1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636

base / containers / small_map.h [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_CONTAINERS_SMALL_MAP_H_
#define BASE_CONTAINERS_SMALL_MAP_H_

#include <stddef.h>

#include <array>
#include <limits>
#include <map>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>

#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/adapters.h"
#include "base/containers/span.h"
#include "base/memory/stack_allocated.h"
#include "base/numerics/safe_conversions.h"
#include "base/types/to_address.h"

inline constexpr size_t kUsingFullMapSentinel =
    std::numeric_limits<size_t>::max();

namespace base {

// small_map is a container with a std::map-like interface. It starts out backed
// by an unsorted array but switches to some other container type if it grows
// beyond this fixed size.
//
// Please see //base/containers/README.md for an overview of which container
// to select.
//
// PROS
//
//  - Good memory locality and low overhead for smaller maps.
//  - Handles large maps without the degenerate performance of flat_map.
//
// CONS
//
//  - Larger code size than the alternatives.
//
// IMPORTANT NOTES
//
//  - Iterators are invalidated across mutations.
//
// DETAILS
//
// base::small_map will pick up the comparator from the underlying map type. In
// std::map only a "less" operator is defined, which requires us to do two
// comparisons per element when doing the brute-force search in the simple
// array. std::unordered_map has a key_equal function which will be used.
//
// We define default overrides for the common map types to avoid this
// double-compare, but you should be aware of this if you use your own operator<
// for your map and supply your own version of == to the small_map. You can use
// regular operator== by just doing:
//
//   base::small_map<std::map<MyKey, MyValue>, 4, std::equal_to<KyKey>>
//
//
// USAGE
// -----
//
// NormalMap:  The map type to fall back to. This also defines the key and value
//             types for the small_map.
// kArraySize:  The size of the initial array of results. This will be allocated
//              with the small_map object rather than separately on the heap.
//              Once the map grows beyond this size, the map type will be used
//              instead.
// EqualKey:  A functor which tests two keys for equality. If the wrapped map
//            type has a "key_equal" member (unordered_map does), then that will
//            be used by default. If the wrapped map type has a strict weak
//            ordering "key_compare" (std::map does), that will be used to
//            implement equality by default.
// MapInit: A functor that takes a NormalMap* and uses it to initialize the map.
//          This functor will be called at most once per small_map, when the map
//          exceeds the threshold of kArraySize and we are about to copy values
//          from the array to the map. The functor *must* initialize the
//          NormalMap* argument with placement new, since after it runs we
//          assume that the NormalMap has been initialized.
//
// Example:
//   base::small_map<std::map<string, int>> days;
//   days["sunday"   ] = 0;
//   days["monday"   ] = 1;
//   days["tuesday"  ] = 2;
//   days["wednesday"] = 3;
//   days["thursday" ] = 4;
//   days["friday"   ] = 5;
//   days["saturday" ] = 6;

namespace internal {

template <typename NormalMap>
class small_map_default_init {
 public:
  void operator()(NormalMap* map) const { std::construct_at(map); }
};

// has_key_equal<M>::value is true iff there exists a type M::key_equal. This is
// used to dispatch to one of the select_equal_key<> metafunctions below.
template <typename M>
struct has_key_equal {
  typedef char sml;  // "small" is sometimes #defined so we use an abbreviation.
  typedef struct { char dummy[2]; } big;
  // Two functions, one accepts types that have a key_equal member, and one that
  // accepts anything. They each return a value of a different size, so we can
  // determine at compile-time which function would have been called.
  template <typename U> static big test(typename U::key_equal*);
  template <typename> static sml test(...);
  // Determines if M::key_equal exists by looking at the size of the return
  // type of the compiler-chosen test() function.
  static const bool value = (sizeof(test<M>(0)) == sizeof(big));
};
template <typename M> const bool has_key_equal<M>::value;

// Base template used for map types that do NOT have an M::key_equal member,
// e.g., std::map<>. These maps have a strict weak ordering comparator rather
// than an equality functor, so equality will be implemented in terms of that
// comparator.
//
// There's a partial specialization of this template below for map types that do
// have an M::key_equal member.
template <typename M, bool has_key_equal_value>
struct select_equal_key {
  struct equal_key {
    bool operator()(const typename M::key_type& left,
                    const typename M::key_type& right) {
      // Implements equality in terms of a strict weak ordering comparator.
      typename M::key_compare comp;
      return !comp(left, right) && !comp(right, left);
    }
  };
};

// Partial template specialization handles case where M::key_equal exists, e.g.,
// unordered_map<>.
template <typename M>
struct select_equal_key<M, true> {
  typedef typename M::key_equal equal_key;
};

