/to_array
template <typename U, typename T, size_t N>
requires(std::constructible_from<U, T>)
constexpr std::array<U, N> ToArray(const T (&data)[N]) {
auto impl = [&]<size_t... I>(std::index_sequence<I...>) {
// SAFETY: `impl` is called with `make_index_sequence<N>`, so the largest
// `I` will be `N - 1`.
return std::array<U, N>({UNSAFE_BUFFERS(data[I])...});
};
return impl(std::make_index_sequence<N>());
}
// Helper that calls `container.reserve(std::size(source))`.
template <typename T, typename U>
void ReserveIfSupported(T& container, const U& source) {
if constexpr (requires { container.reserve(std::size(source)); }) {
container.reserve(std::size(source));
}
}
// Implementation -------------------------------------------------------------
// Implementation for the sorted associative flat_set and flat_map using a
// sorted vector as the backing store. Do not use directly.
//
// The use of "value" in this is like std::map uses, meaning it's the thing
// contained (in the case of map it's a <Key, Mapped> pair). The Key is how
// things are looked up. In the case of a set, Key == Value. In the case of
// a map, the Key is a component of a Value.
//
// The helper class GetKeyFromValue provides the means to extract a key from a
// value for comparison purposes. It should implement:
// const Key& operator()(const Value&).
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
class flat_tree {
public:
// --------------------------------------------------------------------------
// Types.
//
using key_type = Key;
using key_compare = KeyCompare;
using value_type = typename Container::value_type;
// Wraps the templated key comparison to compare values.
struct value_compare {
constexpr bool operator()(const value_type& left,
const value_type& right) const {
GetKeyFromValue extractor;
return comp(extractor(left), extractor(right));
}
NO_UNIQUE_ADDRESS key_compare comp;
};
using pointer = typename Container::pointer;
using const_pointer = typename Container::const_pointer;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using difference_type = typename Container::difference_type;
using iterator = typename Container::iterator;
using const_iterator = typename Container::const_iterator;
using reverse_iterator = typename Container::reverse_iterator;
using const_reverse_iterator = typename Container::const_reverse_iterator;
using container_type = Container;
// --------------------------------------------------------------------------
// Lifetime.
//
// Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
// and take O(N * log(N)) + O(N) if extra memory is available (N is a range
// length).
//
// Assume that move constructors invalidate iterators and references.
//
// The constructors that take ranges, lists, and vectors do not require that
// the input be sorted.
//
// When passing the base::sorted_unique tag as the first argument no sort and
// unique step takes places. This is useful if the underlying container
// already has the required properties.
flat_tree() = default;
flat_tree(const flat_tree&) = default;
flat_tree(flat_tree&&) = default;
explicit flat_tree(const key_compare& comp);
template <class InputIterator>
flat_tree(InputIterator first,
InputIterator last,
const key_compare& comp = key_compare());
flat_tree(const container_type& items,
const key_compare& comp = key_compare());
flat_tree(container_type&& items, const key_compare& comp = key_compare());
flat_tree(std::initializer_list<value_type> ilist,
const key_compare& comp = key_compare());
template <class InputIterator>
flat_tree(sorted_unique_t,
InputIterator first,
InputIterator last,
const key_compare& comp = key_compare());
flat_tree(sorted_unique_t,
const container_type& items,
const key_compare& comp = key_compare());
constexpr flat_tree(sorted_unique_t,
container_type&& items,
const key_compare& comp = key_compare());
flat_tree(sorted_unique_t,
std::initializer_list<value_type> ilist,
const key_compare& comp = key_compare());
~flat_tree() = default;
// --------------------------------------------------------------------------
// Assignments.
//
// Assume that move assignment invalidates iterators and references.
flat_tree& operator=(const flat_tree&) = default;
flat_tree& operator=(flat_tree&&) = default;
// Takes the first if there are duplicates in the initializer list.
flat_tree& operator=(std::initializer_list<value_type> ilist);
// --------------------------------------------------------------------------
// Memory management.
