1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
base / i18n / build_utf8_validator_tables.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
// Create a state machine for validating UTF-8. The algorithm in brief:
// 1. Convert the complete unicode range of code points, except for the
// surrogate code points, to an ordered array of sequences of bytes in
// UTF-8.
// 2. Convert individual bytes to ranges, starting from the right of each byte
// sequence. For each range, ensure the bytes on the left and the ranges
// on the right are the identical.
// 3. Convert the resulting list of ranges into a state machine, collapsing
// identical states.
// 4. Convert the state machine to an array of bytes.
// 5. Output as a C++ file.
//
// To use:
// $ ninja -C out/Release build_utf8_validator_tables
// $ out/Release/build_utf8_validator_tables
// --output=base/i18n/utf8_validator_tables.cc
// $ git add base/i18n/utf8_validator_tables.cc
//
// Because the table is not expected to ever change, it is checked into the
// repository rather than being regenerated at build time.
//
// This code uses type uint8_t throughout to represent bytes, to avoid
// signed/unsigned char confusion.
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "base/command_line.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "third_party/icu/source/common/unicode/utf8.h"
namespace {
const char kHelpText[] =
"Usage: build_utf8_validator_tables [ --help ] [ --output=<file> ]\n";
const char kProlog[] =
"// Copyright 2013 The Chromium Authors\n"
"// Use of this source code is governed by a BSD-style license that can "
"be\n"
"// found in the LICENSE file.\n"
"\n"
"// This file is auto-generated by build_utf8_validator_tables.\n"
"// DO NOT EDIT.\n"
"\n"
"#include \"base/i18n/utf8_validator_tables.h\"\n"
"\n"
"namespace base {\n"
"namespace internal {\n"
"\n"
"const uint8_t kUtf8ValidatorTables[] = {\n";
const char kEpilog[] =
"};\n"
"\n"
"const size_t kUtf8ValidatorTablesSize = "
"std::size(kUtf8ValidatorTables);\n"
"\n"
"} // namespace internal\n"
"} // namespace base\n";
// Ranges are inclusive at both ends--they represent [from, to]
class Range {
public:
// Ranges always start with just one byte.
explicit Range(uint8_t value) : from_(value), to_(value) {}
// Range objects are copyable and assignable to be used in STL
// containers. Since they only contain non-pointer POD types, the default copy
// constructor, assignment operator and destructor will work.
// Add a byte to the range. We intentionally only support adding a byte at the
// end, since that is the only operation the code needs.
void AddByte(uint8_t to) {
CHECK(to == to_ + 1);
to_ = to;
}
uint8_t from() const { return from_; }
uint8_t to() const { return to_; }
bool operator<(const Range& rhs) const {
return (from() < rhs.from() || (from() == rhs.from() && to() < rhs.to()));
}
bool operator==(const Range& rhs) const {
return from() == rhs.from() && to() == rhs.to();
}
private:
uint8_t from_;
uint8_t to_;
};
// A vector of Ranges is like a simple regular expression--it corresponds to
// a set of strings of the same length that have bytes in each position in
// the appropriate range.
typedef std::vector<Range> StringSet;
// A UTF-8 "character" is represented by a sequence of bytes.
typedef std::vector<uint8_t> Character;
// In the second stage of the algorithm, we want to convert a large list of
// Characters into a small list of StringSets.
struct Pair {
Character character;
StringSet set;
};
typedef std::vector<Pair> PairVector;
// A class to print a table of numbers in the same style as clang-format.
