1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290

base / containers / span_reader.h [blame]

// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_CONTAINERS_SPAN_READER_H_
#define BASE_CONTAINERS_SPAN_READER_H_

#include <concepts>
#include <optional>

#include "base/containers/span.h"
#include "base/memory/stack_allocated.h"
#include "base/numerics/byte_conversions.h"
#include "base/numerics/safe_conversions.h"

namespace base {

// A Reader to consume elements from the front of a span dynamically.
//
// SpanReader is used to split off prefix spans from a larger span, reporting
// errors if there's not enough room left (instead of crashing, as would happen
// with span directly).
template <class T>
class SpanReader {
  STACK_ALLOCATED();

 public:
  // Construct SpanReader from a span.
  explicit SpanReader(span<T> buf) : buf_(buf), original_size_(buf_.size()) {}

  // Returns a span over the next `n` objects, if there are enough objects left.
  // Otherwise, it returns nullopt and does nothing.
  std::optional<span<T>> Read(StrictNumeric<size_t> n) {
    if (n > remaining()) {
      return std::nullopt;
    }
    auto [lhs, rhs] = buf_.split_at(n);
    buf_ = rhs;
    return lhs;
  }

  // Returns a fixed-size span over the next `N` objects, if there are enough
  // objects left. Otherwise, it returns nullopt and does nothing.
  template <size_t N>
  std::optional<span<T, N>> Read() {
    if (N > remaining()) {
      return std::nullopt;
    }
    auto [lhs, rhs] = buf_.template split_at<N>();
    buf_ = rhs;
    return lhs;
  }

  // Returns true and writes a span over the next `n` objects into `out`, if
  // there are enough objects left. Otherwise, it returns false and does
  // nothing.
  bool ReadInto(StrictNumeric<size_t> n, span<T>& out) {
    if (n > remaining()) {
      return false;
    }
    auto [lhs, rhs] = buf_.split_at(n);
    out = lhs;
    buf_ = rhs;
    return true;
  }

  // Returns true and copies objects into `out`, if there are enough objects
  // left to fill `out`. Otherwise, it returns false and does nothing.
  bool ReadCopy(span<std::remove_const_t<T>> out) {
    if (out.size() > remaining()) {
      return false;
    }
    auto [lhs, rhs] = buf_.split_at(out.size());
    out.copy_from(lhs);
    buf_ = rhs;
    return true;
  }

  // Returns true and skips over the next `n` objects, if there are enough
  // objects left. Otherwise, it returns false and does nothing.
  std::optional<span<T>> Skip(StrictNumeric<size_t> n) {
    if (n > remaining()) {
      return std::nullopt;
    }
    auto [lhs, rhs] = buf_.split_at(n);
    buf_ = rhs;
    return lhs;
  }

  // For a SpanReader over bytes, we can read integer values directly from those
  // bytes as a memcpy. Returns true if there was room remaining and the bytes
  // were read.
  //
  // These treat the bytes from the buffer as being in big endian order.
  bool ReadU8BigEndian(uint8_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = U8FromBigEndian(buf); });
  }
  bool ReadU16BigEndian(uint16_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<2>([&](auto buf) { value = U16FromBigEndian(buf); });
  }
  bool ReadU32BigEndian(uint32_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<4>([&](auto buf) { value = U32FromBigEndian(buf); });
  }
  bool ReadU64BigEndian(uint64_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<8>([&](auto buf) { value = U64FromBigEndian(buf); });
  }

  // For a SpanReader over bytes, we can read integer values directly from those
  // bytes as a memcpy. Returns true if there was room remaining and the bytes
  // were read.
  //
  // These treat the bytes from the buffer as being in little endian order.
  bool ReadU8LittleEndian(uint8_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = U8FromLittleEndian(buf); });
  }
  bool ReadU16LittleEndian(uint16_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<2>([&](auto buf) { value = U16FromLittleEndian(buf); });
  }
  bool ReadU32LittleEndian(uint32_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<4>([&](auto buf) { value = U32FromLittleEndian(buf); });
  }
  bool ReadU64LittleEndian(uint64_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<8>([&](auto buf) { value = U64FromLittleEndian(buf); });
  }

