1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533

base / memory / protected_memory.h [blame]

// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

// Protected memory is memory holding security-sensitive data intended to be
// left read-only for the majority of its lifetime to avoid being overwritten
// by attackers. ProtectedMemory is a simple wrapper around platform-specific
// APIs to set memory read-write and read-only when required. Protected memory
// should be set read-write for the minimum amount of time required.
//
// Normally mutable variables are held in read-write memory and constant data
// is held in read-only memory to ensure it is not accidentally overwritten.
// In some cases we want to hold mutable variables in read-only memory, except
// when they are being written to, to ensure that they are not tampered with.
//
// ProtectedMemory is a container class intended to hold a single variable in
// read-only memory, except when explicitly set read-write. The variable can be
// set read-write by creating a scoped AutoWritableMemory object, the memory
// stays writable until the returned object goes out of scope and is destructed.
// The wrapped variable can be accessed using operator* and operator->.
//
// Instances of ProtectedMemory must be defined using DEFINE_PROTECTED_DATA
// and as global variables. Global definitions are required to avoid the linker
// placing statics in inlinable functions into a comdat section and setting the
// protected memory section read-write when they are merged. If a declaration of
// a protected variable is required DECLARE_PROTECTED_DATA should be used.
//
// Instances of `base::ProtectedMemory` use constant initialization. To allow
// protection of objects which do not provide constant initialization or would
// require a global constructor, `base::ProtectedMemory` provides lazy
// initialization through `ProtectedMemoryInitializer`. Additionally, on
// platforms where it is not possible to have the protected memory section start
// as read-only, the very first call to ProtectedMemoryInitializer will
// initialize the memory section to read-only. Explicit initialization through
// `ProtectedMemoryInitializer` is mandatory, even for objects that provide
// constant initialization. This ensures that in the unlikely event that the
// value is modified before the memory is initialized to read-only, it will be
// forced back to a known, safe, initial state before it ever used. If data is
// accessed without initialization a CHECK triggers. This CHECK is not expected
// to provided security guarantees, but to help catch programming errors.
//
// TODO(crbug.com/356428974): Improve protection offered by Protected Memory.
//
// `base::ProtectedMemory` requires T to be trivially destructible. T having
// a non-trivial constructor indicates that is holds data which can not be
// protected by `base::ProtectedMemory`.
//
// EXAMPLE:
//
//  struct Items { void* item1; };
//  static DEFINE_PROTECTED_DATA base::ProtectedMemory<Items> items;
//  void InitializeItems() {
//    // Explicitly set items read-write before writing to it.
//    auto writer = base::AutoWritableMemory(items);
//    writer->item1 = /* ... */;
//    assert(items->item1 != nullptr);
//    // items is set back to read-only on the destruction of writer
//  }
//
//  using FnPtr = void (*)(void);
//  DEFINE_PROTECTED_DATA base::ProtectedMemory<FnPtr> fnPtr;
//  FnPtr ResolveFnPtr(void) {
//    // `ProtectedMemoryInitializer` is a helper class for creating a static
//    // initializer for a ProtectedMemory variable. It implicitly sets the
//    // variable read-write during initialization.
//    static base::ProtectedMemoryInitializer initializer(&fnPtr,
//      reinterpret_cast<FnPtr>(dlsym(/* ... */)));
//    return *fnPtr;
//  }

#ifndef BASE_MEMORY_PROTECTED_MEMORY_H_
#define BASE_MEMORY_PROTECTED_MEMORY_H_

#include <stddef.h>
#include <stdint.h>

#include <memory>
#include <type_traits>

#include "base/bits.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/gtest_prod_util.h"
#include "base/memory/page_size.h"
#include "base/memory/protected_memory_buildflags.h"
#include "base/memory/raw_ref.h"
#include "base/no_destructor.h"
#include "base/synchronization/lock.h"
#include "base/thread_annotations.h"
#include "build/build_config.h"

#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
#if BUILDFLAG(IS_WIN)
// Define a read-write prot section. The $a, $mem, and $z 'sub-sections' are
// merged alphabetically so $a and $z are used to define the start and end of
// the protected memory section, and $mem holds protected variables.
// (Note: Sections in Portable Executables are equivalent to segments in other
// executable formats, so this section is mapped into its own pages.)
#pragma section("prot$a", read, write)
#pragma section("prot$mem", read, write)
#pragma section("prot$z", read, write)