}  // namespace internal

template <typename NormalMap,
          size_t kArraySize = 4,
          typename EqualKey = typename internal::select_equal_key<
              NormalMap,
              internal::has_key_equal<NormalMap>::value>::equal_key,
          typename MapInit = internal::small_map_default_init<NormalMap>>
class small_map {
  static_assert(kArraySize > 0, "Initial size must be greater than 0");
  static_assert(kArraySize != kUsingFullMapSentinel,
                "Initial size out of range");

 public:
  using key_type = NormalMap::key_type;
  using data_type = NormalMap::mapped_type;
  using mapped_type = NormalMap::mapped_type;
  using value_type = NormalMap::value_type;
  using key_equal = EqualKey;

  constexpr small_map() : functor_(MapInit()) { InitEmpty(); }

  constexpr explicit small_map(const MapInit& functor) : functor_(functor) {
    InitEmpty();
  }

  // Allow copy-constructor and assignment, since STL allows them too.
  constexpr small_map(const small_map& src) {
    // size_ and functor_ are initted in InitFrom()
    InitFrom(src);
  }

  constexpr void operator=(const small_map& src) {
    if (&src == this) return;

    // This is not optimal. If src and dest are both using the small array, we
    // could skip the teardown and reconstruct. One problem to be resolved is
    // that the value_type itself is pair<const K, V>, and const K is not
    // assignable.
    Destroy();
    InitFrom(src);
  }

  ~small_map() { Destroy(); }

  // The elements in the inline array storage. They are held in a union so that
  // they can be constructed lazily as they are inserted, and can be destroyed
  // when they are erased.
  union ArrayElement {
    ArrayElement() {}
    ~ArrayElement() {}

    value_type value;
  };

  class const_iterator;

  class iterator {
    STACK_ALLOCATED();

    using map_iterator = NormalMap::iterator;
    using array_iterator = span<ArrayElement>::iterator;

   public:
    using iterator_category = map_iterator::iterator_category;
    using value_type = map_iterator::value_type;
    using difference_type = map_iterator::difference_type;
    using pointer = map_iterator::pointer;
    using reference = map_iterator::reference;

    iterator() = default;

    constexpr iterator& operator++() {
      if (has_array_iter()) {
        ++array_iter_;
      } else {
        ++map_iter_;
      }
      return *this;
    }

    constexpr iterator operator++(int /*unused*/) {
      iterator result(*this);
      ++(*this);
      return result;
    }

    constexpr value_type* operator->() const {
      return has_array_iter() ? std::addressof(array_iter_->value)
                              : std::addressof(*map_iter_);
    }

    constexpr value_type& operator*() const {
      return has_array_iter() ? array_iter_->value : *map_iter_;
    }

    constexpr bool operator==(const iterator& other) const {
      if (has_array_iter()) {
        return array_iter_ == other.array_iter_;
      } else {
        return !other.has_array_iter() && map_iter_ == other.map_iter_;
      }
    }

   private:
    friend class small_map;
    friend class const_iterator;
    constexpr explicit iterator(const array_iterator& init)
        : array_iter_(init) {}
    constexpr explicit iterator(const map_iterator& init) : map_iter_(init) {}

    constexpr bool has_array_iter() const {
      return base::to_address(array_iter_) != nullptr;
    }

    array_iterator array_iter_;
    map_iterator map_iter_;
  };

  class const_iterator {
    STACK_ALLOCATED();

    using map_iterator = NormalMap::const_iterator;
    using array_iterator = span<const ArrayElement>::iterator;

   public:
    using iterator_category = map_iterator::iterator_category;
    using value_type = map_iterator::value_type;
    using difference_type = map_iterator::difference_type;
    using pointer = map_iterator::pointer;
    using reference = map_iterator::reference;

    const_iterator() = default;

    // Non-explicit constructor lets us convert regular iterators to const
    // iterators.
    constexpr const_iterator(const iterator& other)
        : array_iter_(other.array_iter_), map_iter_(other.map_iter_) {}

    constexpr const_iterator& operator++() {
      if (has_array_iter()) {
        ++array_iter_;
      } else {
        ++map_iter_;
      }
      return *this;
    }

    constexpr const_iterator operator++(int /*unused*/) {
      const_iterator result(*this);
      ++(*this);
      return result;
    }

    constexpr const value_type* operator->() const {
      return has_array_iter() ? std::addressof(array_iter_->value)
                              : std::addressof(*map_iter_);
    }

    constexpr const value_type& operator*() const {
      return has_array_iter() ? array_iter_->value : *map_iter_;
    }

