1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
base / functional / bind_internal.h [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_
#define BASE_FUNCTIONAL_BIND_INTERNAL_H_
#include <stddef.h>
#include <concepts>
#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/functional/callback_internal.h"
#include "base/functional/unretained_traits.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_asan_bound_arg_tracker.h"
#include "base/memory/raw_ref.h"
#include "base/memory/weak_ptr.h"
#include "base/notreached.h"
#include "base/types/always_false.h"
#include "base/types/is_complete.h"
#include "base/types/is_instantiation.h"
#include "base/types/to_address.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/functional/function_ref.h"
// See docs/callback.md for user documentation.
//
// Concepts:
// Functor -- A movable type representing something that should be called.
// All function pointers and `Callback<>` are functors even if the
// invocation syntax differs.
// RunType -- A function type (as opposed to function _pointer_ type) for
// a `Callback<>::Run()`. Usually just a convenience typedef.
// (Bound)Args -- A set of types that stores the arguments.
//
// Types:
// `ForceVoidReturn<>` -- Helper class for translating function signatures to
// equivalent forms with a `void` return type.
// `FunctorTraits<>` -- Type traits used to determine the correct RunType and
// invocation manner for a Functor. This is where
// function signature adapters are applied.
// `StorageTraits<>` -- Type traits that determine how a bound argument is
// stored in `BindState<>`.
// `InvokeHelper<>` -- Takes a Functor + arguments and actually invokes it.
// Handles the differing syntaxes needed for `WeakPtr<>`
// support. This is separate from `Invoker<>` to avoid
// creating multiple versions of `Invoker<>`.
// `Invoker<>` -- Unwraps the curried parameters and executes the Functor.
// `BindState<>` -- Stores the curried parameters, and is the main entry point
// into the `Bind()` system.
#if BUILDFLAG(IS_WIN)
namespace Microsoft {
namespace WRL {
template <typename>
class ComPtr;
} // namespace WRL
} // namespace Microsoft
#endif
namespace base {
template <typename T>
struct IsWeakReceiver;
template <typename>
struct BindUnwrapTraits;
template <typename Functor, typename BoundArgsTuple>
struct CallbackCancellationTraits;
template <typename Signature>
class FunctionRef;
// A tag type to return when `Bind()` calls fail. In this case we intentionally
// don't return `void`, since that would produce spurious errors like "variable
// has incomplete type 'void'" when assigning the result of
// `Bind{Once,Repeating}()` to an `auto`.
struct BindFailedCheckPreviousErrors {};
namespace unretained_traits {
// `UnretainedWrapper` will check and report if pointer is dangling upon
// invocation.
struct MayNotDangle {};
// `UnretainedWrapper` won't check if pointer is dangling upon invocation. For
// extra safety, the receiver must be of type `MayBeDangling<>`.
struct MayDangle {};
// `UnretainedWrapper` won't check if pointer is dangling upon invocation. The
// receiver doesn't have to be a `raw_ptr<>`. This is just a temporary state, to
// allow dangling pointers that would otherwise crash if `MayNotDangle` was
// used. It should be replaced ASAP with `MayNotDangle` (after fixing the
// dangling pointers) or with `MayDangle` if there is really no other way (after
// making receivers `MayBeDangling<>`).
struct MayDangleUntriaged {};
} // namespace unretained_traits
namespace internal {
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedWrapper {
// Note that if `PtrTraits` already includes `MayDangle`, `DanglingRawPtrType`
// will be identical to `raw_ptr<T, PtrTraits>`.
using DanglingRawPtrType = MayBeDangling<T, PtrTraits>;
public:
// We want the getter type to match the receiver parameter that it is passed
// into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to
// match `StorageType`, but sometimes we can't have both, as shown in
// https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit
// When we can't have both, prefer the former, mostly because
// `GetPtrType`=`raw_ptr<T>` would break if e.g. `UnretainedWrapper()` is
// constructed using `char*`, but the receiver is of type `std::string&`.
// This is enforced by `static_assert()`s in `ParamCanBeBound`.
using GetPtrType = std::conditional_t<
raw_ptr_traits::IsSupportedType<T>::value &&
std::same_as<UnretainedTrait, unretained_traits::MayDangle>,
DanglingRawPtrType,
T*>;
// Raw pointer makes sense only if there are no `PtrTrait`s. If there are,
// it means that a `raw_ptr` is being passed, so use the ctors below instead.
explicit UnretainedWrapper(T* o)
requires(PtrTraits == RawPtrTraits::kEmpty)
: ptr_(o) {
VerifyPreconditions();
}
explicit UnretainedWrapper(const raw_ptr<T, PtrTraits>& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ptr_(o) {
VerifyPreconditions();
}
explicit UnretainedWrapper(raw_ptr<T, PtrTraits>&& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ptr_(std::move(o)) {
VerifyPreconditions();
}
GetPtrType get() const { return GetInternal(ptr_); }
// True if this type is valid. When this is false, a `static_assert` will have
// been fired explaining why.
static constexpr bool value = SupportsUnretained<T>;
private:
// `ptr_` is either a `raw_ptr` or a regular C++ pointer.
template <typename U>
requires std::same_as<T, U>
static GetPtrType GetInternal(U* ptr) {
return ptr;
}
template <typename U, RawPtrTraits Traits>
requires std::same_as<T, U>
static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) {
if constexpr (std::same_as<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ptr.ReportIfDangling();
}
return ptr;
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ptr_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
DanglingRawPtrType,
T*>;
// Avoid converting between different `raw_ptr` types when calling `get()`.
// It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other
// direction. See the comment by `GetPtrType` describing for more details.
static_assert(std::is_pointer_v<GetPtrType> ||
std::same_as<GetPtrType, StorageType>);
// Forces `value` to be materialized, performing a compile-time check of the
// preconditions if it hasn't already occurred. This is called from every
// constructor so the wrappers in bind.h don't have to each check it, and so
// no one can go around them and construct this underlying type directly.
static constexpr void VerifyPreconditions() {
// Using `static_assert(value);` here would work but fire an extra error.
std::ignore = value;
}
StorageType ptr_;
};
// Storage type for `std::reference_wrapper` so `BindState` can internally store
// unprotected references using `raw_ref`.
//
// `std::reference_wrapper<T>` and `T&` do not work, since the reference
// lifetime is not safely protected by MiraclePtr.
//
// `UnretainedWrapper<T>` and `raw_ptr<T>` do not work, since `BindUnwrapTraits`
// would try to pass by `T*` rather than `T&`.
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedRefWrapper {
public:
// Raw reference makes sense only if there are no `PtrTrait`s. If there are,
// it means that a `raw_ref` is being passed, so use the ctors below instead.
explicit UnretainedRefWrapper(T& o)
requires(PtrTraits == RawPtrTraits::kEmpty)
: ref_(o) {
VerifyPreconditions();
}
explicit UnretainedRefWrapper(const raw_ref<T, PtrTraits>& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ref_(o) {
VerifyPreconditions();
}
explicit UnretainedRefWrapper(raw_ref<T, PtrTraits>&& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ref_(std::move(o)) {
VerifyPreconditions();
}
T& get() const { return GetInternal(ref_); }
// See comments in `UnretainedWrapper` regarding this and
// `VerifyPreconditions()`.
static constexpr bool value = SupportsUnretained<T>;
private:
// `ref_` is either a `raw_ref` or a regular C++ reference.
template <typename U>
requires std::same_as<T, U>
static T& GetInternal(U& ref) {
return ref;
}
template <typename U, RawPtrTraits Traits>
requires std::same_as<T, U>
static T& GetInternal(const raw_ref<U, Traits>& ref) {
// The ultimate goal is to crash when a callback is invoked with a
// dangling pointer. This is checked here. For now, it is configured to
// either crash, DumpWithoutCrashing or be ignored. This depends on the
// `PartitionAllocUnretainedDanglingPtr` feature.
