1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
base / functional / bind.h [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_FUNCTIONAL_BIND_H_
#define BASE_FUNCTIONAL_BIND_H_
#include <functional>
#include <memory>
#include <type_traits>
#include <utility>
#include "base/compiler_specific.h"
#include "base/functional/bind_internal.h" // IWYU pragma: export
#include "base/memory/raw_ptr.h"
#include "build/build_config.h"
// -----------------------------------------------------------------------------
// Usage documentation
// -----------------------------------------------------------------------------
//
// Overview:
// base::BindOnce() and base::BindRepeating() are helpers for creating
// base::OnceCallback and base::RepeatingCallback objects respectively.
//
// For a runnable object of n-arity, the base::Bind*() family allows partial
// application of the first m arguments. The remaining n - m arguments must be
// passed when invoking the callback with Run().
//
// // The first argument is bound at callback creation; the remaining
// // two must be passed when calling Run() on the callback object.
// base::OnceCallback<long(int, long)> cb = base::BindOnce(
// [](short x, int y, long z) { return x * y * z; }, 42);
//
// When binding to a method, the receiver object must also be specified at
// callback creation time. When Run() is invoked, the method will be invoked on
// the specified receiver object.
//
// class C : public base::RefCounted<C> { void F(); };
// auto instance = base::MakeRefCounted<C>();
// auto cb = base::BindOnce(&C::F, instance);
// std::move(cb).Run(); // Identical to instance->F()
//
// See //docs/callback.md for the full documentation.
//
// -----------------------------------------------------------------------------
// Implementation notes
// -----------------------------------------------------------------------------
//
// If you're reading the implementation, before proceeding further, you should
// read the top comment of base/functional/bind_internal.h for a definition of
// common terms and concepts.
namespace base {
// Bind as OnceCallback.
template <typename Functor, typename... Args>
inline auto BindOnce(Functor&& functor, Args&&... args) {
return internal::BindHelper<OnceCallback>::Bind(
std::forward<Functor>(functor), std::forward<Args>(args)...);
}
// Bind as RepeatingCallback.
template <typename Functor, typename... Args>
inline auto BindRepeating(Functor&& functor, Args&&... args) {
return internal::BindHelper<RepeatingCallback>::Bind(
std::forward<Functor>(functor), std::forward<Args>(args)...);
}
// Overloads to allow nicer compile errors when attempting to pass the address
// an overloaded function to `BindOnce()` or `BindRepeating()`. Otherwise, clang
// provides only the error message "no matching function [...] candidate
// template ignored: couldn't infer template argument 'Functor'", with no
// reference to the fact that `&` is being used on an overloaded function.
//
// These overloads to provide better error messages will never be selected
// unless template type deduction fails because of how overload resolution
// works; per [over.ics.rank/2.2]:
//
// When comparing the basic forms of implicit conversion sequences (as defined
// in [over.best.ics])
// - a standard conversion sequence is a better conversion sequence than a
// user-defined conversion sequence or an ellipsis conversion sequence, and
// - a user-defined conversion sequence is a better conversion sequence than
// an ellipsis conversion sequence.
//
// So these overloads will only be selected as a last resort iff template type
// deduction fails.
BindFailedCheckPreviousErrors BindOnce(...);
BindFailedCheckPreviousErrors BindRepeating(...);
// Unretained(), UnsafeDangling() and UnsafeDanglingUntriaged() allow binding a
// non-refcounted class, and to disable refcounting on arguments that are
// refcounted. The main difference is whether or not the raw pointers will be
// checked for dangling references (e.g. a pointer that points to an already
// destroyed object) when the callback is run.
//
// It is _required_ to use one of Unretained(), UnsafeDangling() or
// UnsafeDanglingUntriaged() for raw pointer receivers now. For other arguments,
// it remains optional. If not specified, default behavior is Unretained().
// Unretained() pointers will be checked for dangling pointers when the
// callback is run, *if* the callback has not been cancelled.
//
// Example of Unretained() usage:
//
// class Foo {
// public:
// void func() { cout << "Foo:f" << endl; }
// };
//
// // In some function somewhere.
