1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
base / functional / bind_nocompile.nc [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is a "No Compile Test" suite.
// http://dev.chromium.org/developers/testing/no-compile-tests
#define FORCE_UNRETAINED_COMPLETENESS_CHECKS_FOR_TESTS 1
#include <stdint.h>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/disallow_unretained.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/memory/ref_counted.h"
namespace base {
void NonConstFunctionWithConstObject() {
struct S : RefCounted<S> {
void Method() {}
} s;
const S* const const_s_ptr = &s;
// Non-`const` methods may not be bound with a `const` receiver.
BindRepeating(&S::Method, const_s_ptr); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
// `const` pointer cannot be bound to non-`const` parameter.
BindRepeating([] (S*) {}, const_s_ptr); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
}
void WrongReceiverTypeForNonRefcounted() {
// 1. Non-refcounted objects must use `Unretained()` for the `this` argument.
// 2. Reference-like objects may not be used as the receiver.
struct A {
void Method() {}
void ConstMethod() const {}
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
struct B : A {} b;
struct C : A {} c;
struct D : A {} d;
struct E : A {};
A* ptr_a = &a;
A& ref_a = a;
raw_ptr<A> rawptr_a(&a);
raw_ref<A> rawref_a(a);
const B const_b;
B* ptr_b = &b;
const B* const_ptr_b = &const_b;
B& ref_b = b;
const B& const_ref_b = const_b;
raw_ptr<B> rawptr_b(&b);
raw_ptr<const B> const_rawptr_b(&const_b);
raw_ref<B> rawref_b(b);
raw_ref<const B> const_rawref_b(const_b);
C& ref_c = c;
D& ref_d = d;
const E const_e;
const E& const_ref_e = const_e;
BindRepeating(&A::Method, &a); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&A::Method, ptr_a); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&A::Method, a); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&C::Method, ref_c); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::ref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::cref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, rawptr_a); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&A::Method, rawref_a); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
BindRepeating(&B::ConstMethod, &b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, &const_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, ptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, const_ptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, b); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&D::ConstMethod, ref_d); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&E::ConstMethod, const_ref_e); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::ConstMethod, std::ref(b)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::ConstMethod, std::cref(b)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::ConstMethod, rawptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, const_rawptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, rawref_b); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
BindRepeating(&B::ConstMethod, const_rawref_b); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
}
void WrongReceiverTypeForRefcounted() {
// Refcounted objects must pass a pointer-like `this` argument.
struct A : RefCounted<A> {
void Method() const {}
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
struct B : A {} b;
struct C : A {};
const A const_a;
B& ref_b = b;
const C const_c;
const C& const_ref_c = const_c;
raw_ref<A> rawref_a(a);
raw_ref<const A> const_rawref_a(const_a);
BindRepeating(&A::Method, a); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::Method, ref_b); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&C::Method, const_ref_c); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::ref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::cref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, rawref_a); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
BindRepeating(&A::Method, const_rawref_a); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
}
void RemovesConst() {
// Callbacks that expect non-const refs/ptrs should not be callable with const
// ones.
const int i = 0;
const int* p = &i;
BindRepeating([] (int&) {}).Run(i); // expected-error {{no matching member function for call to 'Run'}}
BindRepeating([] (int*) {}, p); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
BindRepeating([] (int*) {}).Run(p); // expected-error {{no matching member function for call to 'Run'}}
}
void PassingIncorrectRef() {
// Functions that take non-const reference arguments require the parameters to
// be bound as matching `std::ref()`s or `OwnedRef()`s.
int i = 1;
float f = 1.0f;
// No wrapper.
BindOnce([] (int&) {}, i); // expected-error@*:* {{Bound argument for non-const reference parameter must be wrapped in std::ref() or base::OwnedRef().}}
BindRepeating([] (int&) {}, i); // expected-error@*:* {{Bound argument for non-const reference parameter must be wrapped in std::ref() or base::OwnedRef().}}
// Wrapper, but with mismatched type.
BindOnce([] (int&) {}, f); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
BindOnce([] (int&) {}, std::ref(f)); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
BindOnce([] (int&) {}, OwnedRef(f)); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
}
void ArrayAsReceiver() {
// A method should not be bindable with an array of objects. Users could
// unintentionally attempt to do this via array->pointer decay.
struct S : RefCounted<S> {
void Method() const {}
};
S s[2];
BindRepeating(&S::Method, s); // expected-error@*:* {{First bound argument to a method cannot be an array.}}
}
void RefCountedArgs() {
// Refcounted types should not be bound as a raw pointers.