if constexpr (std::is_same_v<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ref.ReportIfDangling();
}
// We can't use `operator*` here, we need to use `raw_ptr`'s
// `GetForExtraction` instead of `GetForDereference`. If we did use
// `GetForDereference` then we'd crash in ASAN builds on calling a bound
// callback with a dangling reference parameter even if that parameter is
// not used. This could hide a later unprotected issue that would be reached
// in release builds.
return ref.get();
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ref_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
raw_ref<T, DisableDanglingPtrDetection>,
T&>;
static constexpr void VerifyPreconditions() { std::ignore = value; }
StorageType ref_;
};
// Can't use `is_instantiation` to detect the unretained wrappers, since they
// have non-type template params.
template <template <typename, typename, RawPtrTraits> typename WrapperT,
typename T>
inline constexpr bool kIsUnretainedWrapper = false;
template <template <typename, typename, RawPtrTraits> typename WrapperT,
typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits>
inline constexpr bool
kIsUnretainedWrapper<WrapperT, WrapperT<T, UnretainedTrait, PtrTraits>> =
true;
// The class is used to wrap `UnretainedRefWrapper` when the latter is used as
// a method receiver (a reference on `this` argument). This is needed because
// the internal callback mechanism expects the receiver to have the type
// `MyClass*` and to have `operator*`.
// This is used as storage.
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
class UnretainedRefWrapperReceiver {
public:
// NOLINTNEXTLINE(google-explicit-constructor)
UnretainedRefWrapperReceiver(
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& obj)
: obj_(std::move(obj)) {}
T& operator*() const { return obj_.get(); }
T* operator->() const { return &obj_.get(); }
private:
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_;
};
// `MethodReceiverStorage` converts the current receiver type to its stored
// type. For instance, it converts pointers to `scoped_refptr`, and wraps
// `UnretainedRefWrapper` to make it compliant with the internal callback
// invocation mechanism.
template <typename T>
struct MethodReceiverStorage {
using Type = std::
conditional_t<IsPointerOrRawPtr<T>, scoped_refptr<RemovePointerT<T>>, T>;
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct MethodReceiverStorage<
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
// We can't use `UnretainedRefWrapper` as a receiver directly (see
// `UnretainedRefWrapperReceiver` for why).
using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>;
};
template <typename T>
class RetainedRefWrapper {
public:
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
T* get() const { return ptr_.get(); }
private:
scoped_refptr<T> ptr_;
};
template <typename T>
struct IgnoreResultHelper {
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
explicit operator bool() const { return !!functor_; }
T functor_;
};
template <typename T, typename Deleter = std::default_delete<T>>
class OwnedWrapper {
public:
explicit OwnedWrapper(T* o) : ptr_(o) {}
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
: ptr_(std::move(ptr)) {}
T* get() const { return ptr_.get(); }
private:
std::unique_ptr<T, Deleter> ptr_;
};
template <typename T>
class OwnedRefWrapper {
public:
explicit OwnedRefWrapper(const T& t) : t_(t) {}
explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
T& get() const { return t_; }
private:
mutable T t_;
};
// `PassedWrapper` is a copyable adapter for a scoper that ignores `const`.
//
// It is needed to get around the fact that `Bind()` takes a const reference to
// all its arguments. Because `Bind()` takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into `Bind()` would violate
// the const correctness.
//
// This conundrum cannot be solved without either rvalue references or an O(2^n)
// blowup of `Bind()` templates to handle each combination of regular types and
// movable-but-not-copyable types. Thus we introduce a wrapper type that is
// copyable to transmit the correct type information down into `BindState<>`.
// Ignoring `const` in this type makes sense because it is only created when we
// are explicitly trying to do a destructive move.
//
// Two notes:
// 1) `PassedWrapper` supports any type that has a move constructor, however
// the type will need to be specifically allowed in order for it to be
// bound to a `Callback`. We guard this explicitly at the call of `Passed()`
// to make for clear errors. Things not given to `Passed()` will be
// forwarded and stored by value which will not work for general move-only
// types.
// 2) `is_valid_` is distinct from `nullptr` because it is valid to bind a null
// scoper to a `Callback` and allow the `Callback` to execute once.
//
// TODO(crbug.com/40840557): We have rvalue references and such now. Remove.
template <typename T>
class PassedWrapper {
public:
explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {}
PassedWrapper(PassedWrapper&& other)
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
T Take() const {
CHECK(is_valid_);
is_valid_ = false;
return std::move(scoper_);
}
private:
mutable bool is_valid_ = true;
mutable T scoper_;
};
template <typename T>
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
template <typename T>
decltype(auto) Unwrap(T&& o) {
return Unwrapper<T>::Unwrap(std::forward<T>(o));
}
// `kIsWeakMethod` is a helper that determines if we are binding a `WeakPtr<>`
// to a method. It is used internally by `Bind()` to select the correct
// `InvokeHelper` that will no-op itself in the event the `WeakPtr<>` for the
// target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool is_method, typename... Args>
inline constexpr bool kIsWeakMethod = false;
template <typename T, typename... Args>
inline constexpr bool kIsWeakMethod<true, T, Args...> =
IsWeakReceiver<T>::value;
// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};
// Implements `DropTypeListItem`.
template <size_t n, typename List>
requires is_instantiation<TypeList, List>
struct DropTypeListItemImpl {
using Type = List;
};
template <size_t n, typename T, typename... List>
requires(n > 0)
struct DropTypeListItemImpl<n, TypeList<T, List...>>
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
// A type-level function that drops `n` list items from a given `TypeList`.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
// Implements `TakeTypeListItem`.
template <size_t n, typename List, typename... Accum>
requires is_instantiation<TypeList, List>
struct TakeTypeListItemImpl {
using Type = TypeList<Accum...>;
};
template <size_t n, typename T, typename... List, typename... Accum>
requires(n > 0)
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
// A type-level function that takes the first `n` items from a given `TypeList`;
// e.g. `TakeTypeListItem<3, TypeList<A, B, C, D>>` -> `TypeList<A, B, C>`.
template <size_t n, typename List>
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
// Implements `MakeFunctionType`.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;
template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
using Type = R(Args...);
};
// A type-level function that constructs a function type that has `R` as its
// return type and has a `TypeList`'s items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
// Implements `ExtractArgs` and `ExtractReturnType`.
template <typename Signature>
struct ExtractArgsImpl;
template <typename R, typename... Args>
struct ExtractArgsImpl<R(Args...)> {
using ReturnType = R;
using ArgsList = TypeList<Args...>;
};
// A type-level function that extracts function arguments into a `TypeList`;
// e.g. `ExtractArgs<R(A, B, C)>` -> `TypeList<A, B, C>`.
template <typename Signature>
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
// A type-level function that extracts the return type of a function.
// e.g. `ExtractReturnType<R(A, B, C)>` -> `R`.
template <typename Signature>
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
template <typename Callable,
typename Signature = decltype(&Callable::operator())>
struct ExtractCallableRunTypeImpl;
#define BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(quals) \
template <typename Callable, typename R, typename... Args> \
struct ExtractCallableRunTypeImpl<Callable, \
R (Callable::*)(Args...) quals> { \
using Type = R(Args...); \
}
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS();
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(const);
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(noexcept);
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(const noexcept);
#undef BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS
// Evaluated to the RunType of the given callable type; e.g.