// Foo foo;
// OnceClosure foo_callback =
// BindOnce(&Foo::func, Unretained(&foo));
// std::move(foo_callback).Run(); // Prints "Foo:f".
//
// Without the Unretained() wrapper on |&foo|, the above call would fail
// to compile because Foo does not support the AddRef() and Release() methods.
//
// Unretained() does not allow dangling pointers, e.g.:
// class MyClass {
// public:
// OnError(int error);
// private:
// scoped_refptr<base::TaskRunner> runner_;
// std::unique_ptr<AnotherClass> obj_;
// };
//
// void MyClass::OnError(int error) {
// // the pointer (which is also the receiver here) to `AnotherClass`
// // might dangle depending on when the task is invoked.
// runner_->PostTask(FROM_HERE, base::BindOnce(&AnotherClass::OnError,
// base::Unretained(obj_.get()), error));
// // one of the way to solve this issue here would be:
// // runner_->PostTask(FROM_HERE,
// // base::BindOnce(&AnotherClass::OnError,
// // base::Owned(std::move(obj_)), error));
// delete this;
// }
//
// the above example is a BAD USAGE of Unretained(), which might result in a
// use-after-free, as `AnotherClass::OnError` might be invoked with a dangling
// pointer as receiver.
template <typename T>
inline auto Unretained(T* o) {
return internal::UnretainedWrapper<T, unretained_traits::MayNotDangle>(o);
}
template <typename T, RawPtrTraits Traits>
inline auto Unretained(const raw_ptr<T, Traits>& o) {
return internal::UnretainedWrapper<T, unretained_traits::MayNotDangle,
Traits>(o);
}
template <typename T, RawPtrTraits Traits>
inline auto Unretained(raw_ptr<T, Traits>&& o) {
return internal::UnretainedWrapper<T, unretained_traits::MayNotDangle,
Traits>(std::move(o));
}
template <typename T, RawPtrTraits Traits>
inline auto Unretained(const raw_ref<T, Traits>& o) {
return internal::UnretainedRefWrapper<T, unretained_traits::MayNotDangle,
Traits>(o);
}
template <typename T, RawPtrTraits Traits>
inline auto Unretained(raw_ref<T, Traits>&& o) {
return internal::UnretainedRefWrapper<T, unretained_traits::MayNotDangle,
Traits>(std::move(o));
}
// Similar to `Unretained()`, but allows dangling pointers, e.g.:
//
// class MyClass {
// public:
// DoSomething(HandlerClass* handler);
// private:
// void MyClass::DoSomethingInternal(HandlerClass::Id id,
// HandlerClass* handler);
//
// std::unordered_map<HandlerClass::Id, HandlerClass*> handlers_;
// scoped_refptr<base::SequencedTaskRunner> runner_;
// base::Lock lock_;
// };
// void MyClass::DoSomething(HandlerClass* handler) {
// runner_->PostTask(FROM_HERE,
// base::BindOnce(&MyClass::DoSomethingInternal,
// base::Unretained(this),
// handler->id(),
// base::Unretained(handler)));
// }
// void MyClass::DoSomethingInternal(HandlerClass::Id id,
// HandlerClass* handler) {
// base::AutoLock locker(lock_);
// if (handlers_.find(id) == std::end(handlers_)) return;
// // Now we can use `handler`.
// }
//
// As `DoSomethingInternal` is run on a sequence (and we can imagine
// `handlers_` being modified on it as well), we protect the function from
// using a dangling `handler` by making sure it is still contained in the
// map.
//
// Strongly prefer `Unretained()`. This is useful in limited situations such as
// the one above.