//
// Beware that shrink_to_fit() simply forwards the request to the
// container_type and its implementation is free to optimize otherwise and
// leave capacity() to be greater that its size.
//
// reserve() and shrink_to_fit() invalidate iterators and references.
void reserve(size_type new_capacity);
size_type capacity() const;
void shrink_to_fit();
// --------------------------------------------------------------------------
// Size management.
//
// clear() leaves the capacity() of the flat_tree unchanged.
void clear();
constexpr size_type size() const;
constexpr size_type max_size() const;
constexpr bool empty() const;
// --------------------------------------------------------------------------
// Iterators.
//
// Iterators follow the ordering defined by the key comparator used in
// construction of the flat_tree.
iterator begin();
constexpr const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
constexpr const_iterator end() const;
const_iterator cend() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;
// --------------------------------------------------------------------------
// Insert operations.
//
// Assume that every operation invalidates iterators and references.
// Insertion of one element can take O(size). Capacity of flat_tree grows in
// an implementation-defined manner.
//
// NOTE: Prefer to build a new flat_tree from a std::vector (or similar)
// instead of calling insert() repeatedly.
std::pair<iterator, bool> insert(const value_type& val);
std::pair<iterator, bool> insert(value_type&& val);
iterator insert(const_iterator position_hint, const value_type& x);
iterator insert(const_iterator position_hint, value_type&& x);
// This method inserts the values from the range [first, last) into the
// current tree.
template <class InputIterator>
requires(std::input_iterator<InputIterator>)
void insert(InputIterator first, InputIterator last);
template <class InputIteratorPtr>
UNSAFE_BUFFER_USAGE void insert(InputIteratorPtr* first,
InputIteratorPtr* last);
// Inserts the all values from the `range` into the current tree.
template <class Range>
requires(std::ranges::input_range<Range>)
void insert_range(Range&& range);
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position_hint, Args&&... args);
// --------------------------------------------------------------------------
// Underlying type operations.
//
// Assume that either operation invalidates iterators and references.
// Extracts the container_type and returns it to the caller. Ensures that
// `this` is `empty()` afterwards.
container_type extract() &&;
// Replaces the container_type with `body`. Expects that `body` is sorted
// and has no repeated elements with regard to value_comp().
void replace(container_type&& body);
// --------------------------------------------------------------------------
// Erase operations.
//
// Assume that every operation invalidates iterators and references.
//
// erase(position), erase(first, last) can take O(size).
// erase(key) may take O(size) + O(log(size)).
//
// Prefer base::EraseIf() or some other variation on erase(remove(), end())
// idiom when deleting multiple non-consecutive elements.
iterator erase(iterator position);
// Artificially templatized to break ambiguity if `iterator` and
// `const_iterator` are the same type.
template <typename DummyT = void>
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
size_type erase(const Key& key);
template <typename K>
size_type erase(const K& key);
// --------------------------------------------------------------------------
// Comparators.
constexpr key_compare key_comp() const;
constexpr value_compare value_comp() const;
// --------------------------------------------------------------------------
// Search operations.
//
// Search operations have O(log(size)) complexity.
size_type count(const Key& key) const;
template <typename K>
size_type count(const K& key) const;
iterator find(const Key& key);
const_iterator find(const Key& key) const;
template <typename K>
iterator find(const K& key);
template <typename K>
const_iterator find(const K& key) const;
bool contains(const Key& key) const;
template <typename K>
bool contains(const K& key) const;
std::pair<iterator, iterator> equal_range(const Key& key);
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const;
template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;
iterator lower_bound(const Key& key);
const_iterator lower_bound(const Key& key) const;
template <typename K>
iterator lower_bound(const K& key);
template <typename K>
const_iterator lower_bound(const K& key) const;
iterator upper_bound(const Key& key);
const_iterator upper_bound(const Key& key) const;
template <typename K>
iterator upper_bound(const K& key);
template <typename K>
const_iterator upper_bound(const K& key) const;
// --------------------------------------------------------------------------
// General operations.
//
// Assume that swap invalidates iterators and references.