// `ExtractCallableRunType<decltype([](int, char*) { return 0.1; })>` ->
// `double(int, char*)`.
template <typename Callable>
using ExtractCallableRunType =
typename ExtractCallableRunTypeImpl<Callable>::Type;
// True when `Functor` has a non-overloaded `operator()()`, e.g.:
// struct S1 {
// int operator()(int);
// };
// static_assert(HasNonOverloadedCallOp<S1>);
//
// int i = 0;
// auto f = [i] {};
// static_assert(HasNonOverloadedCallOp<decltype(f)>);
//
// struct S2 {
// int operator()(int);
// std::string operator()(std::string);
// };
// static_assert(!HasNonOverloadedCallOp<S2>);
//
// static_assert(!HasNonOverloadedCallOp<void(*)()>);
//
// struct S3 {};
// static_assert(!HasNonOverloadedCallOp<S3>);
// ```
template <typename Functor>
concept HasNonOverloadedCallOp = requires { &Functor::operator(); };
template <typename T>
inline constexpr bool IsObjCArcBlockPointer = false;
#if __OBJC__ && HAS_FEATURE(objc_arc)
template <typename R, typename... Args>
inline constexpr bool IsObjCArcBlockPointer<R (^)(Args...)> = true;
#endif
// True when `Functor` has an overloaded `operator()()` that can be invoked with
// the provided `BoundArgs`.
//
// Do not decay `Functor` before testing this, lest it give an incorrect result
// for overloads with different ref-qualifiers.
template <typename Functor, typename... BoundArgs>
concept HasOverloadedCallOp = requires {
// The functor must be invocable with the bound args.
requires requires(Functor&& f, BoundArgs&&... args) {
std::forward<Functor>(f)(std::forward<BoundArgs>(args)...);
};
// Now exclude invocables that are not cases of overloaded `operator()()`s:
// * `operator()()` exists, but isn't overloaded
requires !HasNonOverloadedCallOp<std::decay_t<Functor>>;
// * Function pointer (doesn't have `operator()()`)
requires !std::is_pointer_v<std::decay_t<Functor>>;
// * Block pointer (doesn't have `operator()()`)
requires !IsObjCArcBlockPointer<std::decay_t<Functor>>;
};
// `ForceVoidReturn<>` converts a signature to have a `void` return type.
template <typename Sig>
struct ForceVoidReturn;
template <typename R, typename... Args>
struct ForceVoidReturn<R(Args...)> {
using RunType = void(Args...);
};
// `FunctorTraits<>`
//
// See description at top of file. This must be declared here so it can be
// referenced in `DecayedFunctorTraits`.
template <typename Functor, typename... BoundArgs>
struct FunctorTraits;
// Provides functor traits for pre-decayed functor types.
template <typename Functor, typename... BoundArgs>
struct DecayedFunctorTraits;
// Callable types.
// This specialization handles lambdas (captureless and capturing) and functors
// with a call operator. Capturing lambdas and stateful functors are explicitly
// disallowed by `BindHelper<>::Bind()`; e.g.:
// ```
// // Captureless lambda: Allowed
// [] { return 42; };
//
// // Capturing lambda: Disallowed
// int x;
// [x] { return x; };
//
// // Empty class with `operator()()`: Allowed
// struct Foo {
// void operator()() const {}
// // No non-`static` member variables and no virtual functions.
// };
// ```
template <typename Functor, typename... BoundArgs>
requires HasNonOverloadedCallOp<Functor>
struct DecayedFunctorTraits<Functor, BoundArgs...> {
using RunType = ExtractCallableRunType<Functor>;
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = std::is_empty_v<Functor>;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// Functions.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<R (*)(Args...), BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Function, typename... RunArgs>
static R Invoke(Function&& function, RunArgs&&... args) {
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
}
};
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<R (*)(Args...) noexcept, BoundArgs...>
: DecayedFunctorTraits<R (*)(Args...), BoundArgs...> {};
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// `__stdcall` and `__fastcall` functions.
#define BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(conv, quals) \
template <typename R, typename... Args, typename... BoundArgs> \
struct DecayedFunctorTraits<R(conv*)(Args...) quals, BoundArgs...> \
: DecayedFunctorTraits<R (*)(Args...) quals, BoundArgs...> {}
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__stdcall, );
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__stdcall, noexcept);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__fastcall, );
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__fastcall, noexcept);
#undef BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
#if __OBJC__ && HAS_FEATURE(objc_arc)
// Objective-C blocks. Blocks can be bound as the compiler will ensure their
// lifetimes will be correctly managed.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<R (^)(Args...), BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename BlockType, typename... RunArgs>
static R Invoke(BlockType&& block, RunArgs&&... args) {
// According to LLVM documentation (§ 6.3), "local variables of automatic
// storage duration do not have precise lifetime." Use
// `objc_precise_lifetime` to ensure that the Objective-C block is not
// deallocated until it has finished executing even if the `Callback<>` is
// destroyed during the block execution.
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
return scoped_block(std::forward<RunArgs>(args)...);
}
};
#endif // __OBJC__ && HAS_FEATURE(objc_arc)
// Methods.
template <typename R,
typename Receiver,
typename... Args,
typename... BoundArgs>
struct DecayedFunctorTraits<R (Receiver::*)(Args...), BoundArgs...> {
using RunType = R(Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
template <typename R,
typename Receiver,
typename... Args,
typename... BoundArgs>
struct DecayedFunctorTraits<R (Receiver::*)(Args...) const, BoundArgs...>
: DecayedFunctorTraits<R (Receiver::*)(Args...), BoundArgs...> {
using RunType = R(const Receiver*, Args...);
};
#define BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS(constqual, \
quals) \
template <typename R, typename Receiver, typename... Args, \
typename... BoundArgs> \
struct DecayedFunctorTraits<R (Receiver::*)(Args...) constqual quals, \
BoundArgs...> \
: DecayedFunctorTraits<R (Receiver::*)(Args...) constqual, \
BoundArgs...> {}
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS(, noexcept);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS(const, noexcept);
#undef BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// `__stdcall` methods.
#define BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(quals) \
template <typename R, typename Receiver, typename... Args, \
typename... BoundArgs> \
struct DecayedFunctorTraits<R (__stdcall Receiver::*)(Args...) quals, \
BoundArgs...> \
: public DecayedFunctorTraits<R (Receiver::*)(Args...) quals, \
BoundArgs...> {}
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS();
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(const);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(noexcept);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(const noexcept);
#undef BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// `IgnoreResult`s.
template <typename T, typename... BoundArgs>
struct DecayedFunctorTraits<IgnoreResultHelper<T>, BoundArgs...>
: FunctorTraits<T, BoundArgs...> {
using RunType = typename ForceVoidReturn<
typename FunctorTraits<T, BoundArgs...>::RunType>::RunType;
template <typename IgnoreResultType, typename... RunArgs>
static void Invoke(IgnoreResultType&& ignore_result_helper,
RunArgs&&... args) {
FunctorTraits<T, BoundArgs...>::Invoke(
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
std::forward<RunArgs>(args)...);
}
};
// `OnceCallback`s.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<OnceCallback<R(Args...)>, BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// `RepeatingCallback`s.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<RepeatingCallback<R(Args...)>, BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// For most functors, the traits should not depend on how the functor is passed,
// so decay the functor.
template <typename Functor, typename... BoundArgs>
// This requirement avoids "implicit instantiation of undefined template" errors
// when the underlying `DecayedFunctorTraits<>` cannot be instantiated. Instead,
// this template will also not be instantiated, and the caller can detect and
// handle that.
requires IsComplete<DecayedFunctorTraits<std::decay_t<Functor>, BoundArgs...>>
struct FunctorTraits<Functor, BoundArgs...>
: DecayedFunctorTraits<std::decay_t<Functor>, BoundArgs...> {};
// For `overloaded operator()()`s, it's possible the ref qualifiers of the
// functor matter, so be careful to use the undecayed type.
template <typename Functor, typename... BoundArgs>
requires HasOverloadedCallOp<Functor, BoundArgs...>
struct FunctorTraits<Functor, BoundArgs...> {
// For an overloaded operator()(), it is not possible to resolve the
// actual declared type. Since it is invocable with the bound args, make up a
// signature based on their types.
