1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
base / functional / function_ref_unittest.cc [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/functional/function_ref.h"
#include <stdint.h>
#include <concepts>
#include <optional>
#include "base/compiler_specific.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/functional/function_ref.h"
namespace base {
namespace {
char Func(float) {
return 'a';
}
} // namespace
TEST(FunctionRef, Lambda) {
auto add = [](int a, int b) { return a + b; };
{
const FunctionRef<int(int, int)> ref = add;
EXPECT_EQ(19, ref(17, 2));
}
{
const auto add_const = add;
const FunctionRef<int(int, int)> ref = add_const;
EXPECT_EQ(19, ref(17, 2));
}
}
TEST(FunctionRef, CapturingLambda) {
int x = 3;
const auto lambda = [&x] { return x; };
FunctionRef<int()> ref = lambda;
EXPECT_EQ(3, ref());
}
TEST(FunctionRef, FunctionPtr) {
[](FunctionRef<char(float)> ref) { EXPECT_EQ('a', ref(1.0)); }(&Func);
const FunctionRef<char(float)> ref = +[](float) { return 'a'; };
EXPECT_EQ('a', ref(1.0f));
}
TEST(FunctionRef, Functor) {
struct S {
int operator()(int x) const { return x; }
};
const S s;
const FunctionRef<int(int)> ref = s;
EXPECT_EQ(17, ref(17));
}
TEST(FunctionRef, Method) {
struct S {
int Method() const { return value; }
const int value;
};
const S s(25);
[&s](FunctionRef<int(const S*)> ref) { EXPECT_EQ(25, ref(&s)); }(&S::Method);
}
// If we construct from another `FunctionRef`, that should work fine, even if
// the input is destroyed before we call the output. In other words, we should
// reference the underlying callable, not the `FunctionRef`.
//
// We construct in a `noinline` function to maximize the chance that ASAN
// notices the use-after-free if we get this wrong.
NOINLINE void ConstructFromLValue(std::optional<FunctionRef<int()>>& ref) {
const auto return_17 = [] { return 17; };
FunctionRef<int()> other = return_17;
ref.emplace(other);
}
NOINLINE void ConstructFromConstLValue(std::optional<FunctionRef<int()>>& ref) {
const auto return_17 = [] { return 17; };
const FunctionRef<int()> other = return_17;
ref.emplace(other);
}
NOINLINE void ConstructFromRValue(std::optional<FunctionRef<int()>>& ref) {
const auto return_17 = [] { return 17; };
using Ref = FunctionRef<int()>;
ref.emplace(Ref(return_17));
}
NOINLINE void ConstructFromConstRValue(std::optional<FunctionRef<int()>>& ref) {
const auto return_17 = [] { return 17; };
using Ref = const FunctionRef<int()>;
ref.emplace(Ref(return_17));
}
TEST(FunctionRef, ConstructionFromOtherFunctionRefObjects) {
using Ref = FunctionRef<int()>;
std::optional<Ref> ref;
ConstructFromLValue(ref);
EXPECT_EQ(17, (*ref)());
ConstructFromConstLValue(ref);
EXPECT_EQ(17, (*ref)());
ConstructFromRValue(ref);
EXPECT_EQ(17, (*ref)());
ConstructFromConstRValue(ref);
EXPECT_EQ(17, (*ref)());
// It shouldn't be possible to construct from `FunctionRef` objects with
// differing signatures, even if they are compatible with `int()`.
static_assert(!std::constructible_from<Ref, FunctionRef<void()>>);
static_assert(!std::constructible_from<Ref, FunctionRef<int(int)>>);
static_assert(!std::constructible_from<Ref, FunctionRef<int64_t()>>);
// Check again with various qualifiers.
static_assert(!std::constructible_from<Ref, const FunctionRef<void()>>);
static_assert(!std::constructible_from<Ref, FunctionRef<void()>&>);
static_assert(!std::constructible_from<Ref, FunctionRef<void()>&&>);
static_assert(!std::constructible_from<Ref, const FunctionRef<void()>&>);
static_assert(!std::constructible_from<Ref, const FunctionRef<void()>&&>);
}
// `FunctionRef` allows functors with convertible return types to be adapted.