//
// Implementation note: currently we use operator==() and operator<() on
// std::vector, because they have the same contract we need, so we use them
// directly for brevity and in case it is more optimal than calling equal()
// and lexicograhpical_compare(). If the underlying container type is changed,
// this code may need to be modified.
void swap(flat_tree& other) noexcept;
friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) {
return lhs.body_ == rhs.body_;
}
friend auto operator<=>(const flat_tree& lhs, const flat_tree& rhs) {
return lhs.body_ <=> rhs.body_;
}
friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); }
protected:
// Emplaces a new item into the tree that is known not to be in it. This
// is for implementing map operator[].
template <class... Args>
iterator unsafe_emplace(const_iterator position, Args&&... args);
// Attempts to emplace a new element with key |key|. Only if |key| is not yet
// present, construct value_type from |args| and insert it. Returns an
// iterator to the element with key |key| and a bool indicating whether an
// insertion happened.
template <class K, class... Args>
std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args);
// Similar to |emplace_key_args|, but checks |hint| first as a possible
// insertion position.
template <class K, class... Args>
std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint,
const K& key,
Args&&... args);
private:
// Helper class for e.g. lower_bound that can compare a value on the left
// to a key on the right.
struct KeyValueCompare {
// The key comparison object must outlive this class.
explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {}
template <typename T, typename U>
bool operator()(const T& lhs, const U& rhs) const {
return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs));
}
private:
const key_type& extract_if_value_type(const value_type& v) const {
GetKeyFromValue extractor;
return extractor(v);
}
template <typename K>
const K& extract_if_value_type(const K& k) const {
return k;
}
// RAW_PTR_EXCLUSION: Binary size increase. There's also little value to
// rewriting this member as it points to `flat_tree::comp_` and flat_tree
// itself should be holding raw_ptr/raw_ref if necessary.
RAW_PTR_EXCLUSION const key_compare& comp_;
};
iterator const_cast_it(const_iterator c_it) {
auto distance = std::distance(cbegin(), c_it);
return std::next(begin(), distance);
}
// This method is inspired by both std::map::insert(P&&) and
// std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent
// element is not present yet, otherwise it overwrites. It returns an iterator
// to the modified element and a flag indicating whether insertion or
// assignment happened.
template <class V>
std::pair<iterator, bool> insert_or_assign(V&& val) {
auto position = lower_bound(GetKeyFromValue()(val));
if (position == end() || value_comp()(val, *position))
return {body_.emplace(position, std::forward<V>(val)), true};
*position = std::forward<V>(val);
return {position, false};
}
// This method is similar to insert_or_assign, with the following differences:
// - Instead of searching [begin(), end()) it only searches [first, last).
// - In case no equivalent element is found, val is appended to the end of the
// underlying body and an iterator to the next bigger element in [first,
// last) is returned.
template <class V>
std::pair<iterator, bool> append_or_assign(iterator first,
iterator last,
V&& val) {
auto position = std::lower_bound(first, last, val, value_comp());
if (position == last || value_comp()(val, *position)) {
// emplace_back might invalidate position, which is why distance needs to
// be cached.
const difference_type distance = std::distance(begin(), position);
body_.emplace_back(std::forward<V>(val));
return {std::next(begin(), distance), true};
}
*position = std::forward<V>(val);
return {position, false};
}
// This method is similar to insert, with the following differences:
// - Instead of searching [begin(), end()) it only searches [first, last).
// - In case no equivalent element is found, val is appended to the end of the
// underlying body and an iterator to the next bigger element in [first,
// last) is returned.
template <class V>
std::pair<iterator, bool> append_unique(iterator first,
iterator last,
V&& val) {
auto position = std::lower_bound(first, last, val, value_comp());
if (position == last || value_comp()(val, *position)) {
// emplace_back might invalidate position, which is why distance needs to
// be cached.
const difference_type distance = std::distance(begin(), position);
body_.emplace_back(std::forward<V>(val));
return {std::next(begin(), distance), true};
}
return {position, false};
}
void sort_and_unique(iterator first, iterator last) {
// Preserve stability for the unique code below.
std::stable_sort(first, last, value_comp());
// lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs.
auto equal_comp = std::not_fn(value_comp());
erase(std::unique(first, last, equal_comp), last);
}
void sort_and_unique() { sort_and_unique(begin(), end()); }
// To support comparators that may not be possible to default-construct, we
// have to store an instance of Compare. Since Compare commonly is stateless,
// we use the NO_UNIQUE_ADDRESS attribute to save space.