using RunType = decltype(std::declval<Functor>()(
std::declval<BoundArgs>()...))(std::decay_t<BoundArgs>...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = std::is_empty_v<std::decay_t<Functor>>;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// `StorageTraits<>`
//
// See description at top of file.
template <typename T>
struct StorageTraits {
// The type to use for storing the bound arg inside `BindState`.
using Type = T;
// True iff all compile-time preconditions for using this specialization are
// satisfied. Specializations that set this to `false` should ensure a
// `static_assert()` explains why.
static constexpr bool value = true;
};
// For `T*`, store as `UnretainedWrapper<T>` for safety, as it internally uses
// `raw_ptr<T>` (when possible).
template <typename T>
struct StorageTraits<T*> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>;
static constexpr bool value = Type::value;
};
// For `raw_ptr<T>`, store as `UnretainedWrapper<T>` for safety. This may seem
// contradictory, but this ensures guaranteed protection for the pointer even
// during execution of callbacks with parameters of type `raw_ptr<T>`.
template <typename T, RawPtrTraits PtrTraits>
struct StorageTraits<raw_ptr<T, PtrTraits>> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>;
static constexpr bool value = Type::value;
};
// Unwrap `std::reference_wrapper` and store it in a custom wrapper so that
// references are also protected with `raw_ptr<T>`.
template <typename T>
struct StorageTraits<std::reference_wrapper<T>> {
using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>;
static constexpr bool value = Type::value;
};
template <typename T>
using ValidateStorageTraits = StorageTraits<std::decay_t<T>>;
// `InvokeHelper<>`
//
// There are 2 logical `InvokeHelper<>` specializations: normal, weak.
//
// The normal type just calls the underlying runnable.
//
// Weak calls need special syntax that is applied to the first argument to check
// if they should no-op themselves.
template <bool is_weak_call,
typename Traits,
typename ReturnType,
size_t... indices>
struct InvokeHelper;
template <typename Traits, typename ReturnType, size_t... indices>
struct InvokeHelper<false, Traits, ReturnType, indices...> {
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline ReturnType MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
return Traits::Invoke(
Unwrap(std::forward<Functor>(functor)),
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
template <typename Traits,
typename ReturnType,
size_t index_target,
size_t... index_tail>
struct InvokeHelper<true, Traits, ReturnType, index_target, index_tail...> {
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline void MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
static_assert(index_target == 0);
// Note the validity of the weak pointer should be tested _after_ it is
// unwrapped, otherwise it creates a race for weak pointer implementations
// that allow cross-thread usage and perform `Lock()` in `Unwrap()` traits.
const auto& target = Unwrap(std::get<0>(bound));
if (!target) {
return;
}
Traits::Invoke(
Unwrap(std::forward<Functor>(functor)), target,
Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
// `Invoker<>`
//
// See description at the top of the file.
template <typename Traits, typename StorageType, typename UnboundRunType>
struct Invoker;
template <typename Traits,
typename StorageType,
typename R,
typename... UnboundArgs>
struct Invoker<Traits, StorageType, R(UnboundArgs...)> {
private:
using Indices = std::make_index_sequence<
std::tuple_size_v<decltype(StorageType::bound_args_)>>;
public:
static R RunOnce(BindStateBase* base,
PassingType<UnboundArgs>... unbound_args) {
auto* const storage = static_cast<StorageType*>(base);
return RunImpl(std::move(storage->functor_),
std::move(storage->bound_args_), Indices(),
std::forward<UnboundArgs>(unbound_args)...);
}
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
auto* const storage = static_cast<const StorageType*>(base);
return RunImpl(storage->functor_, storage->bound_args_, Indices(),
std::forward<UnboundArgs>(unbound_args)...);
}
private:
// The "templated struct with a lambda that asserts" pattern below is used
// repeatedly in Bind/Callback code to verify compile-time preconditions. The
// goal is to print only the root cause failure when users violate a
// precondition, and not also a host of resulting compile errors.
//
// There are three key aspects:
// 1. By placing the assertion inside a lambda that initializes a variable,
// the assertion will not be verified until the compiler tries to read
// the value of that variable. This allows the containing types to be
// complete. As a result, code that needs to know if the assertion failed
// can read the variable's value and get the right answer. (If we instead
// placed the assertion at struct scope, the resulting type would be
// incomplete when the assertion failed; in practice, reading a
// `constexpr` member of an incomplete type seems to return the default
// value regardless of what the code tried to set the value to, which
// makes it impossible for other code to check whether the assertion
// failed.)
// 2. Code that will not successfully compile unless the assertion holds is
// guarded by a constexpr if that checks the variable.
// 3. By placing the variable inside an independent, templated struct and
// naming it `value`, we allow checking multiple conditions via
// `std::conjunction_v<>`. This short-circuits type instantiation, so
// that when one condition fails, the others are never examined and thus
// never assert. As a result, we can verify dependent conditions without
// worrying that "if one fails, we'll get errors from several others".
// (This would not be true if we simply checked all the values with `&&`,
// which would instantiate all the types before evaluating the
// expression.)
//
// For caller convenience and to avoid potential repetition, the actual
// condition to be checked is always used as the default value of a template
// argument, so callers can simply instantiate the struct with no template
// params to verify the condition.
// Weak calls are only supported for functions with a `void` return type.
// Otherwise, the desired function result would be unclear if the `WeakPtr<>`
// is invalidated. In theory, we could support default-constructible return
// types (and return the default value) or allow callers to specify a default
// return value via a template arg. It's not clear these are necessary.
template <bool is_weak_call, bool v = !is_weak_call || std::is_void_v<R>>
struct WeakCallReturnsVoid {
static constexpr bool value = [] {
static_assert(v,
"WeakPtrs can only bind to methods without return values.");
return v;
}();
};
template <typename Functor, typename BoundArgsTuple, size_t... indices>
static inline R RunImpl(Functor&& functor,
BoundArgsTuple&& bound,
std::index_sequence<indices...>,
UnboundArgs&&... unbound_args) {
#if PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker;
raw_ptr_asan_bound_arg_tracker.AddArgs(
std::get<indices>(std::forward<BoundArgsTuple>(bound))...,
std::forward<UnboundArgs>(unbound_args)...);
#endif // PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
static constexpr bool kIsWeakCall =
kIsWeakMethod<Traits::is_method,
std::tuple_element_t<indices, DecayedArgsTuple>...>;
if constexpr (WeakCallReturnsVoid<kIsWeakCall>::value) {
// Do not `Unwrap()` here, as that immediately triggers dangling pointer
// detection. Dangling pointer detection should only be triggered if the
// callback is not cancelled, but cancellation status is not determined
// until later inside the `InvokeHelper::MakeItSo()` specialization for
// weak calls.
//
// Dangling pointers when invoking a cancelled callback are not considered
// a memory safety error because protecting raw pointers usage with weak
// receivers (where the weak receiver usually own the pointed objects) is
// a common and broadly used pattern in the codebase.
return InvokeHelper<kIsWeakCall, Traits, R, indices...>::MakeItSo(
std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound),
std::forward<UnboundArgs>(unbound_args)...);
}
}
};
// Allow binding a method call with no receiver.
// TODO(crbug.com/41484339): Remove or make safe.
template <typename... Unused>
void VerifyMethodReceiver(Unused&&...) {}
template <typename Receiver, typename... Unused>
void VerifyMethodReceiver(Receiver&& receiver, Unused&&...) {
// Asserts that a callback is not the first owner of a ref-counted receiver.
if constexpr (IsPointerOrRawPtr<std::decay_t<Receiver>> &&
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>) {
DCHECK(receiver);
// It's error prone to make the implicit first reference to ref-counted
// types. In the example below, `BindOnce()` would make the implicit first
// reference to the ref-counted `Foo`. If `PostTask()` failed or the posted
// task ran fast enough, the newly created instance could be destroyed
// before `oo` makes another reference.