//
// When using `UnsafeDangling()`, the receiver must be of type MayBeDangling<>.
template <typename T>
inline auto UnsafeDangling(T* o) {
return internal::UnretainedWrapper<T, unretained_traits::MayDangle>(o);
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDangling(const raw_ptr<T, Traits>& o) {
return internal::UnretainedWrapper<T, unretained_traits::MayDangle, Traits>(
o);
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDangling(raw_ptr<T, Traits>&& o) {
return internal::UnretainedWrapper<T, unretained_traits::MayDangle, Traits>(
std::move(o));
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDangling(const raw_ref<T, Traits>& o) {
return internal::UnretainedRefWrapper<T, unretained_traits::MayDangle,
Traits>(o);
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDangling(raw_ref<T, Traits>&& o) {
return internal::UnretainedRefWrapper<T, unretained_traits::MayDangle,
Traits>(std::move(o));
}
// Like `UnsafeDangling()`, but used to annotate places that still need to be
// triaged and either migrated to `Unretained()` and safer ownership patterns
// (preferred) or `UnsafeDangling()` if the correct pattern to use is the one
// in the `UnsafeDangling()` example above for example.
//
// Unlike `UnsafeDangling()`, the receiver doesn't have to be MayBeDangling<>.
template <typename T>
inline auto UnsafeDanglingUntriaged(T* o) {
return internal::UnretainedWrapper<T, unretained_traits::MayDangleUntriaged>(
o);
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDanglingUntriaged(const raw_ptr<T, Traits>& o) {
return internal::UnretainedWrapper<T, unretained_traits::MayDangleUntriaged,
Traits>(o);
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDanglingUntriaged(raw_ptr<T, Traits>&& o) {
return internal::UnretainedWrapper<T, unretained_traits::MayDangleUntriaged,
Traits>(std::move(o));
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDanglingUntriaged(const raw_ref<T, Traits>& o) {
return internal::UnretainedRefWrapper<
T, unretained_traits::MayDangleUntriaged, Traits>(o);
}
template <typename T, RawPtrTraits Traits>
auto UnsafeDanglingUntriaged(raw_ref<T, Traits>&& o) {
return internal::UnretainedRefWrapper<
T, unretained_traits::MayDangleUntriaged, Traits>(std::move(o));
}
// RetainedRef() accepts a ref counted object and retains a reference to it.
// When the callback is called, the object is passed as a raw pointer.
//
// EXAMPLE OF RetainedRef():
//
// void foo(RefCountedBytes* bytes) {}
//
// scoped_refptr<RefCountedBytes> bytes = ...;
// OnceClosure callback = BindOnce(&foo, base::RetainedRef(bytes));
// std::move(callback).Run();
//
// Without RetainedRef, the scoped_refptr would try to implicitly convert to
// a raw pointer and fail compilation:
//
// OnceClosure callback = BindOnce(&foo, bytes); // ERROR!
template <typename T>
inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
return internal::RetainedRefWrapper<T>(o);
}
template <typename T>
inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
return internal::RetainedRefWrapper<T>(std::move(o));
}
// Owned() transfers ownership of an object to the callback resulting from
// bind; the object will be deleted when the callback is deleted.
//
// EXAMPLE OF Owned():
//
// void foo(int* arg) { cout << *arg << endl }
//
// int* pn = new int(1);
// RepeatingClosure foo_callback = BindRepeating(&foo, Owned(pn));
//
// foo_callback.Run(); // Prints "1"
// foo_callback.Run(); // Prints "1"
// *pn = 2;
// foo_callback.Run(); // Prints "2"
//
// foo_callback.Reset(); // |pn| is deleted. Also will happen when
// // |foo_callback| goes out of scope.
//
// Without Owned(), someone would have to know to delete |pn| when the last
// reference to the callback is deleted.
template <typename T>
inline internal::OwnedWrapper<T> Owned(T* o) {
return internal::OwnedWrapper<T>(o);
}
template <typename T, typename Deleter>
inline internal::OwnedWrapper<T, Deleter> Owned(
std::unique_ptr<T, Deleter>&& ptr) {
return internal::OwnedWrapper<T, Deleter>(std::move(ptr));
}
// OwnedRef() stores an object in the callback resulting from
// bind and passes a reference to the object to the bound function.