NO_UNIQUE_ADDRESS key_compare comp_;
// Declare after |key_compare_comp_| to workaround GCC ICE. For details
// see https://crbug.com/1156268
container_type body_;
// If the compare is not transparent we want to construct key_type once.
template <typename K>
using KeyTypeOrK = std::conditional_t<requires {
typename key_compare::is_transparent;
}, K, key_type>;
};
// ----------------------------------------------------------------------------
// Lifetime.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
const KeyCompare& comp)
: comp_(comp) {}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
InputIterator first,
InputIterator last,
const KeyCompare& comp)
: comp_(comp), body_(first, last) {
sort_and_unique();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
const container_type& items,
const KeyCompare& comp)
: comp_(comp), body_(items) {
sort_and_unique();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
container_type&& items,
const KeyCompare& comp)
: comp_(comp), body_(std::move(items)) {
sort_and_unique();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
std::initializer_list<value_type> ilist,
const KeyCompare& comp)
: flat_tree(std::ranges::begin(ilist), std::ranges::end(ilist), comp) {}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
InputIterator first,
InputIterator last,
const KeyCompare& comp)
: comp_(comp), body_(first, last) {
DCHECK(is_sorted_and_unique(*this, value_comp()));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
const container_type& items,
const KeyCompare& comp)
: comp_(comp), body_(items) {
DCHECK(is_sorted_and_unique(*this, value_comp()));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
container_type&& items,
const KeyCompare& comp)
: comp_(comp), body_(std::move(items)) {
DCHECK(is_sorted_and_unique(*this, value_comp()));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
std::initializer_list<value_type> ilist,
const KeyCompare& comp)
: flat_tree(sorted_unique,
std::ranges::begin(ilist),
std::ranges::end(ilist),
comp) {}
// ----------------------------------------------------------------------------
// Assignments.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=(
std::initializer_list<value_type> ilist) -> flat_tree& {
body_ = ilist;
sort_and_unique();
return *this;
}
// ----------------------------------------------------------------------------
// Memory management.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve(
size_type new_capacity) {
body_.reserve(new_capacity);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const
-> size_type {
return body_.capacity();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() {
body_.shrink_to_fit();
}
// ----------------------------------------------------------------------------
// Size management.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() {
body_.clear();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size()
const -> size_type {
return body_.size();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const
-> size_type {
return body_.max_size();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty()
const {
return body_.empty();
}
// ----------------------------------------------------------------------------
// Iterators.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
-> iterator {
return body_.begin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
const -> const_iterator {
return std::ranges::begin(body_);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const
-> const_iterator {
return body_.cbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator {
return body_.end();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end()
const -> const_iterator {
return std::ranges::end(body_);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const
-> const_iterator {
return body_.cend();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin()
-> reverse_iterator {
return body_.rbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const
-> const_reverse_iterator {
return body_.rbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const
-> const_reverse_iterator {
return body_.crbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend()
-> reverse_iterator {
return body_.rend();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const
-> const_reverse_iterator {
return body_.rend();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const
-> const_reverse_iterator {
return body_.crend();
}
// ----------------------------------------------------------------------------
// Insert operations.
