1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363

base / functional / bind_nocompile.nc [blame]

// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This is a "No Compile Test" suite.
// http://dev.chromium.org/developers/testing/no-compile-tests

#define FORCE_UNRETAINED_COMPLETENESS_CHECKS_FOR_TESTS 1

#include <stdint.h>

#include <utility>

#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/disallow_unretained.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/memory/ref_counted.h"

namespace base {

void NonConstFunctionWithConstObject() {
  struct S : RefCounted<S> {
    void Method() {}
  } s;
  const S* const const_s_ptr = &s;
  // Non-`const` methods may not be bound with a `const` receiver.
  BindRepeating(&S::Method, const_s_ptr);  // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
  // `const` pointer cannot be bound to non-`const` parameter.
  BindRepeating([] (S*) {}, const_s_ptr);  // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
}

void WrongReceiverTypeForNonRefcounted() {
  // 1. Non-refcounted objects must use `Unretained()` for the `this` argument.
  // 2. Reference-like objects may not be used as the receiver.
  struct A {
    void Method() {}
    void ConstMethod() const {}
  } a;
  // Using distinct types causes distinct template instantiations, so we get
  // assertion failures below where we expect. These types facilitate that.
  struct B : A {} b;
  struct C : A {} c;
  struct D : A {} d;
  struct E : A {};
  A* ptr_a = &a;
  A& ref_a = a;
  raw_ptr<A> rawptr_a(&a);
  raw_ref<A> rawref_a(a);
  const B const_b;
  B* ptr_b = &b;
  const B* const_ptr_b = &const_b;
  B& ref_b = b;
  const B& const_ref_b = const_b;
  raw_ptr<B> rawptr_b(&b);
  raw_ptr<const B> const_rawptr_b(&const_b);
  raw_ref<B> rawref_b(b);
  raw_ref<const B> const_rawref_b(const_b);
  C& ref_c = c;
  D& ref_d = d;
  const E const_e;
  const E& const_ref_e = const_e;
  BindRepeating(&A::Method, &a);                   // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&A::Method, ptr_a);                // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&A::Method, a);                    // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&C::Method, ref_c);                // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&A::Method, std::ref(a));          // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&A::Method, std::cref(a));         // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&A::Method, rawptr_a);             // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&A::Method, rawref_a);             // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
  BindRepeating(&B::ConstMethod, &b);              // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&B::ConstMethod, &const_b);        // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&B::ConstMethod, ptr_b);           // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&B::ConstMethod, const_ptr_b);     // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&B::ConstMethod, b);               // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&D::ConstMethod, ref_d);           // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&E::ConstMethod, const_ref_e);     // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&B::ConstMethod, std::ref(b));     // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&B::ConstMethod, std::cref(b));    // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&B::ConstMethod, rawptr_b);        // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&B::ConstMethod, const_rawptr_b);  // expected-error@*:* {{Receivers may not be raw pointers.}}
  BindRepeating(&B::ConstMethod, rawref_b);        // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
  BindRepeating(&B::ConstMethod, const_rawref_b);  // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
}

void WrongReceiverTypeForRefcounted() {
  // Refcounted objects must pass a pointer-like `this` argument.
  struct A : RefCounted<A> {
    void Method() const {}
  } a;
  // Using distinct types causes distinct template instantiations, so we get
  // assertion failures below where we expect. These types facilitate that.
  struct B : A {} b;
  struct C : A {};
  const A const_a;
  B& ref_b = b;
  const C const_c;
  const C& const_ref_c = const_c;
  raw_ref<A> rawref_a(a);
  raw_ref<const A> const_rawref_a(const_a);
  BindRepeating(&A::Method, a);               // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&B::Method, ref_b);           // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&C::Method, const_ref_c);     // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&A::Method, std::ref(a));     // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&A::Method, std::cref(a));    // expected-error@*:* {{Cannot convert `this` argument to address.}}
  BindRepeating(&A::Method, rawref_a);        // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
  BindRepeating(&A::Method, const_rawref_a);  // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
}