TEST(FunctionRef, ConvertibleReturnTypes) {
{
const auto lambda = [] { return true; };
const FunctionRef<int()> ref = lambda;
EXPECT_EQ(1, ref());
}
{
class Base {};
class Derived : public Base {};
const auto lambda = []() -> Derived* { return nullptr; };
const FunctionRef<const Base*()> ref = lambda;
EXPECT_EQ(nullptr, ref());
}
}
TEST(FunctionRef, ConstructionFromInexactMatches) {
// Lambda.
const auto lambda = [](int32_t x) { return x; };
// Capturing lambda.
const auto capturing_lambda = [&](int32_t x) { return lambda(x); };
// Function pointer.
int32_t (*const function_ptr)(int32_t) = +lambda;
// Functor.
struct Functor {
int32_t operator()(int32_t x) const { return x; }
};
const Functor functor;
// Method.
struct Obj {
int32_t Method(int32_t x) const { return x; }
};
int32_t (Obj::*const method)(int32_t) const = &Obj::Method;
// Each of the objects above should work for a `FunctionRef` with a
// convertible return type. In this case, they all return `int32_t`, which
// should be seamlessly convertible to `int64_t` below.
static_assert(
std::constructible_from<FunctionRef<int64_t(int32_t)>, decltype(lambda)>);
static_assert(std::constructible_from<FunctionRef<int64_t(int32_t)>,
decltype(capturing_lambda)>);
static_assert(std::constructible_from<FunctionRef<int64_t(int32_t)>,
decltype(function_ptr)>);
static_assert(std::constructible_from<FunctionRef<int64_t(int32_t)>,
decltype(functor)>);
static_assert(
std::constructible_from<FunctionRef<int64_t(const Obj*, int32_t)>,
decltype(method)>);
// It shouldn't be possible to construct a `FunctionRef` from any of the
// objects above if we discard the return value.
static_assert(
!std::constructible_from<FunctionRef<void(int32_t)>, decltype(lambda)>);
static_assert(!std::constructible_from<FunctionRef<void(int32_t)>,
decltype(capturing_lambda)>);
static_assert(!std::constructible_from<FunctionRef<void(int32_t)>,
decltype(function_ptr)>);
static_assert(
!std::constructible_from<FunctionRef<void(int32_t)>, decltype(functor)>);
static_assert(!std::constructible_from<FunctionRef<void(const Obj*, int32_t)>,
decltype(method)>);
// It shouldn't be possible to construct a `FunctionRef` from a pointer to a
// functor, even with a compatible signature.
static_assert(!std::constructible_from<FunctionRef<int32_t(int32_t)>,
decltype(&functor)>);
}
TEST(FunctionRef, ConstructionFromAbslFunctionRef) {
// It shouldn't be possible to construct a `FunctionRef` from an
// `absl::FunctionRef`, whether the signatures are compatible or not.
using Ref = FunctionRef<int(int)>;
static_assert(!std::is_constructible_v<Ref, absl::FunctionRef<void()>>);
static_assert(!std::is_constructible_v<Ref, absl::FunctionRef<void(int)>>);
static_assert(!std::is_constructible_v<Ref, absl::FunctionRef<int(int)>>);
// Check again with various qualifiers.
using AbslRef = absl::FunctionRef<int(int)>;
static_assert(!std::is_constructible_v<Ref, const AbslRef>);
static_assert(!std::is_constructible_v<Ref, AbslRef&>);
static_assert(!std::is_constructible_v<Ref, AbslRef&&>);
static_assert(!std::is_constructible_v<Ref, const AbslRef&>);
static_assert(!std::is_constructible_v<Ref, const AbslRef&&>);
}
} // namespace base