    constexpr bool operator==(const const_iterator& other) const {
      if (has_array_iter()) {
        return array_iter_ == other.array_iter_;
      }
      return !other.has_array_iter() && map_iter_ == other.map_iter_;
    }

   private:
    friend class small_map;
    constexpr explicit const_iterator(const array_iterator& init)
        : array_iter_(init) {}
    constexpr explicit const_iterator(const map_iterator& init)
        : map_iter_(init) {}

    constexpr bool has_array_iter() const {
      return base::to_address(array_iter_) != nullptr;
    }

    array_iterator array_iter_;
    map_iterator map_iter_;
  };

  constexpr iterator find(const key_type& key) {
    key_equal compare;

    if (UsingFullMap()) {
      return iterator(map()->find(key));
    }

    span<ArrayElement> r = sized_array_span();
    auto it = r.begin();
    for (; it != r.end(); ++it) {
      if (compare(it->value.first, key)) {
        return iterator(it);
      }
    }
    return iterator(it);
  }

  constexpr const_iterator find(const key_type& key) const {
    key_equal compare;

    if (UsingFullMap()) {
      return const_iterator(map()->find(key));
    }

    span<const ArrayElement> r = sized_array_span();
    auto it = r.begin();
    for (; it != r.end(); ++it) {
      if (compare(it->value.first, key)) {
        return const_iterator(it);
      }
    }
    return const_iterator(it);
  }

  // Invalidates iterators.
  constexpr data_type& operator[](const key_type& key)
    requires(std::is_default_constructible_v<data_type>)
  {
    key_equal compare;

    if (UsingFullMap()) {
      return map_[key];
    }

    // Search backwards to favor recently-added elements.
    span<ArrayElement> r = sized_array_span();
    for (ArrayElement& e : Reversed(r)) {
      if (compare(e.value.first, key)) {
        return e.value.second;
      }
    }

    if (size_ == kArraySize) {
      ConvertToRealMap();
      return map_[key];
    }

    ArrayElement& e = array_[size_++];
    std::construct_at(std::addressof(e.value), key, data_type());
    return e.value.second;
  }

  // Invalidates iterators.
  constexpr std::pair<iterator, bool> insert(const value_type& x) {
    key_equal compare;

    if (UsingFullMap()) {
      auto [map_iter, inserted] = map_.insert(x);
      return std::make_pair(iterator(map_iter), inserted);
    }

    span<ArrayElement> r = sized_array_span();
    for (auto it = r.begin(); it != r.end(); ++it) {
      if (compare(it->value.first, x.first)) {
        return std::make_pair(iterator(it), false);
      }
    }

    if (size_ == kArraySize) {
      ConvertToRealMap();  // Invalidates all iterators!
      auto [map_iter, inserted] = map_.insert(x);
      return std::make_pair(iterator(map_iter), inserted);
    }

    ArrayElement& e = array_[size_++];
    std::construct_at(std::addressof(e.value), x);
    return std::make_pair(iterator(sized_array_span().end() - 1u), true);
  }

  // Invalidates iterators.
  template <class InputIterator>
  constexpr void insert(InputIterator f, InputIterator l) {
    while (f != l) {
      insert(*f);
      ++f;
    }
  }

  // Invalidates iterators.
  template <typename... Args>
  constexpr std::pair<iterator, bool> emplace(Args&&... args) {
    key_equal compare;

    if (UsingFullMap()) {
      auto [map_iter, inserted] = map_.emplace(std::forward<Args>(args)...);
      return std::make_pair(iterator(map_iter), inserted);
    }

    value_type x(std::forward<Args>(args)...);
    span<ArrayElement> r = sized_array_span();
    for (auto it = r.begin(); it != r.end(); ++it) {
      if (compare(it->value.first, x.first)) {
        return std::make_pair(iterator(it), false);
      }
    }

    if (size_ == kArraySize) {
      ConvertToRealMap();  // Invalidates all iterators!
      auto [map_iter, inserted] = map_.emplace(std::move(x));
      return std::make_pair(iterator(map_iter), inserted);
    }

    ArrayElement& p = array_[size_++];
    std::construct_at(std::addressof(p.value), std::move(x));
    return std::make_pair(iterator(sized_array_span().end() - 1u), true);
  }

  constexpr iterator begin() {
    return UsingFullMap() ? iterator(map_.begin())
                          : iterator(sized_array_span().begin());
  }

  constexpr const_iterator begin() const {
    return UsingFullMap() ? const_iterator(map_.begin())
                          : const_iterator(sized_array_span().begin());
  }

  constexpr iterator end() {
    return UsingFullMap() ? iterator(map_.end())
                          : iterator(sized_array_span().end());
  }

  constexpr const_iterator end() const {
    return UsingFullMap() ? const_iterator(map_.end())
                          : const_iterator(sized_array_span().end());
  }

  constexpr void clear() {
    if (UsingFullMap()) {
      // Make the array active in the union.
      map_.~NormalMap();
      std::construct_at(&array_);
    } else {
      for (ArrayElement& e : sized_array_span()) {
        e.value.~value_type();
      }
    }
    size_ = 0u;
  }