//
// Currently we use position_hint the same way as eastl or boost:
// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
const value_type& val) -> std::pair<iterator, bool> {
return emplace_key_args(GetKeyFromValue()(val), val);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
value_type&& val) -> std::pair<iterator, bool> {
return emplace_key_args(GetKeyFromValue()(val), std::move(val));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
const_iterator position_hint,
const value_type& val) -> iterator {
return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val)
.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
const_iterator position_hint,
value_type&& val) -> iterator {
return emplace_hint_key_args(position_hint, GetKeyFromValue()(val),
std::move(val))
.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIteratorPtr>
UNSAFE_BUFFER_USAGE void
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
InputIteratorPtr* input_begin,
InputIteratorPtr* input_end) {
// SAFETY: The caller must ensure the pointers are a valid pair.
auto s = UNSAFE_BUFFERS(base::span(input_begin, input_end));
insert(s.begin(), s.end());
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
requires(std::input_iterator<InputIterator>)
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
InputIterator input_begin,
InputIterator input_end) {
if (input_begin == input_end) {
return;
}
// Dispatch to single element insert if the input range contains a single
// element.
if (std::next(input_begin) == input_end) {
insert(end(), *input_begin);
return;
}
// Provide a convenience lambda to obtain an iterator pointing past the last
// old element. This needs to be dymanic due to possible re-allocations.
auto prior_end = [this, size = size()] {
return std::next(begin(), static_cast<difference_type>(size));
};
// For batch updates initialize the first insertion point.
auto pos_first_new = static_cast<difference_type>(size());
// Loop over the input range while appending new values and overwriting
// existing ones, if applicable. Keep track of the first insertion point.
for (auto it = input_begin; it != input_end; ++it) {
auto [inserted_at, inserted] = append_unique(begin(), prior_end(), *it);
if (inserted) {
pos_first_new =
std::min(pos_first_new, std::distance(begin(), inserted_at));
}
}
// The new elements might be unordered and contain duplicates, so post-process
// the just inserted elements and merge them with the rest, inserting them at
// the previously found spot.
sort_and_unique(prior_end(), end());
std::inplace_merge(std::next(begin(), pos_first_new), prior_end(), end(),
value_comp());
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class Range>
requires(std::ranges::input_range<Range>)
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert_range(
Range&& range) {
// SAFETY: A range should return a valid begin/end even if they are pointers.
UNSAFE_BUFFERS(insert(std::ranges::begin(range), std::ranges::end(range)));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace(
Args&&... args) -> std::pair<iterator, bool> {
return insert(value_type(std::forward<Args>(args)...));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint(
const_iterator position_hint,
Args&&... args) -> iterator {
return insert(position_hint, value_type(std::forward<Args>(args)...));
}
// ----------------------------------------------------------------------------
// Underlying type operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
extract() && -> container_type {
return std::exchange(body_, container_type());
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace(
container_type&& body) {
// Ensure that `body` is sorted and has no repeated elements according to
// `value_comp()`.
DCHECK(is_sorted_and_unique(body, value_comp()));
body_ = std::move(body);
}
// ----------------------------------------------------------------------------
// Erase operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
iterator position) -> iterator {
CHECK(position != body_.end());
return body_.erase(position);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename DummyT>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
const_iterator position) -> iterator {
CHECK(position != body_.end());
return body_.erase(position);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
const Key& val) -> size_type {
auto eq_range = equal_range(val);
auto res =
static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
erase(eq_range.first, eq_range.second);
return res;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val)
-> size_type {
auto eq_range = equal_range(val);
auto res =
static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
erase(eq_range.first, eq_range.second);
return res;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
const_iterator first,
const_iterator last) -> iterator {
return body_.erase(first, last);
}
// ----------------------------------------------------------------------------
// Comparators.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const
-> key_compare {
return comp_;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const
-> value_compare {
return value_compare{comp_};
}
// ----------------------------------------------------------------------------
// Search operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
const K& key) const -> size_type {
auto eq_range = equal_range(key);
return static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