class TablePrinter {
public:
explicit TablePrinter(FILE* stream)
: stream_(stream), values_on_this_line_(0), current_offset_(0) {}
TablePrinter(const TablePrinter&) = delete;
TablePrinter& operator=(const TablePrinter&) = delete;
void PrintValue(uint8_t value) {
if (values_on_this_line_ == 0) {
fputs(" ", stream_);
} else if (values_on_this_line_ == kMaxValuesPerLine) {
fprintf(stream_.get(), " // 0x%02x\n ", current_offset_);
values_on_this_line_ = 0;
}
fprintf(stream_.get(), " 0x%02x,", static_cast<int>(value));
++values_on_this_line_;
++current_offset_;
}
void NewLine() {
while (values_on_this_line_ < kMaxValuesPerLine) {
fputs(" ", stream_);
++values_on_this_line_;
}
fprintf(stream_.get(), " // 0x%02x\n", current_offset_);
values_on_this_line_ = 0;
}
private:
// stdio stream. Not owned.
raw_ptr<FILE> stream_;
// Number of values so far printed on this line.
int values_on_this_line_;
// Total values printed so far.
int current_offset_;
static const int kMaxValuesPerLine = 8;
};
// Start by filling a PairVector with characters. The resulting vector goes from
// "\x00" to "\xf4\x8f\xbf\xbf".
PairVector InitializeCharacters() {
PairVector vector;
for (int i = 0; i <= 0x10FFFF; ++i) {
if (i >= 0xD800 && i < 0xE000) {
// Surrogate codepoints are not permitted. Non-character code points are
// explicitly permitted.
continue;
}
uint8_t bytes[4];
unsigned int offset = 0;
UBool is_error = false;
U8_APPEND(bytes, offset, std::size(bytes), i, is_error);
DCHECK(!is_error);
DCHECK_GT(offset, 0u);
DCHECK_LE(offset, std::size(bytes));
Pair pair = {Character(bytes, bytes + offset), StringSet()};
vector.push_back(pair);
}
return vector;
}
// Construct a new Pair from |character| and the concatenation of |new_range|
// and |existing_set|, and append it to |pairs|.
void ConstructPairAndAppend(const Character& character,
const Range& new_range,
const StringSet& existing_set,
PairVector* pairs) {
Pair new_pair = {character, StringSet(1, new_range)};
new_pair.set.insert(
new_pair.set.end(), existing_set.begin(), existing_set.end());
pairs->push_back(new_pair);
}
// Each pass over the PairVector strips one byte off the right-hand-side of the
// characters and adds a range to the set on the right. For example, the first
// pass converts the range from "\xe0\xa0\x80" to "\xe0\xa0\xbf" to ("\xe0\xa0",
// [\x80-\xbf]), then the second pass converts the range from ("\xe0\xa0",
// [\x80-\xbf]) to ("\xe0\xbf", [\x80-\xbf]) to ("\xe0",
// [\xa0-\xbf][\x80-\xbf]).
void MoveRightMostCharToSet(PairVector* pairs) {
PairVector new_pairs;
PairVector::const_iterator it = pairs->begin();
while (it != pairs->end() && it->character.empty()) {
new_pairs.push_back(*it);
++it;
}
CHECK(it != pairs->end());
Character unconverted_bytes(it->character.begin(), it->character.end() - 1);
Range new_range(it->character.back());
StringSet converted = it->set;
++it;
while (it != pairs->end()) {
const Pair& current_pair = *it++;
if (current_pair.character.size() == unconverted_bytes.size() + 1 &&
std::equal(unconverted_bytes.begin(),
unconverted_bytes.end(),
current_pair.character.begin()) &&
converted == current_pair.set) {
// The particular set of UTF-8 codepoints we are validating guarantees
// that each byte range will be contiguous. This would not necessarily be
// true for an arbitrary set of UTF-8 codepoints.