  // Invalidates iterators. Returns iterator following the last removed element.
  constexpr iterator erase(const iterator& position) {
    if (UsingFullMap()) {
      return iterator(map_.erase(position.map_iter_));
    }

    auto erase_pos = position.array_iter_;
    auto last_pos = sized_array_span().end() - 1u;

    if (erase_pos == last_pos) {
      erase_pos->value.~value_type();
      --size_;
      return end();
    } else {
      ptrdiff_t index = std::ranges::distance(begin().array_iter_, erase_pos);
      erase_pos->value.~value_type();
      std::construct_at(std::addressof(erase_pos->value),
                        std::move(last_pos->value));
      last_pos->value.~value_type();
      --size_;
      return iterator(sized_array_span().begin() + index);
    }
  }

  constexpr size_t erase(const key_type& key) {
    iterator iter = find(key);
    if (iter == end()) {
      return 0u;
    }
    erase(iter);
    return 1u;
  }

  constexpr size_t count(const key_type& key) const {
    return (find(key) == end()) ? 0u : 1u;
  }

  constexpr size_t size() const { return UsingFullMap() ? map_.size() : size_; }

  constexpr bool empty() const {
    return UsingFullMap() ? map_.empty() : size_ == 0u;
  }

  // Returns true if we have fallen back to using the underlying map
  // representation.
  constexpr bool UsingFullMap() const { return size_ == kUsingFullMapSentinel; }

  constexpr NormalMap* map() {
    CHECK(UsingFullMap());
    return &map_;
  }

  constexpr const NormalMap* map() const {
    CHECK(UsingFullMap());
    return &map_;
  }

 private:
  // When `size_ == kUsingFullMapSentinel`, we have switched storage strategies
  // from `array_[kArraySize] to `NormalMap map_`. See ConvertToRealMap and
  // UsingFullMap.
  size_t size_ = 0u;

  MapInit functor_;

  // We want to call constructors and destructors manually, but we don't want
  // to allocate and deallocate the memory used for them separately. Since
  // array_ and map_ are mutually exclusive, we'll put them in a union.
  using ArrayMap = std::array<ArrayElement, kArraySize>;
  union {
    ArrayMap array_;
    NormalMap map_;
  };

  constexpr span<ArrayElement> sized_array_span() {
    CHECK(!UsingFullMap());
    return span(array_).first(size_);
  }
  constexpr span<const ArrayElement> sized_array_span() const {
    CHECK(!UsingFullMap());
    return span(array_).first(size_);
  }

  constexpr void ConvertToRealMap() {
    CHECK_EQ(size_, kArraySize);

    std::array<ArrayElement, kArraySize> temp_array;

    // Move the current elements into a temporary array.
    for (size_t i = 0u; i < kArraySize; ++i) {
      ArrayElement& e = temp_array[i];
      std::construct_at(std::addressof(e.value), std::move(array_[i].value));
      array_[i].value.~value_type();
    }

    // Make the map active in the union.
    size_ = kUsingFullMapSentinel;
    array_.~ArrayMap();
    functor_(&map_);

    // Insert elements into it.
    for (ArrayElement& e : temp_array) {
      map_.insert(std::move(e.value));
      e.value.~value_type();
    }
  }

  // Helpers for constructors and destructors.
  constexpr void InitEmpty() {
    // Make the array active in the union.
    std::construct_at(&array_);
  }
  constexpr void InitFrom(const small_map& src) {
    functor_ = src.functor_;
    size_ = src.size_;
    if (src.UsingFullMap()) {
      // Make the map active in the union.
      functor_(&map_);
      map_ = src.map_;
    } else {
      // Make the array active in the union.
      std::construct_at(&array_);
      for (size_t i = 0u; i < size_; ++i) {
        ArrayElement& e = array_[i];
        std::construct_at(std::addressof(e.value), src.array_[i].value);
      }
    }
  }

  constexpr void Destroy() {
    if (UsingFullMap()) {
      map_.~NormalMap();
    } else {
      for (size_t i = 0u; i < size_; ++i) {
        array_[i].value.~value_type();
      }
      array_.~ArrayMap();
    }
  }
};

}  // namespace base

#endif  // BASE_CONTAINERS_SMALL_MAP_H_