void RemovesConst() {
  // Callbacks that expect non-const refs/ptrs should not be callable with const
  // ones.
  const int i = 0;
  const int* p = &i;
  BindRepeating([] (int&) {}).Run(i);  // expected-error {{no matching member function for call to 'Run'}}
  BindRepeating([] (int*) {}, p);      // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
  BindRepeating([] (int*) {}).Run(p);  // expected-error {{no matching member function for call to 'Run'}}
}

void PassingIncorrectRef() {
  // Functions that take non-const reference arguments require the parameters to
  // be bound as matching `std::ref()`s or `OwnedRef()`s.
  int i = 1;
  float f = 1.0f;
  // No wrapper.
  BindOnce([] (int&) {}, i);       // expected-error@*:* {{Bound argument for non-const reference parameter must be wrapped in std::ref() or base::OwnedRef().}}
  BindRepeating([] (int&) {}, i);  // expected-error@*:* {{Bound argument for non-const reference parameter must be wrapped in std::ref() or base::OwnedRef().}}
  // Wrapper, but with mismatched type.
  BindOnce([] (int&) {}, f);            // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
  BindOnce([] (int&) {}, std::ref(f));  // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
  BindOnce([] (int&) {}, OwnedRef(f));  // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
}

void ArrayAsReceiver() {
  // A method should not be bindable with an array of objects. Users could
  // unintentionally attempt to do this via array->pointer decay.
  struct S : RefCounted<S> {
    void Method() const {}
  };
  S s[2];
  BindRepeating(&S::Method, s);  // expected-error@*:* {{First bound argument to a method cannot be an array.}}
}

void RefCountedArgs() {
  // Refcounted types should not be bound as a raw pointers.
  struct S : RefCounted<S> {};
  S s;
  const S const_s;
  S* ptr_s = &s;
  const S* const_ptr_s = &const_s;
  raw_ptr<S> rawptr(&s);
  raw_ptr<const S> const_rawptr(&const_s);
  raw_ref<S> rawref(s);
  raw_ref<const S> const_rawref(const_s);
  BindRepeating([] (S*) {}, &s);                          // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (const S*) {}, &const_s);              // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (S*) {}, ptr_s);                       // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (const S*) {}, const_ptr_s);           // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (S*) {}, rawptr);                      // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (const S*) {}, const_rawptr);          // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (raw_ref<S>) {}, rawref);              // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
  BindRepeating([] (raw_ref<const S>) {}, const_rawref);  // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
}

void WeakPtrWithReturnType() {
  // WeakPtrs cannot be bound to methods with return types, since if the WeakPtr
  // is null when the callback runs, it's not clear what the framework should
  // return.
  struct S {
    int ReturnsInt() const { return 1; }
  } s;
  WeakPtrFactory<S> weak_factory(&s);
  BindRepeating(&S::ReturnsInt, weak_factory.GetWeakPtr());  // expected-error@*:* {{WeakPtrs can only bind to methods without return values.}}
}

void CallbackConversion() {
  // Callbacks should not be constructible from other callbacks in ways that
  // would drop ref or pointer constness or change arity.
  RepeatingCallback<int(int&)> wrong_ref_constness = BindRepeating([] (const int&) {});  // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int &)>'}}
  RepeatingCallback<int(int*)> wrong_ptr_constness = BindRepeating([] (const int*) {});  // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int *)>'}}
  RepeatingClosure arg_count_too_low = BindRepeating([] (int) {});                       // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<void ()>'}}
  RepeatingCallback<int(int)> arg_count_too_high = BindRepeating([] { return 0; });      // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int)>'}}
  RepeatingClosure discarding_return = BindRepeating([] { return 0; });                  // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<void ()>'}}
}

void CapturingLambdaOrFunctor() {
  // Bind disallows capturing lambdas and stateful functors.
  int i = 0, j = 0;
  struct S {
    void operator()() const {}
    int x;
  };
  BindOnce([&] { j = i; });        // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
  BindRepeating([&] { j = i; });   // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
  BindRepeating(S());                // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
}