DCHECK_EQ(new_range.to() + 1, current_pair.character.back());
new_range.AddByte(current_pair.character.back());
continue;
}
ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
unconverted_bytes = Character(current_pair.character.begin(),
current_pair.character.end() - 1);
new_range = Range(current_pair.character.back());
converted = current_pair.set;
}
ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
new_pairs.swap(*pairs);
}
void MoveAllCharsToSets(PairVector* pairs) {
// Since each pass of the function moves one character, and UTF-8 sequences
// are at most 4 characters long, this simply runs the algorithm four times.
for (int i = 0; i < 4; ++i) {
MoveRightMostCharToSet(pairs);
}
#if DCHECK_IS_ON()
for (PairVector::const_iterator it = pairs->begin(); it != pairs->end();
++it) {
DCHECK(it->character.empty());
}
#endif
}
// Logs the generated string sets in regular-expression style, ie. [\x00-\x7f],
// [\xc2-\xdf][\x80-\xbf], etc. This can be a useful sanity-check that the
// algorithm is working. Use the command-line option
// --vmodule=build_utf8_validator_tables=1 to see this output.
void LogStringSets(const PairVector& pairs) {
for (const auto& pair_it : pairs) {
std::string set_as_string;
for (auto set_it = pair_it.set.begin(); set_it != pair_it.set.end();
++set_it) {
set_as_string += base::StringPrintf("[\\x%02x-\\x%02x]",
static_cast<int>(set_it->from()),
static_cast<int>(set_it->to()));
}
VLOG(1) << set_as_string;
}
}
// A single state in the state machine is represented by a sorted vector of
// start bytes and target states. All input bytes in the range between the start
// byte and the next entry in the vector (or 0xFF) result in a transition to the
// target state.
struct StateRange {
uint8_t from;
uint8_t target_state;
};
typedef std::vector<StateRange> State;
// Generates a state where all bytes go to state 1 (invalid). This is also used
// as an initialiser for other states (since bytes from outside the desired
// range are invalid).
State GenerateInvalidState() {
const StateRange range = {0, 1};
return State(1, range);
}
// A map from a state (ie. a set of strings which will match from this state) to
// a number (which is an index into the array of states).
typedef std::map<StringSet, uint8_t> StateMap;
// Create a new state corresponding to |set|, add it |states| and |state_map|
// and return the index it was given in |states|.
uint8_t MakeState(const StringSet& set,
std::vector<State>* states,
StateMap* state_map) {
DCHECK(!set.empty());
const Range& range = set.front();
const StringSet rest(set.begin() + 1, set.end());
const StateMap::const_iterator where = state_map->find(rest);
const uint8_t target_state = where == state_map->end()
? MakeState(rest, states, state_map)
: where->second;
DCHECK_LT(0, range.from());
DCHECK_LT(range.to(), 0xFF);
const StateRange new_state_initializer[] = {
{0, 1},
{range.from(), target_state},
{static_cast<uint8_t>(range.to() + 1), 1}};
states->push_back(
State(new_state_initializer,
new_state_initializer + std::size(new_state_initializer)));
const uint8_t new_state_number =
base::checked_cast<uint8_t>(states->size() - 1);
CHECK(state_map->insert(std::make_pair(set, new_state_number)).second);
return new_state_number;
}
std::vector<State> GenerateStates(const PairVector& pairs) {
// States 0 and 1 are the initial/valid state and invalid state, respectively.
std::vector<State> states(2, GenerateInvalidState());
StateMap state_map;
state_map.insert(std::make_pair(StringSet(), 0));
for (auto it = pairs.begin(); it != pairs.end(); ++it) {
DCHECK(it->character.empty());
DCHECK(!it->set.empty());
const Range& range = it->set.front();
const StringSet rest(it->set.begin() + 1, it->set.end());
const StateMap::const_iterator where = state_map.find(rest);
const uint8_t target_state = where == state_map.end()
? MakeState(rest, &states, &state_map)
: where->second;
if (states[0].back().from == range.from()) {
DCHECK_EQ(1, states[0].back().target_state);
states[0].back().target_state = target_state;
DCHECK_LT(range.to(), 0xFF);
const StateRange new_range = {static_cast<uint8_t>(range.to() + 1), 1};
states[0].push_back(new_range);
} else {
DCHECK_LT(range.to(), 0xFF);
const StateRange new_range_initializer[] = {
{range.from(), target_state},
{static_cast<uint8_t>(range.to() + 1), 1}};
states[0].insert(
states[0].end(), new_range_initializer,
new_range_initializer + std::size(new_range_initializer));
}
}
return states;
}
// Output the generated states as a C++ table. Two tricks are used to compact
// the table: each state in the table starts with a shift value which indicates
// how many bits we can discard from the right-hand-side of the byte before
// doing the table lookup. Secondly, only the state-transitions for bytes
// with the top-bit set are included in the table; bytes without the top-bit set
// are just ASCII and are handled directly by the code.