const Key& key) const -> size_type {
auto eq_range = equal_range(key);
return static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
const Key& key) -> iterator {
return const_cast_it(std::as_const(*this).find(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
const Key& key) const -> const_iterator {
auto eq_range = equal_range(key);
return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key)
-> iterator {
return const_cast_it(std::as_const(*this).find(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
const K& key) const -> const_iterator {
auto eq_range = equal_range(key);
return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
const Key& key) const {
auto lower = lower_bound(key);
return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
const K& key) const {
auto lower = lower_bound(key);
return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const Key& key) -> std::pair<iterator, iterator> {
auto res = std::as_const(*this).equal_range(key);
return {const_cast_it(res.first), const_cast_it(res.second)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const Key& key) const -> std::pair<const_iterator, const_iterator> {
auto lower = lower_bound(key);
KeyValueCompare comp(comp_);
if (lower == end() || comp(key, *lower))
return {lower, lower};
return {lower, std::next(lower)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const K& key) -> std::pair<iterator, iterator> {
auto res = std::as_const(*this).equal_range(key);
return {const_cast_it(res.first), const_cast_it(res.second)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const K& key) const -> std::pair<const_iterator, const_iterator> {
auto lower = lower_bound(key);
KeyValueCompare comp(comp_);
if (lower == end() || comp(key, *lower))
return {lower, lower};
return {lower, std::next(lower)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const Key& key) -> iterator {
return const_cast_it(std::as_const(*this).lower_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const Key& key) const -> const_iterator {
KeyValueCompare comp(comp_);
return ranges::lower_bound(*this, key, comp);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const K& key) -> iterator {
return const_cast_it(std::as_const(*this).lower_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const K& key) const -> const_iterator {
static_assert(std::is_convertible_v<const KeyTypeOrK<K>&, const K&>,
"Requested type cannot be bound to the container's key_type "
"which is required for a non-transparent compare.");
const KeyTypeOrK<K>& key_ref = key;
KeyValueCompare comp(comp_);
return ranges::lower_bound(*this, key_ref, comp);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const Key& key) -> iterator {
return const_cast_it(std::as_const(*this).upper_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const Key& key) const -> const_iterator {
KeyValueCompare comp(comp_);
return ranges::upper_bound(*this, key, comp);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const K& key) -> iterator {
return const_cast_it(std::as_const(*this).upper_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const K& key) const -> const_iterator {
static_assert(std::is_convertible_v<const KeyTypeOrK<K>&, const K&>,
"Requested type cannot be bound to the container's key_type "
"which is required for a non-transparent compare.");
const KeyTypeOrK<K>& key_ref = key;
KeyValueCompare comp(comp_);
return ranges::upper_bound(*this, key_ref, comp);
}
// ----------------------------------------------------------------------------
// General operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap(
flat_tree& other) noexcept {
std::swap(*this, other);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace(
const_iterator position,
Args&&... args) -> iterator {
return body_.emplace(position, std::forward<Args>(args)...);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class K, class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args(
const K& key,
Args&&... args) -> std::pair<iterator, bool> {
auto lower = lower_bound(key);
if (lower == end() || comp_(key, GetKeyFromValue()(*lower)))
return {unsafe_emplace(lower, std::forward<Args>(args)...), true};
return {lower, false};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class K, class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args)
-> std::pair<iterator, bool> {
KeyValueCompare comp(comp_);
if ((hint == begin() || comp(*std::prev(hint), key))) {
if (hint == end() || comp(key, *hint)) {
// *(hint - 1) < key < *hint => key did not exist and hint is correct.
return {unsafe_emplace(hint, std::forward<Args>(args)...), true};
}
if (!comp(*hint, key)) {
// key == *hint => no-op, return correct hint.
return {const_cast_it(hint), false};
}
}
// hint was not helpful, dispatch to hintless version.
return emplace_key_args(key, std::forward<Args>(args)...);
}
} // namespace internal
// ----------------------------------------------------------------------------
// Free functions.
// Erases all elements that match predicate. It has O(size) complexity.
template <class Key,
class GetKeyFromValue,
class KeyCompare,
class Container,
typename Predicate>
size_t EraseIf(
base::internal::flat_tree<Key, GetKeyFromValue, KeyCompare, Container>&
container,
Predicate pred) {
auto it = ranges::remove_if(container, pred);
size_t removed = std::distance(it, container.end());
container.erase(it, container.end());
return removed;
}
} // namespace base
#endif // BASE_CONTAINERS_FLAT_TREE_H_