struct S : RefCounted<S> {};
S s;
const S const_s;
S* ptr_s = &s;
const S* const_ptr_s = &const_s;
raw_ptr<S> rawptr(&s);
raw_ptr<const S> const_rawptr(&const_s);
raw_ref<S> rawref(s);
raw_ref<const S> const_rawref(const_s);
BindRepeating([] (S*) {}, &s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (const S*) {}, &const_s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (S*) {}, ptr_s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (const S*) {}, const_ptr_s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (S*) {}, rawptr); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (const S*) {}, const_rawptr); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (raw_ref<S>) {}, rawref); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (raw_ref<const S>) {}, const_rawref); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
}
void WeakPtrWithReturnType() {
// WeakPtrs cannot be bound to methods with return types, since if the WeakPtr
// is null when the callback runs, it's not clear what the framework should
// return.
struct S {
int ReturnsInt() const { return 1; }
} s;
WeakPtrFactory<S> weak_factory(&s);
BindRepeating(&S::ReturnsInt, weak_factory.GetWeakPtr()); // expected-error@*:* {{WeakPtrs can only bind to methods without return values.}}
}
void CallbackConversion() {
// Callbacks should not be constructible from other callbacks in ways that
// would drop ref or pointer constness or change arity.
RepeatingCallback<int(int&)> wrong_ref_constness = BindRepeating([] (const int&) {}); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int &)>'}}
RepeatingCallback<int(int*)> wrong_ptr_constness = BindRepeating([] (const int*) {}); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int *)>'}}
RepeatingClosure arg_count_too_low = BindRepeating([] (int) {}); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<void ()>'}}
RepeatingCallback<int(int)> arg_count_too_high = BindRepeating([] { return 0; }); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int)>'}}
RepeatingClosure discarding_return = BindRepeating([] { return 0; }); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<void ()>'}}
}
void CapturingLambdaOrFunctor() {
// Bind disallows capturing lambdas and stateful functors.
int i = 0, j = 0;
struct S {
void operator()() const {}
int x;
};
BindOnce([&] { j = i; }); // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
BindRepeating([&] { j = i; }); // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
BindRepeating(S()); // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
}
void OnceCallbackRequiresNonConstRvalue() {
// `OnceCallback::Run()` can only be invoked on a non-const rvalue.
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
enum class A {};
enum class B {};
enum class C {};
OnceCallback<void(A)> cb_a = BindOnce([] (A) {});
const OnceCallback<void(B)> const_cb_b = BindOnce([] (B) {});
const OnceCallback<void(C)> const_cb_c = BindOnce([] (C) {});
cb_a.Run(A{}); // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
const_cb_b.Run(B{}); // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
std::move(const_cb_c).Run(C{}); // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
}
void OnceCallbackAsArgMustBeNonConstRvalue() {
// A `OnceCallback` passed to another callback must be a non-const rvalue.
auto cb = BindOnce([] (int) {});
const auto const_cb = BindOnce([] (int) {});
BindOnce(cb, 0); // expected-error@*:* {{BindOnce() requires non-const rvalue for OnceCallback binding, i.e. base::BindOnce(std::move(callback)).}}
BindOnce(std::move(const_cb), 0); // expected-error@*:* {{BindOnce() requires non-const rvalue for OnceCallback binding, i.e. base::BindOnce(std::move(callback)).}}
}
void OnceCallbackBoundByRepeatingCallback() {
// `BindRepeating()` does not accept `OnceCallback`s.
BindRepeating(BindOnce([] (int) {}), 0); // expected-error@*:* {{BindRepeating() cannot bind OnceCallback. Use BindOnce() with std::move().}}
}
void MoveOnlyArg() {
// Move-only types require `std::move()` for `BindOnce()` and `base::Passed()` for `BindRepeating()`.
struct S {
S() = default;
S(S&&) = default;
S& operator=(S&&) = default;
} s1, s2;
BindOnce([] (S) {}, s1); // expected-error@*:* {{Attempting to bind a move-only type. Use std::move() to transfer ownership to the created callback.}}
BindOnce([] (S) {}, Passed(&s1)); // expected-error@*:* {{Use std::move() instead of base::Passed() with base::BindOnce().}}
BindRepeating([] (S) {}, s2); // expected-error@*:* {{base::BindRepeating() argument is a move-only type. Use base::Passed() instead of std::move() to transfer ownership from the callback to the bound functor.}}
BindRepeating([] (S) {}, std::move(s2)); // expected-error@*:* {{base::BindRepeating() argument is a move-only type. Use base::Passed() instead of std::move() to transfer ownership from the callback to the bound functor.}}
}
void NonCopyableNonMovable() {
// Arguments must be either copyable or movable to be captured.
struct S {
S() = default;
S(const S&) = delete;
S& operator=(const S&) = delete;
} s;
BindOnce([](const S&) {}, s); // expected-error@*:* {{Cannot capture argument: is the argument copyable or movable?}}
}
void OverloadedFunction() {
// Overloaded function types cannot be disambiguated. (It might be nice to fix
// this.)