// ```
// Foo::Foo() {
// ThreadPool::PostTask(FROM_HERE, BindOnce(&Foo::Bar, this));
// }
//
// scoped_refptr<Foo> oo = new Foo();
// ```
//
// Hence, `Bind()` refuses to create the first reference to ref-counted
// objects, and `DCHECK()`s otherwise. As above, that typically happens
// around `PostTask()` in their constructors, and such objects can be
// destroyed before `new` returns if the tasks resolve fast enough.
//
// Instead, consider adding a static factory, and keeping the first
// reference alive explicitly.
// ```
// // static
// scoped_refptr<Foo> Foo::Create() {
// auto foo = base::WrapRefCounted(new Foo());
// ThreadPool::PostTask(FROM_HERE, BindOnce(&Foo::Bar, foo));
// return foo;
// }
//
// scoped_refptr<Foo> oo = Foo::Create();
// ```
DCHECK(receiver->HasAtLeastOneRef());
}
}
// `BindState<>`
//
// This stores all the state passed into `Bind()`.
template <bool is_method,
bool is_nullable,
bool is_callback,
typename Functor,
typename... BoundArgs>
struct BindState final : BindStateBase {
private:
using BoundArgsTuple = std::tuple<BoundArgs...>;
public:
template <typename ForwardFunctor, typename... ForwardBoundArgs>
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args) {
if constexpr (is_method) {
VerifyMethodReceiver(bound_args...);
}
return new BindState(invoke_func, std::forward<ForwardFunctor>(functor),
std::forward<ForwardBoundArgs>(bound_args)...);
}
Functor functor_;
BoundArgsTuple bound_args_;
private:
using CancellationTraits =
CallbackCancellationTraits<Functor, BoundArgsTuple>;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
requires CancellationTraits::is_cancellable
explicit BindState(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy, &QueryCancellationTraits),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
CheckFunctorIsNonNull();
}
template <typename ForwardFunctor, typename... ForwardBoundArgs>
requires(!CancellationTraits::is_cancellable)
explicit BindState(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
CheckFunctorIsNonNull();
}
~BindState() = default;
static bool QueryCancellationTraits(
const BindStateBase* base,
BindStateBase::CancellationQueryMode mode) {
auto* const storage = static_cast<const BindState*>(base);
static constexpr std::make_index_sequence<sizeof...(BoundArgs)> kIndices;
return (mode == BindStateBase::CancellationQueryMode::kIsCancelled)
? storage->IsCancelled(kIndices)
: storage->MaybeValid(kIndices);
}
static void Destroy(const BindStateBase* self) {
delete static_cast<const BindState*>(self);
}
// Helpers to do arg tuple expansion.
template <size_t... indices>
bool IsCancelled(std::index_sequence<indices...>) const {
return CancellationTraits::IsCancelled(functor_,
std::get<indices>(bound_args_)...);
}
template <size_t... indices>
bool MaybeValid(std::index_sequence<indices...>) const {
return CancellationTraits::MaybeValid(functor_,
std::get<indices>(bound_args_)...);
}
void CheckFunctorIsNonNull() const {
if constexpr (is_nullable) {
// Check the validity of `functor_` to avoid hard-to-diagnose crashes.
// Ideally we'd do this unconditionally, but release builds limit this to
// the case of nested callbacks (e.g. `Bind(callback, ...)`) to limit
// binary size impact.
if constexpr (is_callback) {
CHECK(!!functor_);
} else {
DCHECK(!!functor_);
}
}
}
};
template <typename... BoundArgs>
struct ValidateBindStateTypeCommonChecks {
private:
// Refcounted parameters must be passed as `scoped_refptr` instead of raw
// pointers, to ensure they are not deleted before use.
// TODO(danakj): Ban native references and `std::reference_wrapper` too.
template <typename T,
bool v =
(IsRawRef<T> && IsRefCountedType<base::RemoveRawRefT<T>>) ||
(IsPointerOrRawPtr<T> &&
IsRefCountedType<base::RemovePointerT<T>>)>
struct RefCountedTypeNotPassedByRawPointer {
static constexpr bool value = [] {
static_assert(
!v, "A parameter is a refcounted type and needs scoped_refptr.");
return !v;
}();
};
public:
using CommonCheckResult = std::conjunction<
RefCountedTypeNotPassedByRawPointer<std::decay_t<BoundArgs>>...,
ValidateStorageTraits<BoundArgs>...>;
};
// Used to determine and validate the appropriate `BindState`. The
// specializations below cover all cases. The members are similar in intent to
// those in `StorageTraits`; see comments there.
template <bool is_method,
bool is_nullable,
bool is_callback,
typename Functor,
typename... BoundArgs>
struct ValidateBindStateType;
template <bool is_nullable,
bool is_callback,
typename Functor,
typename... BoundArgs>
struct ValidateBindStateType<false,
is_nullable,
is_callback,
Functor,
BoundArgs...> {
using Type = BindState<false,
is_nullable,
is_callback,
std::decay_t<Functor>,
typename ValidateStorageTraits<BoundArgs>::Type...>;
static constexpr bool value =
ValidateBindStateTypeCommonChecks<BoundArgs...>::CommonCheckResult::value;
};
template <bool is_nullable, bool is_callback, typename Functor>
struct ValidateBindStateType<true, is_nullable, is_callback, Functor> {
using Type = BindState<true, is_nullable, is_callback, std::decay_t<Functor>>;
static constexpr bool value = true;
};
template <bool is_nullable,
bool is_callback,
typename Functor,
typename Receiver,
typename... BoundArgs>
struct ValidateBindStateType<true,
is_nullable,
is_callback,
Functor,
Receiver,
BoundArgs...> {
private:
using DecayedReceiver = std::decay_t<Receiver>;
using ReceiverStorageType =
typename MethodReceiverStorage<DecayedReceiver>::Type;
template <bool v = !std::is_array_v<std::remove_reference_t<Receiver>>>
struct FirstBoundArgIsNotArray {
static constexpr bool value = [] {
static_assert(v, "First bound argument to a method cannot be an array.");
return v;
}();
};
template <bool v = !IsRawRef<DecayedReceiver>>
struct ReceiverIsNotRawRef {
static constexpr bool value = [] {
static_assert(v, "Receivers may not be raw_ref<T>. If using a raw_ref<T> "
"here is safe and has no lifetime concerns, use "
"base::Unretained() and document why it's safe.");
return v;
}();
};
template <bool v = !IsPointerOrRawPtr<DecayedReceiver> ||
IsRefCountedType<RemovePointerT<DecayedReceiver>>>
struct ReceiverIsNotRawPtr {
static constexpr bool value = [] {
static_assert(v,
"Receivers may not be raw pointers. If using a raw pointer "
"here is safe and has no lifetime concerns, use "
"base::Unretained() and document why it's safe.");
return v;
}();
};
public:
using Type = BindState<true,
is_nullable,
is_callback,
std::decay_t<Functor>,
ReceiverStorageType,
typename ValidateStorageTraits<BoundArgs>::Type...>;
static constexpr bool value =
std::conjunction_v<FirstBoundArgIsNotArray<>,
ReceiverIsNotRawRef<>,
ReceiverIsNotRawPtr<>,
typename ValidateBindStateTypeCommonChecks<
BoundArgs...>::CommonCheckResult>;
};
// Transforms `T` into an unwrapped type, which is passed to the target
// function; e.g.:
// * `is_once` cases:
// ** `TransformToUnwrappedType<true, int&&>` -> `int&&`
// ** `TransformToUnwrappedType<true, const int&>` -> `int&&`
// ** `TransformToUnwrappedType<true, OwnedWrapper<int>&>` -> `int*&&`
// * `!is_once` cases:
// ** `TransformToUnwrappedType<false, int&&>` -> `const int&`
// ** `TransformToUnwrappedType<false, const int&>` -> `const int&`
// ** `TransformToUnwrappedType<false, OwnedWrapper<int>&>` -> `int* const &`
template <bool is_once,
typename T,
typename StoredType = std::decay_t<T>,
typename ForwardedType =
std::conditional_t<is_once, StoredType&&, const StoredType&>>
using TransformToUnwrappedType =
decltype(Unwrap(std::declval<ForwardedType>()));
// Used to convert `this` arguments to underlying pointer types; e.g.:
// `int*` -> `int*`
// `std::unique_ptr<int>` -> `int*`
// `int` -> (assertion failure; `this` must be a pointer-like object)
template <typename T>
struct ValidateReceiverType {
private:
// Pointer-like receivers use a different specialization, so this never
// succeeds.
