1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
base / containers / small_map.h [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SMALL_MAP_H_
#define BASE_CONTAINERS_SMALL_MAP_H_
#include <stddef.h>
#include <array>
#include <limits>
#include <map>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/adapters.h"
#include "base/containers/span.h"
#include "base/memory/stack_allocated.h"
#include "base/numerics/safe_conversions.h"
#include "base/types/to_address.h"
inline constexpr size_t kUsingFullMapSentinel =
std::numeric_limits<size_t>::max();
namespace base {
// small_map is a container with a std::map-like interface. It starts out backed
// by an unsorted array but switches to some other container type if it grows
// beyond this fixed size.
//
// Please see //base/containers/README.md for an overview of which container
// to select.
//
// PROS
//
// - Good memory locality and low overhead for smaller maps.
// - Handles large maps without the degenerate performance of flat_map.
//
// CONS
//
// - Larger code size than the alternatives.
//
// IMPORTANT NOTES
//
// - Iterators are invalidated across mutations.
//
// DETAILS
//
// base::small_map will pick up the comparator from the underlying map type. In
// std::map only a "less" operator is defined, which requires us to do two
// comparisons per element when doing the brute-force search in the simple
// array. std::unordered_map has a key_equal function which will be used.
//
// We define default overrides for the common map types to avoid this
// double-compare, but you should be aware of this if you use your own operator<
// for your map and supply your own version of == to the small_map. You can use
// regular operator== by just doing:
//
// base::small_map<std::map<MyKey, MyValue>, 4, std::equal_to<KyKey>>
//
//
// USAGE
// -----
//
// NormalMap: The map type to fall back to. This also defines the key and value
// types for the small_map.
// kArraySize: The size of the initial array of results. This will be allocated
// with the small_map object rather than separately on the heap.
// Once the map grows beyond this size, the map type will be used
// instead.
// EqualKey: A functor which tests two keys for equality. If the wrapped map
// type has a "key_equal" member (unordered_map does), then that will
// be used by default. If the wrapped map type has a strict weak
// ordering "key_compare" (std::map does), that will be used to
// implement equality by default.
// MapInit: A functor that takes a NormalMap* and uses it to initialize the map.
// This functor will be called at most once per small_map, when the map
// exceeds the threshold of kArraySize and we are about to copy values
// from the array to the map. The functor *must* initialize the
// NormalMap* argument with placement new, since after it runs we
// assume that the NormalMap has been initialized.
//
// Example:
// base::small_map<std::map<string, int>> days;
// days["sunday" ] = 0;
// days["monday" ] = 1;
// days["tuesday" ] = 2;
// days["wednesday"] = 3;
// days["thursday" ] = 4;
// days["friday" ] = 5;
// days["saturday" ] = 6;
namespace internal {
template <typename NormalMap>
class small_map_default_init {
public:
void operator()(NormalMap* map) const { std::construct_at(map); }
};
// has_key_equal<M>::value is true iff there exists a type M::key_equal. This is
// used to dispatch to one of the select_equal_key<> metafunctions below.
template <typename M>
struct has_key_equal {
typedef char sml; // "small" is sometimes #defined so we use an abbreviation.
typedef struct { char dummy[2]; } big;
// Two functions, one accepts types that have a key_equal member, and one that
// accepts anything. They each return a value of a different size, so we can
// determine at compile-time which function would have been called.
template <typename U> static big test(typename U::key_equal*);
template <typename> static sml test(...);
// Determines if M::key_equal exists by looking at the size of the return
// type of the compiler-chosen test() function.
static const bool value = (sizeof(test<M>(0)) == sizeof(big));
};
template <typename M> const bool has_key_equal<M>::value;
// Base template used for map types that do NOT have an M::key_equal member,
// e.g., std::map<>. These maps have a strict weak ordering comparator rather
// than an equality functor, so equality will be implemented in terms of that
// comparator.
