1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
base / hash / sha1_nacl.cc [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <string_view>
#include "base/hash/sha1.h"
#include "base/numerics/byte_conversions.h"
namespace base {
// Implementation of SHA-1. Only handles data in byte-sized blocks,
// which simplifies the code a fair bit.
// Identifier names follow notation in FIPS PUB 180-3, where you'll
// also find a description of the algorithm:
// http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
// Usage example:
//
// SecureHashAlgorithm sha;
// while(there is data to hash)
// sha.Update(moredata, size of data);
// sha.Final();
// memcpy(somewhere, sha.Digest(), 20);
//
// to reuse the instance of sha, call sha.Init();
static inline uint32_t f(uint32_t t, uint32_t B, uint32_t C, uint32_t D) {
if (t < 20)
return (B & C) | ((~B) & D);
if (t < 40)
return B ^ C ^ D;
if (t < 60)
return (B & C) | (B & D) | (C & D);
return B ^ C ^ D;
}
static inline uint32_t S(uint32_t n, uint32_t X) {
return (X << n) | (X >> (32 - n));
}
static inline uint32_t K(uint32_t t) {
if (t < 20)
return 0x5a827999;
if (t < 40)
return 0x6ed9eba1;
if (t < 60)
return 0x8f1bbcdc;
return 0xca62c1d6;
}
void SHA1Context::Init() {
A = 0;
B = 0;
C = 0;
D = 0;
E = 0;
cursor = 0;
l = 0;
H[0] = 0x67452301;
H[1] = 0xefcdab89;
H[2] = 0x98badcfe;
H[3] = 0x10325476;
H[4] = 0xc3d2e1f0;
}
void SHA1Context::Update(const void* data, size_t nbytes) {
const uint8_t* d = reinterpret_cast<const uint8_t*>(data);
while (nbytes--) {
M[cursor++] = *d++;
if (cursor >= 64) {
Process();
}
l += 8;
}
}
void SHA1Context::Final() {
Pad();
Process();
for (auto& t : H) {
t = ByteSwap(t);
}
}
const unsigned char* SHA1Context::GetDigest() const {
return reinterpret_cast<const unsigned char*>(H);
}
void SHA1Context::Pad() {
M[cursor++] = 0x80;
if (cursor > 64 - 8) {
// pad out to next block
while (cursor < 64) {
M[cursor++] = 0;
}
Process();
}
while (cursor < 64 - 8) {
M[cursor++] = 0;
}
M[cursor++] = (l >> 56) & 0xff;
M[cursor++] = (l >> 48) & 0xff;
M[cursor++] = (l >> 40) & 0xff;
M[cursor++] = (l >> 32) & 0xff;
M[cursor++] = (l >> 24) & 0xff;
M[cursor++] = (l >> 16) & 0xff;
M[cursor++] = (l >> 8) & 0xff;
M[cursor++] = l & 0xff;
}
void SHA1Context::Process() {
uint32_t t;
// Each a...e corresponds to a section in the FIPS 180-3 algorithm.
// a.
//
// W and M are in a union, so no need to memcpy.
// memcpy(W, M, sizeof(M));
for (t = 0; t < 16; ++t) {
W[t] = ByteSwap(W[t]);
}
// b.
for (t = 16; t < 80; ++t) {
W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
}
// c.
A = H[0];
B = H[1];
C = H[2];
D = H[3];
E = H[4];
// d.
for (t = 0; t < 80; ++t) {
uint32_t TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
E = D;
D = C;
C = S(30, B);
B = A;
A = TEMP;
}
// e.
H[0] += A;
H[1] += B;
H[2] += C;
H[3] += D;
H[4] += E;
cursor = 0;
}
// These functions allow streaming SHA-1 operations.
void SHA1Init(SHA1Context& context) {
context.Init();
}
void SHA1Update(std::string_view data, SHA1Context& context) {
context.Update(data.data(), data.size());
}
void SHA1Final(SHA1Context& context, SHA1Digest& digest) {
context.Final();
memcpy(digest.data(), context.GetDigest(), kSHA1Length);
}
SHA1Digest SHA1Hash(span<const uint8_t> data) {
SHA1Context context;
context.Init();
context.Update(data.data(), data.size());
context.Final();
SHA1Digest digest;
memcpy(digest.data(), context.GetDigest(), kSHA1Length);
return digest;
}
std::string SHA1HashString(std::string_view str) {
return std::string(as_string_view(SHA1Hash(base::as_byte_span(str))));
}
} // namespace base