void OnceCallbackRequiresNonConstRvalue() {
  // `OnceCallback::Run()` can only be invoked on a non-const rvalue.
  // Using distinct types causes distinct template instantiations, so we get
  // assertion failures below where we expect. These types facilitate that.
  enum class A {};
  enum class B {};
  enum class C {};
  OnceCallback<void(A)> cb_a = BindOnce([] (A) {});
  const OnceCallback<void(B)> const_cb_b = BindOnce([] (B) {});
  const OnceCallback<void(C)> const_cb_c = BindOnce([] (C) {});
  cb_a.Run(A{});                   // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
  const_cb_b.Run(B{});             // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
  std::move(const_cb_c).Run(C{});  // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
}

void OnceCallbackAsArgMustBeNonConstRvalue() {
  // A `OnceCallback` passed to another callback must be a non-const rvalue.
  auto cb = BindOnce([] (int) {});
  const auto const_cb = BindOnce([] (int) {});
  BindOnce(cb, 0);                   // expected-error@*:* {{BindOnce() requires non-const rvalue for OnceCallback binding, i.e. base::BindOnce(std::move(callback)).}}
  BindOnce(std::move(const_cb), 0);  // expected-error@*:* {{BindOnce() requires non-const rvalue for OnceCallback binding, i.e. base::BindOnce(std::move(callback)).}}
}

void OnceCallbackBoundByRepeatingCallback() {
  // `BindRepeating()` does not accept `OnceCallback`s.
  BindRepeating(BindOnce([] (int) {}), 0);  // expected-error@*:* {{BindRepeating() cannot bind OnceCallback. Use BindOnce() with std::move().}}
}

void MoveOnlyArg() {
  // Move-only types require `std::move()` for `BindOnce()` and `base::Passed()` for `BindRepeating()`.
  struct S {
    S() = default;
    S(S&&) = default;
    S& operator=(S&&) = default;
  } s1, s2;
  BindOnce([] (S) {}, s1);                  // expected-error@*:* {{Attempting to bind a move-only type. Use std::move() to transfer ownership to the created callback.}}
  BindOnce([] (S) {}, Passed(&s1));         // expected-error@*:* {{Use std::move() instead of base::Passed() with base::BindOnce().}}
  BindRepeating([] (S) {}, s2);             // expected-error@*:* {{base::BindRepeating() argument is a move-only type. Use base::Passed() instead of std::move() to transfer ownership from the callback to the bound functor.}}
  BindRepeating([] (S) {}, std::move(s2));  // expected-error@*:* {{base::BindRepeating() argument is a move-only type. Use base::Passed() instead of std::move() to transfer ownership from the callback to the bound functor.}}
}

void NonCopyableNonMovable() {
  // Arguments must be either copyable or movable to be captured.
  struct S {
    S() = default;
    S(const S&) = delete;
    S& operator=(const S&) = delete;
  } s;
  BindOnce([](const S&) {}, s);  // expected-error@*:* {{Cannot capture argument: is the argument copyable or movable?}}
}

void OverloadedFunction() {
  // Overloaded function types cannot be disambiguated. (It might be nice to fix
  // this.)
  void F(int);
  void F(float);
  BindOnce(&F, 1);          // expected-error {{reference to overloaded function could not be resolved; did you mean to call it?}}
  BindRepeating(&F, 1.0f);  // expected-error {{reference to overloaded function could not be resolved; did you mean to call it?}}
}

void OverloadedOperator() {
  // It's not possible to bind to a functor with an overloaded `operator()()`
  // unless the caller supplies arguments that can invoke a unique overload.
  struct A {
    int64_t operator()(int, int64_t x) { return x; }
    uint64_t operator()(int, uint64_t x) { return x; }
    A operator()(double, A a) { return a; }
  } a;
  // Using distinct types causes distinct template instantiations, so we get
  // assertion failures below where we expect. These types facilitate that.
  struct B : A {} b;
  struct C : A {} c;
  struct D : A {} d;

  // Partial function application isn't supported, even if it's sufficient to
  // "narrow the field" to a single candidate that _could_ eventually match.
  BindOnce(a);              // expected-error@*:* {{Could not determine how to invoke functor.}}
  BindOnce(b, 1.0);         // expected-error@*:* {{Could not determine how to invoke functor.}}

  // The supplied args don't match any candidates.
  BindOnce(c, 1, nullptr);  // expected-error@*:* {{Could not determine how to invoke functor.}}