//
// There's a partial specialization of this template below for map types that do
// have an M::key_equal member.
template <typename M, bool has_key_equal_value>
struct select_equal_key {
struct equal_key {
bool operator()(const typename M::key_type& left,
const typename M::key_type& right) {
// Implements equality in terms of a strict weak ordering comparator.
typename M::key_compare comp;
return !comp(left, right) && !comp(right, left);
}
};
};
// Partial template specialization handles case where M::key_equal exists, e.g.,
// unordered_map<>.
template <typename M>
struct select_equal_key<M, true> {
typedef typename M::key_equal equal_key;
};
} // namespace internal
template <typename NormalMap,
size_t kArraySize = 4,
typename EqualKey = typename internal::select_equal_key<
NormalMap,
internal::has_key_equal<NormalMap>::value>::equal_key,
typename MapInit = internal::small_map_default_init<NormalMap>>
class small_map {
static_assert(kArraySize > 0, "Initial size must be greater than 0");
static_assert(kArraySize != kUsingFullMapSentinel,
"Initial size out of range");
public:
using key_type = NormalMap::key_type;
using data_type = NormalMap::mapped_type;
using mapped_type = NormalMap::mapped_type;
using value_type = NormalMap::value_type;
using key_equal = EqualKey;
constexpr small_map() : functor_(MapInit()) { InitEmpty(); }
constexpr explicit small_map(const MapInit& functor) : functor_(functor) {
InitEmpty();
}
// Allow copy-constructor and assignment, since STL allows them too.
constexpr small_map(const small_map& src) {
// size_ and functor_ are initted in InitFrom()
InitFrom(src);
}
constexpr void operator=(const small_map& src) {
if (&src == this) return;
// This is not optimal. If src and dest are both using the small array, we
// could skip the teardown and reconstruct. One problem to be resolved is
// that the value_type itself is pair<const K, V>, and const K is not
// assignable.
Destroy();
InitFrom(src);
}
~small_map() { Destroy(); }
// The elements in the inline array storage. They are held in a union so that
// they can be constructed lazily as they are inserted, and can be destroyed
// when they are erased.
union ArrayElement {
ArrayElement() {}
~ArrayElement() {}
value_type value;
};
class const_iterator;
class iterator {
STACK_ALLOCATED();
using map_iterator = NormalMap::iterator;
using array_iterator = span<ArrayElement>::iterator;
public:
using iterator_category = map_iterator::iterator_category;
using value_type = map_iterator::value_type;
using difference_type = map_iterator::difference_type;
using pointer = map_iterator::pointer;
using reference = map_iterator::reference;
iterator() = default;
constexpr iterator& operator++() {
if (has_array_iter()) {
++array_iter_;
} else {
++map_iter_;
}
return *this;
}
constexpr iterator operator++(int /*unused*/) {
iterator result(*this);
++(*this);
return result;
}
constexpr value_type* operator->() const {
return has_array_iter() ? std::addressof(array_iter_->value)
: std::addressof(*map_iter_);
}
constexpr value_type& operator*() const {
return has_array_iter() ? array_iter_->value : *map_iter_;
}
constexpr bool operator==(const iterator& other) const {
if (has_array_iter()) {
return array_iter_ == other.array_iter_;
} else {
return !other.has_array_iter() && map_iter_ == other.map_iter_;
}
}
private:
friend class small_map;
friend class const_iterator;
constexpr explicit iterator(const array_iterator& init)
: array_iter_(init) {}
constexpr explicit iterator(const map_iterator& init) : map_iter_(init) {}
constexpr bool has_array_iter() const {
return base::to_address(array_iter_) != nullptr;
}
array_iterator array_iter_;
map_iterator map_iter_;
};
class const_iterator {
STACK_ALLOCATED();
using map_iterator = NormalMap::const_iterator;
using array_iterator = span<const ArrayElement>::iterator;
public:
using iterator_category = map_iterator::iterator_category;
using value_type = map_iterator::value_type;
using difference_type = map_iterator::difference_type;
using pointer = map_iterator::pointer;
using reference = map_iterator::reference;
const_iterator() = default;
// Non-explicit constructor lets us convert regular iterators to const
// iterators.