template <bool v = AlwaysFalse<T>>
struct ReceiverMustBePointerLike {
static constexpr bool value = [] {
static_assert(v,
"Cannot convert `this` argument to address. Method calls "
"must be bound using a pointer-like `this` argument.");
return v;
}();
};
public:
// These members are similar in intent to those in `StorageTraits`; see
// comments there.
using Type = T;
static constexpr bool value = ReceiverMustBePointerLike<>::value;
};
template <typename T>
requires requires(T&& t) { base::to_address(t); }
struct ValidateReceiverType<T> {
using Type = decltype(base::to_address(std::declval<T>()));
static constexpr bool value = true;
};
// Transforms `Args` into unwrapped types, and packs them into a `TypeList`. If
// `is_method` is true, tries to dereference the first argument to support smart
// pointers.
template <bool is_once, bool is_method, typename... Args>
struct ValidateUnwrappedTypeList {
// These members are similar in intent to those in `StorageTraits`; see
// comments there.
using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
static constexpr bool value = true;
};
template <bool is_once, typename Receiver, typename... Args>
struct ValidateUnwrappedTypeList<is_once, true, Receiver, Args...> {
private:
using ReceiverStorageType =
typename MethodReceiverStorage<std::decay_t<Receiver>>::Type;
using UnwrappedReceiver =
TransformToUnwrappedType<is_once, ReceiverStorageType>;
using ValidatedReceiver = ValidateReceiverType<UnwrappedReceiver>;
public:
using Type = TypeList<typename ValidatedReceiver::Type,
TransformToUnwrappedType<is_once, Args>...>;
static constexpr bool value = ValidatedReceiver::value;
};
// `IsUnretainedMayDangle` is true iff `StorageType` is marked with
// `unretained_traits::MayDangle`. Note that it is false for
// `unretained_traits::MayDangleUntriaged`.
template <typename StorageType>
inline constexpr bool IsUnretainedMayDangle = false;
template <typename T, RawPtrTraits PtrTraits>
inline constexpr bool IsUnretainedMayDangle<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true;
// `UnretainedAndRawPtrHaveCompatibleTraits` is true iff `StorageType` is marked
// with `unretained_traits::MayDangle`, `FunctionParamType` is a `raw_ptr`, and
// `StorageType::GetPtrType` is the same type as `FunctionParamType`.
template <typename StorageType, typename FunctionParamType>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false;
template <typename T,
RawPtrTraits PtrTraitsInUnretained,
RawPtrTraits PtrTraitsInReceiver>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>,
raw_ptr<T, PtrTraitsInReceiver>> =
std::same_as<typename UnretainedWrapper<T,
unretained_traits::MayDangle,
PtrTraitsInUnretained>::GetPtrType,
raw_ptr<T, PtrTraitsInReceiver>>;
// Helpers to make error messages slightly more readable.
template <int i>
struct BindArgument {
template <typename ForwardingType>
struct ForwardedAs {
template <typename FunctorParamType>
struct ToParamWithType {
static constexpr bool kRawPtr = IsRawPtr<FunctorParamType>;
static constexpr bool kRawPtrMayBeDangling =
IsRawPtrMayDangle<FunctorParamType>;
static constexpr bool kCanBeForwardedToBoundFunctor =
std::is_convertible_v<ForwardingType, FunctorParamType>;
// If the bound type can't be forwarded, then test if `FunctorParamType`
// is a non-const lvalue reference and a reference to the unwrapped type
// could have been successfully forwarded.
static constexpr bool kIsUnwrappedForwardableNonConstReference =
std::is_lvalue_reference_v<FunctorParamType> &&
!std::is_const_v<std::remove_reference_t<FunctorParamType>> &&
std::is_convertible_v<std::decay_t<ForwardingType>&,
FunctorParamType>;
// Also intentionally drop the `const` qualifier from `ForwardingType`, to
// test if it could have been successfully forwarded if `Passed()` had
// been used.
static constexpr bool kWouldBeForwardableWithPassed =
std::is_convertible_v<std::decay_t<ForwardingType>&&,
FunctorParamType>;
};
};
template <typename BoundAsType>
struct BoundAs {
template <typename StorageType>
struct StoredAs {
static constexpr bool kBindArgumentCanBeCaptured =
std::constructible_from<StorageType, BoundAsType>;
// If the argument can't be captured, intentionally drop the `const`
// qualifier from `BoundAsType`, to test if it could have been
// successfully captured if `std::move()` had been used.
static constexpr bool kWouldBeCapturableWithStdMove =
std::constructible_from<StorageType, std::decay_t<BoundAsType>&&>;
};
};
template <typename FunctionParamType>
struct ToParamWithType {
template <typename StorageType>
struct StoredAs {
static constexpr bool kBoundPtrMayDangle =
IsUnretainedMayDangle<StorageType>;
static constexpr bool kMayDangleAndMayBeDanglingHaveMatchingTraits =
UnretainedAndRawPtrHaveCompatibleTraits<StorageType,
FunctionParamType>;
};
};
};
// Helper to assert that parameter `i` of type `Arg` can be bound, which means:
// * `Arg` can be retained internally as `Storage`
// * `Arg` can be forwarded as `Unwrapped` to `Param`
template <int i,
bool is_method,
typename Arg,
typename Storage,
typename Unwrapped,
typename Param>
struct ParamCanBeBound {
private:
using UnwrappedParam = BindArgument<i>::template ForwardedAs<
Unwrapped>::template ToParamWithType<Param>;
using ParamStorage = BindArgument<i>::template ToParamWithType<
Param>::template StoredAs<Storage>;
using BoundStorage =
BindArgument<i>::template BoundAs<Arg>::template StoredAs<Storage>;
template <bool v = !UnwrappedParam::kRawPtr ||
UnwrappedParam::kRawPtrMayBeDangling>
struct NotRawPtr {
static constexpr bool value = [] {
static_assert(
v, "Use T* or T& instead of raw_ptr<T> for function parameters, "
"unless you must mark the parameter as MayBeDangling<T>.");
return v;
}();
};
template <bool v = !ParamStorage::kBoundPtrMayDangle ||
UnwrappedParam::kRawPtrMayBeDangling ||
// Exempt `this` pointer as it is not passed as a regular
// function argument.
(is_method && i == 0)>
struct MayBeDanglingPtrPassedCorrectly {
static constexpr bool value = [] {
static_assert(v, "base::UnsafeDangling() pointers should only be passed "
"to parameters marked MayBeDangling<T>.");
return v;
}();
};
template <bool v =
!UnwrappedParam::kRawPtrMayBeDangling ||
(ParamStorage::kBoundPtrMayDangle &&
ParamStorage::kMayDangleAndMayBeDanglingHaveMatchingTraits)>
struct MayDangleAndMayBeDanglingHaveMatchingTraits {
static constexpr bool value = [] {
static_assert(
v, "Pointers passed to MayBeDangling<T> parameters must be created "
"by base::UnsafeDangling() with the same RawPtrTraits.");
return v;
}();
};
// With `BindRepeating()`, there are two decision points for how to handle a
// move-only type:
//
// 1. Whether the move-only argument should be moved into the internal
// `BindState`. Either `std::move()` or `Passed()` is sufficient to trigger
// move-only semantics.