  // The supplied args inexactly match multiple candidates.
  BindOnce(d, 1, 1);        // expected-error@*:* {{Could not determine how to invoke functor.}}
}

void RefQualifiedOverloadedOperator() {
  // Invocations with lvalues should attempt to use lvalue-ref-qualified
  // methods.
  struct A {
    void operator()() const& = delete;
    void operator()() && {}
  } a;
  // Using distinct types causes distinct template instantiations, so we get
  // assertion failures below where we expect. This type facilitates that.
  struct B : A {};
  BindRepeating(a);    // expected-error@*:* {{Could not determine how to invoke functor.}}
  BindRepeating(B());  // expected-error@*:* {{Could not determine how to invoke functor.}}

  // Invocations with rvalues should attempt to use rvalue-ref-qualified
  // methods.
  struct C {
    void operator()() const& {}
    void operator()() && = delete;
  };
  BindRepeating(Passed(C()));  // expected-error@*:* {{Could not determine how to invoke functor.}}
  BindOnce(C());               // expected-error@*:* {{Could not determine how to invoke functor.}}
}

// Define a type that disallows `Unretained()` via the internal customization
// point, so the next test can use it.
struct BlockViaCustomizationPoint {};
namespace internal {
template <>
constexpr bool kCustomizeSupportsUnretained<BlockViaCustomizationPoint> = false;
}  // namespace internal

void CanDetectTypesThatDisallowUnretained() {
  // It shouldn't be possible to directly bind any type that doesn't support
  // `Unretained()`, whether because it's incomplete, or is marked with
  // `DISALLOW_RETAINED()`, or has `kCustomizeSupportsUnretained` specialized to
  // be `false`.
  struct BlockPublicly {
    DISALLOW_UNRETAINED();
  } publicly;
  class BlockPrivately {
    DISALLOW_UNRETAINED();
  } privately;
  struct BlockViaInheritance : BlockPublicly {} inheritance;
  BlockViaCustomizationPoint customization;
  struct BlockDueToBeingIncomplete;
  BlockDueToBeingIncomplete* ptr_incomplete;
  BindOnce([](BlockPublicly*) {}, &publicly);                    // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
  BindOnce([](BlockPrivately*) {}, &privately);                  // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
  BindOnce([](BlockViaInheritance*) {}, &inheritance);           // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
  BindOnce([](BlockViaCustomizationPoint*) {}, &customization);  // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
  BindOnce([](BlockDueToBeingIncomplete*) {}, ptr_incomplete);   // expected-error@*:* {{Argument requires unretained storage, but type is not fully defined.}}
}

void OtherWaysOfPassingDisallowedTypes() {
  // In addition to the direct passing tested above, arguments passed as
  // `Unretained()` pointers or as refs must support `Unretained()`.
  struct A {
    void Method() {}
    DISALLOW_UNRETAINED();
  } a;
  // Using distinct types causes distinct template instantiations, so we get
  // assertion failures below where we expect. This type facilitates that.
  struct B : A {} b;
  BindOnce(&A::Method, Unretained(&a));      // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
  BindOnce([] (const A&) {}, std::cref(a));  // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
  BindOnce([] (B&) {}, std::ref(b));         // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
}

void UnsafeDangling() {
  // Pointers marked as `UnsafeDangling` may only be be received by
  // `MayBeDangling` args with matching traits.
  int i;
  BindOnce([] (int*) {}, UnsafeDangling(&i));                      // expected-error@*:* {{base::UnsafeDangling() pointers should only be passed to parameters marked MayBeDangling<T>.}}
  BindOnce([] (MayBeDangling<int>) {},
           UnsafeDangling<int, RawPtrTraits::kDummyForTest>(&i));  // expected-error@*:* {{Pointers passed to MayBeDangling<T> parameters must be created by base::UnsafeDangling() with the same RawPtrTraits.}}
  BindOnce([] (raw_ptr<int>) {}, UnsafeDanglingUntriaged(&i));     // expected-error@*:* {{Use T* or T& instead of raw_ptr<T> for function parameters, unless you must mark the parameter as MayBeDangling<T>.}}
}

}  // namespace base