constexpr const_iterator(const iterator& other)
: array_iter_(other.array_iter_), map_iter_(other.map_iter_) {}
constexpr const_iterator& operator++() {
if (has_array_iter()) {
++array_iter_;
} else {
++map_iter_;
}
return *this;
}
constexpr const_iterator operator++(int /*unused*/) {
const_iterator result(*this);
++(*this);
return result;
}
constexpr const value_type* operator->() const {
return has_array_iter() ? std::addressof(array_iter_->value)
: std::addressof(*map_iter_);
}
constexpr const value_type& operator*() const {
return has_array_iter() ? array_iter_->value : *map_iter_;
}
constexpr bool operator==(const const_iterator& other) const {
if (has_array_iter()) {
return array_iter_ == other.array_iter_;
}
return !other.has_array_iter() && map_iter_ == other.map_iter_;
}
private:
friend class small_map;
constexpr explicit const_iterator(const array_iterator& init)
: array_iter_(init) {}
constexpr explicit const_iterator(const map_iterator& init)
: map_iter_(init) {}
constexpr bool has_array_iter() const {
return base::to_address(array_iter_) != nullptr;
}
array_iterator array_iter_;
map_iterator map_iter_;
};
constexpr iterator find(const key_type& key) {
key_equal compare;
if (UsingFullMap()) {
return iterator(map()->find(key));
}
span<ArrayElement> r = sized_array_span();
auto it = r.begin();
for (; it != r.end(); ++it) {
if (compare(it->value.first, key)) {
return iterator(it);
}
}
return iterator(it);
}
constexpr const_iterator find(const key_type& key) const {
key_equal compare;
if (UsingFullMap()) {
return const_iterator(map()->find(key));
}
span<const ArrayElement> r = sized_array_span();
auto it = r.begin();
for (; it != r.end(); ++it) {
if (compare(it->value.first, key)) {
return const_iterator(it);
}
}
return const_iterator(it);
}
// Invalidates iterators.
constexpr data_type& operator[](const key_type& key)
requires(std::is_default_constructible_v<data_type>)
{
key_equal compare;
if (UsingFullMap()) {
return map_[key];
}
// Search backwards to favor recently-added elements.
span<ArrayElement> r = sized_array_span();
for (ArrayElement& e : Reversed(r)) {
if (compare(e.value.first, key)) {
return e.value.second;
}
}
if (size_ == kArraySize) {
ConvertToRealMap();
return map_[key];
}
ArrayElement& e = array_[size_++];
std::construct_at(std::addressof(e.value), key, data_type());
return e.value.second;
}
// Invalidates iterators.
constexpr std::pair<iterator, bool> insert(const value_type& x) {
key_equal compare;
if (UsingFullMap()) {
auto [map_iter, inserted] = map_.insert(x);
return std::make_pair(iterator(map_iter), inserted);
}
span<ArrayElement> r = sized_array_span();
for (auto it = r.begin(); it != r.end(); ++it) {
if (compare(it->value.first, x.first)) {
return std::make_pair(iterator(it), false);
}
}
if (size_ == kArraySize) {
ConvertToRealMap(); // Invalidates all iterators!
auto [map_iter, inserted] = map_.insert(x);
return std::make_pair(iterator(map_iter), inserted);
}
ArrayElement& e = array_[size_++];
std::construct_at(std::addressof(e.value), x);
return std::make_pair(iterator(sized_array_span().end() - 1u), true);
}
// Invalidates iterators.
template <class InputIterator>
constexpr void insert(InputIterator f, InputIterator l) {
while (f != l) {
insert(*f);
++f;
}
}
// Invalidates iterators.
template <typename... Args>
constexpr std::pair<iterator, bool> emplace(Args&&... args) {
key_equal compare;
if (UsingFullMap()) {
auto [map_iter, inserted] = map_.emplace(std::forward<Args>(args)...);
return std::make_pair(iterator(map_iter), inserted);
}
value_type x(std::forward<Args>(args)...);
span<ArrayElement> r = sized_array_span();
for (auto it = r.begin(); it != r.end(); ++it) {
if (compare(it->value.first, x.first)) {
return std::make_pair(iterator(it), false);
}
}
if (size_ == kArraySize) {
ConvertToRealMap(); // Invalidates all iterators!
auto [map_iter, inserted] = map_.emplace(std::move(x));
return std::make_pair(iterator(map_iter), inserted);
}
ArrayElement& p = array_[size_++];
std::construct_at(std::addressof(p.value), std::move(x));
return std::make_pair(iterator(sized_array_span().end() - 1u), true);
}
constexpr iterator begin() {
return UsingFullMap() ? iterator(map_.begin())
: iterator(sized_array_span().begin());
}
constexpr const_iterator begin() const {
return UsingFullMap() ? const_iterator(map_.begin())
: const_iterator(sized_array_span().begin());
}
constexpr iterator end() {
return UsingFullMap() ? iterator(map_.end())
: iterator(sized_array_span().end());
}
constexpr const_iterator end() const {
return UsingFullMap() ? const_iterator(map_.end())
: const_iterator(sized_array_span().end());
}
constexpr void clear() {
if (UsingFullMap()) {
// Make the array active in the union.