// We want the protected memory section to be read-only, not read-write so we
// instruct the linker to set the section read-only at link time. We do this
// at link time instead of compile time, because defining the prot section
// read-only would cause mis-compiles due to optimizations assuming that the
// section contents are constant.
#pragma comment(linker, "/SECTION:prot,R")

__declspec(allocate("prot$a"))
__declspec(selectany) char __start_protected_memory;
__declspec(allocate("prot$z"))
__declspec(selectany) char __stop_protected_memory;

#define DECLARE_PROTECTED_DATA constinit
#define DEFINE_PROTECTED_DATA constinit __declspec(allocate("prot$mem"))
#elif BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
// This value is used to align the writers variable. That variable needs to be
// aligned to ensure that the protected memory section starts on a page
// boundary.
#if (PA_BUILDFLAG(IS_ANDROID) && PA_BUILDFLAG(PA_ARCH_CPU_64_BITS)) || \
    (PA_BUILDFLAG(IS_LINUX) && PA_BUILDFLAG(PA_ARCH_CPU_ARM64))
// arm64 supports 4kb, 16kb, and 64kb pages. Set to the largest of 64kb as that
// will guarantee the section is page aligned regardless of the choice.
inline constexpr int kProtectedMemoryAlignment = 65536;
#elif PA_BUILDFLAG(PA_ARCH_CPU_PPC64) || defined(ARCH_CPU_PPC64)
// Modern ppc64 systems support 4kB (shift = 12) and 64kB (shift = 16) page
// sizes. Set to the largest of 64kb as that will guarantee the section is page
// aligned regardless of the choice.
inline constexpr int kProtectedMemoryAlignment = 65536;
#elif defined(_MIPS_ARCH_LOONGSON) || PA_BUILDFLAG(PA_ARCH_CPU_LOONGARCH64) || \
    defined(ARCH_CPU_LOONGARCH64)
// 16kb page size
inline constexpr int kProtectedMemoryAlignment = 16384;
#else
// 4kb page size
inline constexpr int kProtectedMemoryAlignment = 4096;
#endif

__asm__(".section protected_memory, \"a\"\n\t");
__asm__(".section protected_memory_buffer, \"a\"\n\t");

// Explicitly mark these variables hidden so the symbols are local to the
// currently built component. Otherwise they are created with global (external)
// linkage and component builds would break because a single pair of these
// symbols would override the rest.
__attribute__((visibility("hidden"))) extern char __start_protected_memory;
__attribute__((visibility("hidden"))) extern char __stop_protected_memory;

#define DECLARE_PROTECTED_DATA constinit
#define DEFINE_PROTECTED_DATA \
  constinit __attribute__((section("protected_memory")))
#elif BUILDFLAG(IS_MAC)
// The segment the section is in is defined with a linker flag in
// build/config/mac/BUILD.gn
#define DECLARE_PROTECTED_DATA constinit
#define DEFINE_PROTECTED_DATA \
  constinit __attribute__((section("PROTECTED_MEMORY, protected_memory")))

extern char __start_protected_memory __asm(
    "section$start$PROTECTED_MEMORY$protected_memory");
extern char __stop_protected_memory __asm(
    "section$end$PROTECTED_MEMORY$protected_memory");
#else
#error "Protected Memory is not supported on this platform."
#endif

#else
#define DECLARE_PROTECTED_DATA constinit
#define DEFINE_PROTECTED_DATA DECLARE_PROTECTED_DATA
#endif  // BUILDFLAG(PROTECTED_MEMORY_ENABLED)

namespace base {

template <typename T>
class AutoWritableMemory;

FORWARD_DECLARE_TEST(ProtectedMemoryDeathTest, VerifyTerminationOnAccess);

namespace internal {
// Helper class which store the data and implement and initialization for
// constructing the underlying protected data lazily. The instance of T is only
// constructed when emplace is called.
template <typename T>
class ProtectedDataHolder {
 public:
  consteval ProtectedDataHolder() = default;

  T& GetReference() LIFETIME_BOUND { return *GetPointer(); }
  const T& GetReference() const LIFETIME_BOUND { return *GetPointer(); }