// 2. Whether or not the bound, move-only argument should be moved to the
// bound functor when invoked. When the argument is bound with `Passed()`,
// invoking the callback will destructively move the bound, move-only
// argument to the bound functor. In contrast, if the argument is bound
// with `std::move()`, `RepeatingCallback` will attempt to call the bound
// functor with a constant reference to the bound, move-only argument. This
// will fail if the bound functor accepts that argument by value, since the
// argument cannot be copied. It is this latter case that this
// assertion aims to catch.
//
// In contrast, `BindOnce()` only has one decision point. Once a move-only
// type is captured by value into the internal `BindState`, the bound,
// move-only argument will always be moved to the functor when invoked.
// Failure to use `std::move()` will simply fail the
// `MoveOnlyTypeMustUseStdMove` assertion below instead.
//
// Note: `Passed()` is a legacy of supporting move-only types when repeating
// callbacks were the only callback type. A `RepeatingCallback` with a
// `Passed()` argument is really a `OnceCallback` and should eventually be
// migrated.
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor ||
!UnwrappedParam::kWouldBeForwardableWithPassed>
struct MoveOnlyTypeMustUseBasePassed {
static constexpr bool value = [] {
static_assert(v,
"base::BindRepeating() argument is a move-only type. Use "
"base::Passed() instead of std::move() to transfer "
"ownership from the callback to the bound functor.");
return v;
}();
};
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor ||
!UnwrappedParam::kIsUnwrappedForwardableNonConstReference>
struct NonConstRefParamMustBeWrapped {
static constexpr bool value = [] {
static_assert(v,
"Bound argument for non-const reference parameter must be "
"wrapped in std::ref() or base::OwnedRef().");
return v;
}();
};
// Generic failed-to-forward message for cases that didn't match one of the
// two assertions above.
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor>
struct CanBeForwardedToBoundFunctor {
static constexpr bool value = [] {
static_assert(v,
"Type mismatch between bound argument and bound functor's "
"parameter.");
return v;
}();
};
// The most common reason for failing to capture a parameter is attempting to
// pass a move-only type as an lvalue.
template <bool v = BoundStorage::kBindArgumentCanBeCaptured ||
!BoundStorage::kWouldBeCapturableWithStdMove>
struct MoveOnlyTypeMustUseStdMove {
static constexpr bool value = [] {
static_assert(v,
"Attempting to bind a move-only type. Use std::move() to "
"transfer ownership to the created callback.");
return v;
}();
};
// Any other reason the parameter could not be captured.
template <bool v = BoundStorage::kBindArgumentCanBeCaptured>
struct BindArgumentCanBeCaptured {
static constexpr bool value = [] {
// In practice, failing this precondition should be rare, as the storage
// type is deduced from the arguments passed to `Bind()`.
static_assert(
v, "Cannot capture argument: is the argument copyable or movable?");
return v;
}();
};
public:
static constexpr bool value =
std::conjunction_v<NotRawPtr<>,
MayBeDanglingPtrPassedCorrectly<>,
MayDangleAndMayBeDanglingHaveMatchingTraits<>,
MoveOnlyTypeMustUseBasePassed<>,
NonConstRefParamMustBeWrapped<>,
CanBeForwardedToBoundFunctor<>,
MoveOnlyTypeMustUseStdMove<>,
BindArgumentCanBeCaptured<>>;
};
// Takes three same-length `TypeList`s, and checks `ParamCanBeBound` for each
// triple.
template <bool is_method,
typename Index,
typename Args,
typename UnwrappedTypeList,
typename ParamsList>
struct ParamsCanBeBound {
static constexpr bool value = false;
};
template <bool is_method,
size_t... Ns,
typename... Args,
typename... UnwrappedTypes,
typename... Params>
struct ParamsCanBeBound<is_method,
std::index_sequence<Ns...>,
TypeList<Args...>,
TypeList<UnwrappedTypes...>,
TypeList<Params...>> {
static constexpr bool value =
std::conjunction_v<ParamCanBeBound<Ns,
is_method,
Args,
std::decay_t<Args>,
UnwrappedTypes,
Params>...>;
};
// Core implementation of `Bind()`, which checks common preconditions before
// returning an appropriate callback.
template <template <typename> class CallbackT>
struct BindHelper {
private:
static constexpr bool kIsOnce =
is_instantiation<OnceCallback, CallbackT<void()>>;
template <typename Traits, bool v = IsComplete<Traits>>
struct TraitsAreInstantiable {
static constexpr bool value = [] {
static_assert(
v, "Could not determine how to invoke functor. If this functor has "
"an overloaded operator()(), bind all arguments to it, and ensure "
"the result will select a unique overload.");
return v;
}();
};
template <typename Functor,
bool v = !is_instantiation<OnceCallback, std::decay_t<Functor>> ||
(kIsOnce && std::is_rvalue_reference_v<Functor&&> &&
!std::is_const_v<std::remove_reference_t<Functor>>)>
struct OnceCallbackFunctorIsValid {
static constexpr bool value = [] {
if constexpr (kIsOnce) {
static_assert(v,
"BindOnce() requires non-const rvalue for OnceCallback "
"binding, i.e. base::BindOnce(std::move(callback)).");
} else {
static_assert(v, "BindRepeating() cannot bind OnceCallback. Use "
"BindOnce() with std::move().");
}
return v;
}();
};
template <typename... Args>
struct NoBindArgToOnceCallbackIsBasePassed {
static constexpr bool value = [] {
// Can't use a defaulted template param since it can't come after `Args`.
constexpr bool v =
!kIsOnce ||
(... && !is_instantiation<PassedWrapper, std::decay_t<Args>>);
static_assert(
v,
"Use std::move() instead of base::Passed() with base::BindOnce().");
return v;
}();
};
template <
typename Functor,
bool v =
!is_instantiation<FunctionRef, std::remove_cvref_t<Functor>> &&
!is_instantiation<absl::FunctionRef, std::remove_cvref_t<Functor>>>
struct NotFunctionRef {
static constexpr bool value = [] {
static_assert(
v,
"Functor may not be a FunctionRef, since that is a non-owning "
"reference that may go out of scope before the callback executes.");
return v;
}();
};
template <typename Traits, bool v = Traits::is_stateless>
struct IsStateless {
static constexpr bool value = [] {
static_assert(
v, "Capturing lambdas and stateful functors are intentionally not "
"supported. Use a non-capturing lambda or stateless functor (i.e. "
"has no non-static data members) and bind arguments directly.");
return v;
}();
};
template <typename Functor, typename... Args>
static auto BindImpl(Functor&& functor, Args&&... args) {
// There are a lot of variables and type aliases here. An example will be
// illustrative. Assume we call:
// ```
// struct S {
// double f(int, const std::string&);
// } s;
// int16_t i;
// BindOnce(&S::f, Unretained(&s), i);
// ```
// This means our template params are:
// ```
// template <typename> class CallbackT = OnceCallback
// typename Functor = double (S::*)(int, const std::string&)
// typename... Args =
// UnretainedWrapper<S, unretained_traits::MayNotDangle>, int16_t
// ```
// And the implementation below is effectively:
// ```
// using Traits = struct {
// using RunType = double(S*, int, const std::string&);
// static constexpr bool is_method = true;
// static constexpr bool is_nullable = true;
// static constexpr bool is_callback = false;
// static constexpr bool is_stateless = true;
// ...