map_.~NormalMap();
std::construct_at(&array_);
} else {
for (ArrayElement& e : sized_array_span()) {
e.value.~value_type();
}
}
size_ = 0u;
}
// Invalidates iterators. Returns iterator following the last removed element.
constexpr iterator erase(const iterator& position) {
if (UsingFullMap()) {
return iterator(map_.erase(position.map_iter_));
}
auto erase_pos = position.array_iter_;
auto last_pos = sized_array_span().end() - 1u;
if (erase_pos == last_pos) {
erase_pos->value.~value_type();
--size_;
return end();
} else {
ptrdiff_t index = std::ranges::distance(begin().array_iter_, erase_pos);
erase_pos->value.~value_type();
std::construct_at(std::addressof(erase_pos->value),
std::move(last_pos->value));
last_pos->value.~value_type();
--size_;
return iterator(sized_array_span().begin() + index);
}
}
constexpr size_t erase(const key_type& key) {
iterator iter = find(key);
if (iter == end()) {
return 0u;
}
erase(iter);
return 1u;
}
constexpr size_t count(const key_type& key) const {
return (find(key) == end()) ? 0u : 1u;
}
constexpr size_t size() const { return UsingFullMap() ? map_.size() : size_; }
constexpr bool empty() const {
return UsingFullMap() ? map_.empty() : size_ == 0u;
}
// Returns true if we have fallen back to using the underlying map
// representation.
constexpr bool UsingFullMap() const { return size_ == kUsingFullMapSentinel; }
constexpr NormalMap* map() {
CHECK(UsingFullMap());
return &map_;
}
constexpr const NormalMap* map() const {
CHECK(UsingFullMap());
return &map_;
}
private:
// When `size_ == kUsingFullMapSentinel`, we have switched storage strategies
// from `array_[kArraySize] to `NormalMap map_`. See ConvertToRealMap and
// UsingFullMap.
size_t size_ = 0u;
MapInit functor_;
// We want to call constructors and destructors manually, but we don't want
// to allocate and deallocate the memory used for them separately. Since
// array_ and map_ are mutually exclusive, we'll put them in a union.
using ArrayMap = std::array<ArrayElement, kArraySize>;
union {
ArrayMap array_;
NormalMap map_;
};
constexpr span<ArrayElement> sized_array_span() {
CHECK(!UsingFullMap());
return span(array_).first(size_);
}
constexpr span<const ArrayElement> sized_array_span() const {
CHECK(!UsingFullMap());
return span(array_).first(size_);
}
constexpr void ConvertToRealMap() {
CHECK_EQ(size_, kArraySize);
std::array<ArrayElement, kArraySize> temp_array;
// Move the current elements into a temporary array.
for (size_t i = 0u; i < kArraySize; ++i) {
ArrayElement& e = temp_array[i];
std::construct_at(std::addressof(e.value), std::move(array_[i].value));
array_[i].value.~value_type();
}
// Make the map active in the union.
size_ = kUsingFullMapSentinel;
array_.~ArrayMap();
functor_(&map_);
// Insert elements into it.
for (ArrayElement& e : temp_array) {
map_.insert(std::move(e.value));
e.value.~value_type();
}
}
// Helpers for constructors and destructors.
constexpr void InitEmpty() {
// Make the array active in the union.
std::construct_at(&array_);
}
constexpr void InitFrom(const small_map& src) {
functor_ = src.functor_;
size_ = src.size_;
if (src.UsingFullMap()) {
// Make the map active in the union.
functor_(&map_);
map_ = src.map_;
} else {
// Make the array active in the union.
std::construct_at(&array_);
for (size_t i = 0u; i < size_; ++i) {
ArrayElement& e = array_[i];
std::construct_at(std::addressof(e.value), src.array_[i].value);
}
}
}
constexpr void Destroy() {
if (UsingFullMap()) {
map_.~NormalMap();
} else {
for (size_t i = 0u; i < size_; ++i) {
array_[i].value.~value_type();
}
array_.~ArrayMap();
}
}
};
} // namespace base
#endif // BASE_CONTAINERS_SMALL_MAP_H_