  T* GetPointer() {
    CHECK(constructed_);
    return reinterpret_cast<T*>(&data_);
  }
  const T* GetPointer() const {
    CHECK(constructed_);
    return reinterpret_cast<const T*>(&data_);
  }

  template <typename... U>
  void emplace(U&&... args) {
    if (constructed_) {
      std::destroy_at(reinterpret_cast<T*>(&data_));
      constructed_ = false;
    }

    std::construct_at(reinterpret_cast<T*>(&data_), std::forward<U>(args)...);
    constructed_ = true;
  }

 private:
  // Initializing with a constant/zero value ensures no global constructor is
  // required when instantiating `ProtectedDataHolder` and `ProtectedMemory`.
  alignas(T) uint8_t data_[sizeof(T)] = {};
  bool constructed_ = false;
};

}  // namespace internal

// The wrapper class for data of type `T` which is to be stored in protected
// memory. `ProtectedMemory` provides improved type safety in conjunction with
// the other classes, although the basic mechanisms like unlocking and
// re-locking of the memory would also work without it.
//
// To allow using `T`s which do not have constant initialization, the template
// parameter `ConstructLazily` enables a lazy initialization. In this case, an
// initialization before first access is mandatory (see
// `ProtectedMemoryInitializer`).
template <typename T>
class ProtectedMemory {
 public:
  // T must be trivially destructible. Otherwise it indicates that T holds data
  // which would not be covered by this write protection, i.e. data allocated on
  // heap. This check complements the verification in the constructor since
  // `ProtectedMemory` with `ConstructLazily` set to `true` is always trivially
  // destructible.
  static_assert(std::is_trivially_destructible_v<T>);

  // For lazily constructed data we enable this constructor only if there are
  // no arguments. For lazily constructed data no arguments are accepted as T is
  // not initialized when `ProtectedMemory<T>` is created but through
  // `ProtectedMemoryInitializer` instead.
  consteval explicit ProtectedMemory() : data_() {
    static_assert(std::is_trivially_destructible_v<ProtectedMemory>);
  }

  ProtectedMemory(const ProtectedMemory&) = delete;
  ProtectedMemory& operator=(const ProtectedMemory&) = delete;

  // Expose direct access to the encapsulated variable
  const T& operator*() const { return data_.GetReference(); }
  const T* operator->() const { return data_.GetPointer(); }

 private:
  friend class AutoWritableMemory<T>;
  FRIEND_TEST_ALL_PREFIXES(ProtectedMemoryDeathTest, VerifyTerminationOnAccess);

  internal::ProtectedDataHolder<T> data_;
};

#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
namespace internal {
// Checks that the byte at `ptr` is read-only.
BASE_EXPORT void CheckMemoryReadOnly(const void* ptr);

// Abstract out platform-specific methods to get the beginning and end of the
// PROTECTED_MEMORY_SECTION. ProtectedMemoryEnd returns a pointer to the byte
// past the end of the PROTECTED_MEMORY_SECTION.
inline constexpr void* kProtectedMemoryStart = &__start_protected_memory;
inline constexpr void* kProtectedMemoryEnd = &__stop_protected_memory;
}  // namespace internal
#endif  // BUILDFLAG(PROTECTED_MEMORY_ENABLED)

// Provide some common functionality for `AutoWritableMemory<T>`.
class BASE_EXPORT AutoWritableMemoryBase {
 protected:
#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
  // Checks that `object` is located within the interval
  // (internal::kProtectedMemoryStart, internal::kProtectedMemoryEnd).
  template <typename T>
  static bool IsObjectInProtectedSection(const T& object) {
    const T* const ptr = std::addressof(object);
    const T* const ptr_end = ptr + 1;
    return (ptr >= internal::kProtectedMemoryStart) &&
           (ptr_end <= internal::kProtectedMemoryEnd);
  }

  template <typename T>
  static void CheckObjectReadOnly(const T& object) {
    internal::CheckMemoryReadOnly(std::addressof(object));
  }

  template <typename T>
  static bool SetObjectReadWrite(T& object) {
    T* const ptr = std::addressof(object);
    T* const ptr_end = ptr + 1;
    return SetMemoryReadWrite(ptr, ptr_end);
  }

  static bool SetProtectedSectionReadOnly() {
    return SetMemoryReadOnly(internal::kProtectedMemoryStart,
                             internal::kProtectedMemoryEnd);
  }

  static bool IsSectionStartPageAligned() {
    const uintptr_t protected_memory_start =
        reinterpret_cast<uintptr_t>(internal::kProtectedMemoryStart);
    const uintptr_t page_start =
        bits::AlignDown(protected_memory_start, GetPageSize());
    return page_start == protected_memory_start;
  }