// };
// using ValidatedUnwrappedTypes = struct {
// using Type = TypeList<S*, int16_t>;
// static constexpr bool value = true;
// };
// using BoundArgsList = TypeList<S*, int16_t>;
// using RunParamsList = TypeList<S*, int, const std::string&>;
// using BoundParamsList = TypeList<S*, int>;
// using ValidatedBindState = struct {
// using Type =
// BindState<double (S::*)(int, const std::string&),
// UnretainedWrapper<S, unretained_traits::MayNotDangle>,
// int16_t>;
// static constexpr bool value = true;
// };
// if constexpr (true) {
// using UnboundRunType = double(const std::string&);
// using CallbackType = OnceCallback<double(const std::string&)>;
// ...
// ```
using Traits = FunctorTraits<TransformToUnwrappedType<kIsOnce, Functor&&>,
TransformToUnwrappedType<kIsOnce, Args&&>...>;
if constexpr (TraitsAreInstantiable<Traits>::value) {
using ValidatedUnwrappedTypes =
ValidateUnwrappedTypeList<kIsOnce, Traits::is_method, Args&&...>;
using BoundArgsList = TypeList<Args...>;
using RunParamsList = ExtractArgs<typename Traits::RunType>;
using BoundParamsList = TakeTypeListItem<sizeof...(Args), RunParamsList>;
using ValidatedBindState =
ValidateBindStateType<Traits::is_method, Traits::is_nullable,
Traits::is_callback, Functor, Args...>;
// This conditional checks if each of the `args` matches to the
// corresponding param of the target function. This check does not affect
// the behavior of `Bind()`, but its error message should be more
// readable.
if constexpr (std::conjunction_v<
NotFunctionRef<Functor>, IsStateless<Traits>,
ValidatedUnwrappedTypes,
ParamsCanBeBound<
Traits::is_method,
std::make_index_sequence<sizeof...(Args)>,
BoundArgsList,
typename ValidatedUnwrappedTypes::Type,
BoundParamsList>,
ValidatedBindState>) {
using UnboundRunType =
MakeFunctionType<ExtractReturnType<typename Traits::RunType>,
DropTypeListItem<sizeof...(Args), RunParamsList>>;
using CallbackType = CallbackT<UnboundRunType>;
// Store the invoke func into `PolymorphicInvoke` before casting it to
// `InvokeFuncStorage`, so that we can ensure its type matches to
// `PolymorphicInvoke`, to which `CallbackType` will cast back.
typename CallbackType::PolymorphicInvoke invoke_func;
using Invoker =
Invoker<Traits, typename ValidatedBindState::Type, UnboundRunType>;
if constexpr (kIsOnce) {
invoke_func = Invoker::RunOnce;
} else {
invoke_func = Invoker::Run;
}
return CallbackType(ValidatedBindState::Type::Create(
reinterpret_cast<BindStateBase::InvokeFuncStorage>(invoke_func),
std::forward<Functor>(functor), std::forward<Args>(args)...));
}
}
}
// Special cases for binding to a `Callback` without extra bound arguments.
// `OnceCallback` passed to `OnceCallback`, or `RepeatingCallback` passed to
// `RepeatingCallback`.
template <typename T>
requires is_instantiation<CallbackT, T>
static T BindImpl(T callback) {
// Guard against null pointers accidentally ending up in posted tasks,
// causing hard-to-debug crashes.
CHECK(callback);
return callback;
}
// `RepeatingCallback` passed to `OnceCallback`. The opposite direction is
// intentionally not supported.
template <typename Signature>
requires is_instantiation<CallbackT, OnceCallback<Signature>>
static OnceCallback<Signature> BindImpl(
RepeatingCallback<Signature> callback) {
return BindImpl(OnceCallback<Signature>(callback));
}
// Must be defined after `BindImpl()` since it refers to it.
template <typename Functor, typename... Args>
struct BindImplWouldSucceed {
// Can't use a defaulted template param since it can't come after `Args`.
//
// Determining if `BindImpl()` would succeed is not as simple as verifying
// any conditions it checks directly; those only control when it's safe to
// call other methods, which in turn may fail. However, ultimately, any
// failure will result in returning `void`, so check for a non-`void` return
// type.
static constexpr bool value =
!std::same_as<void,
decltype(BindImpl(std::declval<Functor&&>(),
std::declval<Args&&>()...))>;
};
public:
template <typename Functor, typename... Args>
static auto Bind(Functor&& functor, Args&&... args) {
if constexpr (std::conjunction_v<
OnceCallbackFunctorIsValid<Functor>,
NoBindArgToOnceCallbackIsBasePassed<Args...>,
BindImplWouldSucceed<Functor, Args...>>) {
return BindImpl(std::forward<Functor>(functor),
std::forward<Args>(args)...);
} else {
return BindFailedCheckPreviousErrors();
}
}
};
} // namespace internal
// An injection point to control `this` pointer behavior on a method invocation.
// If `IsWeakReceiver<T>::value` is `true` and `T` is used as a method receiver,
// `Bind()` cancels the method invocation if the receiver tests as false.
// ```
// struct S {
// void f() {}
// };
//
// WeakPtr<S> weak_s = nullptr;
// BindOnce(&S::f, weak_s).Run(); // `S::f()` is not called.
// ```
template <typename T>
struct IsWeakReceiver : std::bool_constant<is_instantiation<WeakPtr, T>> {};
template <typename T>
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
// An injection point to control how objects are checked for maybe validity,
// which is an optimistic thread-safe check for full validity.
template <typename>
struct MaybeValidTraits {
template <typename T>
static bool MaybeValid(const T& o) {
return o.MaybeValid();
}
};
// An injection point to control how bound objects passed to the target
// function. `BindUnwrapTraits<>::Unwrap()` is called for each bound object
// right before the target function is invoked.
template <typename>
struct BindUnwrapTraits {
template <typename T>
static T&& Unwrap(T&& o) {
return std::forward<T>(o);
}
};
template <typename T>
requires internal::kIsUnretainedWrapper<internal::UnretainedWrapper, T> ||
internal::kIsUnretainedWrapper<internal::UnretainedRefWrapper, T> ||
is_instantiation<internal::RetainedRefWrapper, T> ||
is_instantiation<internal::OwnedWrapper, T> ||
is_instantiation<internal::OwnedRefWrapper, T>
struct BindUnwrapTraits<T> {
static decltype(auto) Unwrap(const T& o) { return o.get(); }
};
template <typename T>
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
};
#if BUILDFLAG(IS_WIN)
template <typename T>
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
};
#endif
// `CallbackCancellationTraits` allows customization of `Callback`'s
// cancellation semantics. By default, callbacks are not cancellable. A
// specialization should set `is_cancellable` and implement an `IsCancelled()`
// that returns whether the callback should be cancelled, as well as a
// `MaybeValid()` that returns whether the underlying functor/object is maybe
// valid.
template <typename Functor, typename BoundArgsTuple>
struct CallbackCancellationTraits {
static constexpr bool is_cancellable = false;
};
// Specialization for a weak receiver.
template <typename Functor, typename... BoundArgs>
requires internal::kIsWeakMethod<
internal::FunctorTraits<Functor, BoundArgs...>::is_method,
BoundArgs...>
struct CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Receiver, typename... Args>
static bool IsCancelled(const Functor&,
const Receiver& receiver,
const Args&...) {
return !receiver;
}
template <typename Receiver, typename... Args>
static bool MaybeValid(const Functor&,
const Receiver& receiver,
const Args&...) {
return MaybeValidTraits<Receiver>::MaybeValid(receiver);
}
};
// Specialization for a nested `Bind()`.
template <typename Functor, typename... BoundArgs>
requires is_instantiation<OnceCallback, Functor> ||
is_instantiation<RepeatingCallback, Functor>
struct CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return MaybeValidTraits<Functor>::MaybeValid(functor);
}
};
} // namespace base
#endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_