void F(int);
void F(float);
BindOnce(&F, 1); // expected-error {{reference to overloaded function could not be resolved; did you mean to call it?}}
BindRepeating(&F, 1.0f); // expected-error {{reference to overloaded function could not be resolved; did you mean to call it?}}
}
void OverloadedOperator() {
// It's not possible to bind to a functor with an overloaded `operator()()`
// unless the caller supplies arguments that can invoke a unique overload.
struct A {
int64_t operator()(int, int64_t x) { return x; }
uint64_t operator()(int, uint64_t x) { return x; }
A operator()(double, A a) { return a; }
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
struct B : A {} b;
struct C : A {} c;
struct D : A {} d;
// Partial function application isn't supported, even if it's sufficient to
// "narrow the field" to a single candidate that _could_ eventually match.
BindOnce(a); // expected-error@*:* {{Could not determine how to invoke functor.}}
BindOnce(b, 1.0); // expected-error@*:* {{Could not determine how to invoke functor.}}
// The supplied args don't match any candidates.
BindOnce(c, 1, nullptr); // expected-error@*:* {{Could not determine how to invoke functor.}}
// The supplied args inexactly match multiple candidates.
BindOnce(d, 1, 1); // expected-error@*:* {{Could not determine how to invoke functor.}}
}
void RefQualifiedOverloadedOperator() {
// Invocations with lvalues should attempt to use lvalue-ref-qualified
// methods.
struct A {
void operator()() const& = delete;
void operator()() && {}
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. This type facilitates that.
struct B : A {};
BindRepeating(a); // expected-error@*:* {{Could not determine how to invoke functor.}}
BindRepeating(B()); // expected-error@*:* {{Could not determine how to invoke functor.}}
// Invocations with rvalues should attempt to use rvalue-ref-qualified
// methods.
struct C {
void operator()() const& {}
void operator()() && = delete;
};
BindRepeating(Passed(C())); // expected-error@*:* {{Could not determine how to invoke functor.}}
BindOnce(C()); // expected-error@*:* {{Could not determine how to invoke functor.}}
}
// Define a type that disallows `Unretained()` via the internal customization
// point, so the next test can use it.
struct BlockViaCustomizationPoint {};
namespace internal {
template <>
constexpr bool kCustomizeSupportsUnretained<BlockViaCustomizationPoint> = false;
} // namespace internal
void CanDetectTypesThatDisallowUnretained() {
// It shouldn't be possible to directly bind any type that doesn't support
// `Unretained()`, whether because it's incomplete, or is marked with
// `DISALLOW_RETAINED()`, or has `kCustomizeSupportsUnretained` specialized to
// be `false`.
struct BlockPublicly {
DISALLOW_UNRETAINED();
} publicly;
class BlockPrivately {
DISALLOW_UNRETAINED();
} privately;
struct BlockViaInheritance : BlockPublicly {} inheritance;
BlockViaCustomizationPoint customization;
struct BlockDueToBeingIncomplete;
BlockDueToBeingIncomplete* ptr_incomplete;
BindOnce([](BlockPublicly*) {}, &publicly); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockPrivately*) {}, &privately); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockViaInheritance*) {}, &inheritance); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockViaCustomizationPoint*) {}, &customization); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockDueToBeingIncomplete*) {}, ptr_incomplete); // expected-error@*:* {{Argument requires unretained storage, but type is not fully defined.}}
}
void OtherWaysOfPassingDisallowedTypes() {
// In addition to the direct passing tested above, arguments passed as
// `Unretained()` pointers or as refs must support `Unretained()`.
struct A {
void Method() {}
DISALLOW_UNRETAINED();
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. This type facilitates that.
struct B : A {} b;
BindOnce(&A::Method, Unretained(&a)); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([] (const A&) {}, std::cref(a)); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([] (B&) {}, std::ref(b)); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
}
void UnsafeDangling() {
// Pointers marked as `UnsafeDangling` may only be be received by
// `MayBeDangling` args with matching traits.
int i;
BindOnce([] (int*) {}, UnsafeDangling(&i)); // expected-error@*:* {{base::UnsafeDangling() pointers should only be passed to parameters marked MayBeDangling<T>.}}
BindOnce([] (MayBeDangling<int>) {},
UnsafeDangling<int, RawPtrTraits::kDummyForTest>(&i)); // expected-error@*:* {{Pointers passed to MayBeDangling<T> parameters must be created by base::UnsafeDangling() with the same RawPtrTraits.}}
BindOnce([] (raw_ptr<int>) {}, UnsafeDanglingUntriaged(&i)); // expected-error@*:* {{Use T* or T& instead of raw_ptr<T> for function parameters, unless you must mark the parameter as MayBeDangling<T>.}}
}
} // namespace base