  // When linking, each DSO will have its own protected section. We can't keep
  // track of each section, yet we have to ensure to always unlock and re-lock
  // the correct section.
  //
  // We solve this by defining a separate global writers variable (explained
  // below) in every dynamic shared object (DSO) that includes this header. To
  // do that we use this structure to define global writer data without
  // duplicate symbol errors.
  //
  // Storing the data in a substructure is required to store `writers` within
  // the protected subsection. If `writers` and `writers_lock()` are located
  // directly in `AutoWritableMemoryBase`, for unknown reasons `writers` is not
  // placed into the protected section.
  struct WriterData {
    // `writers` is a global holding the number of ProtectedMemory instances set
    // writable, used to avoid races setting protected memory readable/writable.
    // When this reaches zero the protected memory region is set read only.
    // Access is controlled by writers_lock.
    //
    // Declare writers in the protected memory section to avoid the scenario
    // where an attacker could overwrite it with a large value and invoke code
    // that constructs and destructs an AutoWritableMemory. After such a call
    // protected memory would still be set writable because writers > 0.
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
    // On Linux, the protected memory section is not automatically page aligned.
    // This means that attempts to reset the protected memory region to readonly
    // will set some of the preceding section that is on the same page readonly
    // as well. By forcing the writers to be aligned on a multiple of the page
    // size, we can ensure the protected memory section starts on a page
    // boundary, preventing this issue.
    constinit __attribute__((section("protected_memory"),
                             aligned(kProtectedMemoryAlignment)))
#else
    DEFINE_PROTECTED_DATA
#endif
    static inline size_t writers GUARDED_BY(writers_lock()) = 0;

#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
    // On Linux, there is no guarantee the section following the protected
    // memory section is page aligned. This can result in attempts to change
    // the access permissions of the end of the protected memory section
    // overflowing to the next section. To ensure this doesn't happen, a buffer
    // section called protected_memory_buffer is created. Since the very first
    // variable declared after writers is put in this section, it will be
    // created as the next section after the protected memory section (since
    // sections are created in the order they are declared in the source file).
    // By explicitly setting the alignment of the variable to a multiple of the
    // page size, we can ensure this buffer section starts on a page boundary.
    // This guarantees that altering the access permissions of the end of the
    // protected memory section will not affect the next section. The variable
    // protected_memory_section_buffer serves no purpose other than to ensure
    // protected_memory_buffer section is created.
    constinit
        __attribute__((section("protected_memory_buffer"),
                       aligned(kProtectedMemoryAlignment))) static inline bool
            protected_memory_section_buffer = false;
#endif  // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)

    // Synchronizes access to the writers variable and the simultaneous actions
    // that need to happen alongside writers changes, e.g. setting the protected
    // memory region readable when writers is decremented to 0.
    static Lock& writers_lock() {
      static NoDestructor<Lock> writers_lock;
      return *writers_lock;
    }
  };

 private:
  // Abstract out platform-specific memory APIs. |end| points to the byte
  // past the end of the region of memory having its memory protections
  // changed.
  static bool SetMemoryReadWrite(void* start, void* end);
  static bool SetMemoryReadOnly(void* start, void* end);
#endif  // BUILDFLAG(PROTECTED_MEMORY_ENABLED)
};

#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
// This class acts as a static initializer that initializes the protected memory
// region to read only. It will be engaged the first time a protected memory
// object is statically initialized.
class BASE_EXPORT AutoWritableMemoryInitializer
    : public AutoWritableMemoryBase {
 public:
#if BUILDFLAG(IS_WIN)
  AutoWritableMemoryInitializer() { CHECK(IsSectionStartPageAligned()); }
#else
  AutoWritableMemoryInitializer() LOCKS_EXCLUDED(WriterData::writers_lock()) {
    CHECK(IsSectionStartPageAligned());
    // This doesn't need to be run on Windows, because the linker can pre-set
    // the memory to read-only.
    AutoLock auto_lock(WriterData::writers_lock());
    // Reset the writers variable to 0 to ensure that the attacker didn't set
    // the variable to something large before the section was read-only.
    WriterData::writers = 0;
    CHECK(SetProtectedSectionReadOnly());
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
    // Set the protected_memory_section_buffer to true to ensure the buffer
    // section is created. If a variable is declared but not used the memory
    // section won't be created.
    WriterData::protected_memory_section_buffer = true;
#endif  // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
  }
#endif  // BUILDFLAG(IS_WIN)
};
#endif  // BUILDFLAG(PROTECTED_MEMORY_ENABLED)