//
// EXAMPLE OF OwnedRef():
//
// void foo(int& arg) { cout << ++arg << endl }
//
// int counter = 0;
// RepeatingClosure foo_callback = BindRepeating(&foo, OwnedRef(counter));
//
// foo_callback.Run(); // Prints "1"
// foo_callback.Run(); // Prints "2"
// foo_callback.Run(); // Prints "3"
//
// cout << counter; // Prints "0", OwnedRef creates a copy of counter.
//
// Supports OnceCallbacks as well, useful to pass placeholder arguments:
//
// void bar(int& ignore, const std::string& s) { cout << s << endl }
//
// OnceClosure bar_callback = BindOnce(&bar, OwnedRef(0), "Hello");
//
// std::move(bar_callback).Run(); // Prints "Hello"
//
// Without OwnedRef() it would not be possible to pass a mutable reference to an
// object owned by the callback.
template <typename T>
internal::OwnedRefWrapper<std::decay_t<T>> OwnedRef(T&& t) {
return internal::OwnedRefWrapper<std::decay_t<T>>(std::forward<T>(t));
}
// Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr)
// through a RepeatingCallback. Logically, this signifies a destructive transfer
// of the state of the argument into the target function. Invoking
// RepeatingCallback::Run() twice on a callback that was created with a Passed()
// argument will CHECK() because the first invocation would have already
// transferred ownership to the target function.
//
// Note that Passed() is not necessary with BindOnce(), as std::move() does the
// same thing. Avoid Passed() in favor of std::move() with BindOnce().
//
// EXAMPLE OF Passed():
//
// void TakesOwnership(std::unique_ptr<Foo> arg) { }
// std::unique_ptr<Foo> CreateFoo() { return std::make_unique<Foo>();
// }
//
// auto f = std::make_unique<Foo>();
//
// // |cb| is given ownership of Foo(). |f| is now NULL.
// // You can use std::move(f) in place of &f, but it's more verbose.
// RepeatingClosure cb = BindRepeating(&TakesOwnership, Passed(&f));
//
// // Run was never called so |cb| still owns Foo() and deletes
// // it on Reset().
// cb.Reset();
//
// // |cb| is given a new Foo created by CreateFoo().
// cb = BindRepeating(&TakesOwnership, Passed(CreateFoo()));
//
// // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
// // no longer owns Foo() and, if reset, would not delete Foo().
// cb.Run(); // Foo() is now transferred to |arg| and deleted.
// cb.Run(); // This CHECK()s since Foo() already been used once.
//
// We offer 2 syntaxes for calling Passed(). The first takes an rvalue and is
// best suited for use with the return value of a function or other temporary
// rvalues. The second takes a pointer to the scoper and is just syntactic sugar
// to avoid having to write Passed(std::move(scoper)).
//
// Both versions of Passed() prevent T from being an lvalue reference. The first
// via use of enable_if, and the second takes a T* which will not bind to T&.
//
// DEPRECATED - Do not use in new code. See https://crbug.com/1326449
template <typename T>
requires(!std::is_lvalue_reference_v<T>)
inline internal::PassedWrapper<T> Passed(T&& scoper) {
return internal::PassedWrapper<T>(std::move(scoper));
}
template <typename T>
inline internal::PassedWrapper<T> Passed(T* scoper) {
return internal::PassedWrapper<T>(std::move(*scoper));
}
// IgnoreResult() is used to adapt a function or callback with a return type to
// one with a void return. This is most useful if you have a function with,
// say, a pesky ignorable bool return that you want to use with PostTask or
// something else that expect a callback with a void return.
//
// EXAMPLE OF IgnoreResult():
//
// int DoSomething(int arg) { cout << arg << endl; }
//
// // Assign to a callback with a void return type.
// OnceCallback<void(int)> cb = BindOnce(IgnoreResult(&DoSomething));
// std::move(cb).Run(1); // Prints "1".
//
// // Prints "2" on |ml|.
// ml->PostTask(FROM_HERE, BindOnce(IgnoreResult(&DoSomething), 2);
template <typename T>
inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
return internal::IgnoreResultHelper<T>(std::move(data));
}
} // namespace base
#endif // BASE_FUNCTIONAL_BIND_H_