void PrintStates(const std::vector<State>& states, FILE* stream) {
// First calculate the start-offset of each state. This allows the state
// machine to jump directly to the correct offset, avoiding an extra
// indirection. State 0 starts at offset 0.
std::vector<uint8_t> state_offset(1, 0);
std::vector<uint8_t> shifts;
uint8_t pos = 0;
for (const auto& state_it : states) {
// We want to set |shift| to the (0-based) index of the least-significant
// set bit in any of the ranges for this state, since this tells us how many
// bits we can discard and still determine what range a byte lies in. Sadly
// it appears that ffs() is not portable, so we do it clumsily.
uint8_t shift = 7;
for (auto range_it = state_it.begin(); range_it != state_it.end();
++range_it) {
while (shift > 0 && range_it->from % (1 << shift) != 0) {
--shift;
}
}
shifts.push_back(shift);
pos += 1 + (1 << (7 - shift));
state_offset.push_back(pos);
}
DCHECK_EQ(129, state_offset[1]);
fputs(kProlog, stream);
TablePrinter table_printer(stream);
for (uint8_t state_index = 0; state_index < states.size(); ++state_index) {
const uint8_t shift = shifts[state_index];
uint8_t next_range = 0;
uint8_t target_state = 1;
fprintf(stream,
" // State %d, offset 0x%02x\n",
static_cast<int>(state_index),
static_cast<int>(state_offset[state_index]));
table_printer.PrintValue(shift);
for (int i = 0; i < 0x100; i += (1 << shift)) {
if (next_range < states[state_index].size() &&
states[state_index][next_range].from == i) {
target_state = states[state_index][next_range].target_state;
++next_range;
}
if (i >= 0x80) {
table_printer.PrintValue(state_offset[target_state]);
}
}
table_printer.NewLine();
}
fputs(kEpilog, stream);
}
} // namespace
int main(int argc, char* argv[]) {
base::CommandLine::Init(argc, argv);
logging::LoggingSettings settings;
settings.logging_dest =
logging::LOG_TO_SYSTEM_DEBUG_LOG | logging::LOG_TO_STDERR;
logging::InitLogging(settings);
if (base::CommandLine::ForCurrentProcess()->HasSwitch("help")) {
fwrite(kHelpText, 1, std::size(kHelpText), stdout);
exit(EXIT_SUCCESS);
}
base::FilePath filename =
base::CommandLine::ForCurrentProcess()->GetSwitchValuePath("output");
FILE* output = stdout;
if (!filename.empty()) {
output = base::OpenFile(filename, "wb");
if (!output)
PLOG(FATAL) << "Couldn't open '" << filename.AsUTF8Unsafe()
<< "' for writing";
}
// Step 1: Enumerate the characters
PairVector pairs = InitializeCharacters();
// Step 2: Convert to sets.
MoveAllCharsToSets(&pairs);
if (VLOG_IS_ON(1)) {
LogStringSets(pairs);
}
// Step 3: Generate states.
std::vector<State> states = GenerateStates(pairs);
// Step 4/5: Print output
PrintStates(states, output);
if (!filename.empty()) {
if (!base::CloseFile(output))
PLOG(FATAL) << "Couldn't finish writing '" << filename.AsUTF8Unsafe()
<< "'";
}
return EXIT_SUCCESS;
}