  // For a SpanReader over bytes, we can read integer values directly from those
  // bytes as a memcpy. Returns true if there was room remaining and the bytes
  // were read.
  //
  // These treat the bytes from the buffer as being in native endian order. Note
  // that this is almost never what you want to do. Native ordering only makes
  // sense for byte buffers that are only meant to stay in memory and never be
  // written to the disk or network.
  bool ReadU8NativeEndian(uint8_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = U8FromNativeEndian(buf); });
  }
  bool ReadU16NativeEndian(uint16_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<2>([&](auto buf) { value = U16FromNativeEndian(buf); });
  }
  bool ReadU32NativeEndian(uint32_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<4>([&](auto buf) { value = U32FromNativeEndian(buf); });
  }
  bool ReadU64NativeEndian(uint64_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<8>([&](auto buf) { value = U64FromNativeEndian(buf); });
  }

  // For a SpanReader over bytes, we can read integer values directly from those
  // bytes as a memcpy. Returns true if there was room remaining and the bytes
  // were read.
  //
  // These treat the bytes from the buffer as being in big endian order.
  bool ReadI8BigEndian(int8_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = I8FromBigEndian(buf); });
  }
  bool ReadI16BigEndian(int16_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<2>([&](auto buf) { value = I16FromBigEndian(buf); });
  }
  bool ReadI32BigEndian(int32_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<4>([&](auto buf) { value = I32FromBigEndian(buf); });
  }
  bool ReadI64BigEndian(int64_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<8>([&](auto buf) { value = I64FromBigEndian(buf); });
  }

  // For a SpanReader over bytes, we can read integer values directly from those
  // bytes as a memcpy. Returns true if there was room remaining and the bytes
  // were read.
  //
  // These treat the bytes from the buffer as being in little endian order.
  bool ReadI8LittleEndian(int8_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = I8FromLittleEndian(buf); });
  }
  bool ReadI16LittleEndian(int16_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<2>([&](auto buf) { value = I16FromLittleEndian(buf); });
  }
  bool ReadI32LittleEndian(int32_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<4>([&](auto buf) { value = I32FromLittleEndian(buf); });
  }
  bool ReadI64LittleEndian(int64_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<8>([&](auto buf) { value = I64FromLittleEndian(buf); });
  }

  // For a SpanReader over bytes, we can read integer values directly from those
  // bytes as a memcpy. Returns true if there was room remaining and the bytes
  // were read.
  //
  // These treat the bytes from the buffer as being in native endian order. Note
  // that this is almost never what you want to do. Native ordering only makes
  // sense for byte buffers that are only meant to stay in memory and never be
  // written to the disk or network.
  bool ReadI8NativeEndian(int8_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = I8FromNativeEndian(buf); });
  }
  bool ReadI16NativeEndian(int16_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<2>([&](auto buf) { value = I16FromNativeEndian(buf); });
  }
  bool ReadI32NativeEndian(int32_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<4>([&](auto buf) { value = I32FromNativeEndian(buf); });
  }
  bool ReadI64NativeEndian(int64_t& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<8>([&](auto buf) { value = I64FromNativeEndian(buf); });
  }

  // For a SpanReader over bytes, reads one byte and returns it as a `char`,
  // which may be signed or unsigned depending on the platform. Returns true if
  // there was room remaining and the byte was read.
  bool ReadChar(char& value)
    requires(std::same_as<std::remove_const_t<T>, uint8_t>)
  {
    return ReadAnd<1>([&](auto buf) { value = static_cast<char>(buf[0u]); });
  }

  // Returns the number of objects remaining to be read from the original span.
  size_t remaining() const { return buf_.size(); }
  // Returns the objects that have not yet been read, as a span.
  span<T> remaining_span() const { return buf_; }

  // Returns the number of objects read (or skipped) in the original span.
  size_t num_read() const { return original_size_ - buf_.size(); }

 private:
  template <size_t N, class F>
    requires(std::invocable<F, span<T, N>>)
  bool ReadAnd(F f) {
    auto buf = Read<N>();
    if (buf.has_value()) {
      f(*buf);
    }
    return buf.has_value();
  }

  span<T> buf_;
  size_t original_size_;
};

template <typename ElementType, size_t Extent, typename InternalPtrType>
SpanReader(span<ElementType, Extent, InternalPtrType>)
    -> SpanReader<ElementType>;

}  // namespace base

#endif  // BASE_CONTAINERS_SPAN_READER_H_