// A class that sets a given ProtectedMemory variable writable while the
// AutoWritableMemory is in scope. This class implements the logic for setting
// the protected memory region read-only/read-write in a thread-safe manner.
//
// |AutoWritableMemory| affects the write-permissions of _all_ protected data
// for a DSO, not just of the instance that it's being passed! All protected
// data is stored within the same binary section. At the same time, the OS-level
// support enforcing write protection can only be changed at page level. To
// allow a more fine grained control a dedicated page per instance of protected
// data would be required.
template <typename T>
class AutoWritableMemory : public AutoWritableMemoryBase {
 public:
  explicit AutoWritableMemory(ProtectedMemory<T>& protected_memory)
#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
      LOCKS_EXCLUDED(WriterData::writers_lock())
#endif
      : protected_memory_(protected_memory) {
#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)

    // Check that the data is located in the protected section to
    // ensure consistency of data.
    CHECK(IsObjectInProtectedSection(protected_memory_->data_));
    CHECK(IsObjectInProtectedSection(WriterData::writers));

    {
      AutoLock auto_lock(WriterData::writers_lock());

      if (WriterData::writers == 0) {
        CheckObjectReadOnly(protected_memory_->data_);
        CheckObjectReadOnly(WriterData::writers);
        CHECK(SetObjectReadWrite(WriterData::writers));
      }

      ++WriterData::writers;
    }

    CHECK(SetObjectReadWrite(protected_memory_->data_));
#endif  // BUILDFLAG(PROTECTED_MEMORY_ENABLED)
  }

  ~AutoWritableMemory()
#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
      LOCKS_EXCLUDED(WriterData::writers_lock())
#endif
  {
#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
    AutoLock auto_lock(WriterData::writers_lock());
    CHECK_GT(WriterData::writers, 0u);
    --WriterData::writers;

    if (WriterData::writers == 0) {
      // Lock the whole section of protected memory and set _all_ instances of
      // ProtectedMemory to non-writeable.
      CHECK(SetProtectedSectionReadOnly());
      CheckObjectReadOnly(
          *static_cast<const char*>(internal::kProtectedMemoryStart));
      CheckObjectReadOnly(WriterData::writers);
    }
#endif  // BUILDFLAG(PROTECTED_MEMORY_ENABLED)
  }

  AutoWritableMemory(AutoWritableMemory& original) = delete;
  AutoWritableMemory& operator=(AutoWritableMemory& original) = delete;
  AutoWritableMemory(AutoWritableMemory&& original) = delete;
  AutoWritableMemory& operator=(AutoWritableMemory&& original) = delete;

  T& GetProtectedData() { return protected_memory_->data_.GetReference(); }
  T* GetProtectedDataPtr() { return protected_memory_->data_.GetPointer(); }

  template <typename... U>
  void emplace(U&&... args) {
    protected_memory_->data_.emplace(std::forward<U>(args)...);
  }

 private:
  const raw_ref<ProtectedMemory<T>> protected_memory_;
};

// Helper class for creating simple ProtectedMemory static initializers.
class ProtectedMemoryInitializer {
 public:
  template <typename T, typename... U>
  explicit ProtectedMemoryInitializer(ProtectedMemory<T>& protected_memory,
                                      U&&... args) {
    InitializeAutoWritableMemory();
    AutoWritableMemory writer(protected_memory);
    writer.emplace(std::forward<U>(args)...);
  }

  ProtectedMemoryInitializer() = delete;
  ProtectedMemoryInitializer(const ProtectedMemoryInitializer&) = delete;
  ProtectedMemoryInitializer& operator=(const ProtectedMemoryInitializer&) =
      delete;

 private:
  void InitializeAutoWritableMemory() {
#if BUILDFLAG(PROTECTED_MEMORY_ENABLED)
    static AutoWritableMemoryInitializer memory_initializer;
#else
    // No-op if protected memory is not enabled.
#endif
  }
};

}  // namespace base

#endif  // BASE_MEMORY_PROTECTED_MEMORY_H_