1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
base / memory / scoped_refptr.h [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MEMORY_SCOPED_REFPTR_H_
#define BASE_MEMORY_SCOPED_REFPTR_H_
#include <stddef.h>
#include <compare>
#include <concepts>
#include <iosfwd>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
template <class T>
class scoped_refptr;
namespace base {
template <class, typename>
class RefCounted;
template <class, typename>
class RefCountedThreadSafe;
template <class>
class RefCountedDeleteOnSequence;
class SequencedTaskRunner;
template <typename T>
scoped_refptr<T> AdoptRef(T* t);
namespace subtle {
enum AdoptRefTag { kAdoptRefTag };
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
template <typename TagType>
struct RefCountPreferenceTagTraits;
template <>
struct RefCountPreferenceTagTraits<StartRefCountFromZeroTag> {
static constexpr StartRefCountFromZeroTag kTag = kStartRefCountFromZeroTag;
};
template <>
struct RefCountPreferenceTagTraits<StartRefCountFromOneTag> {
static constexpr StartRefCountFromOneTag kTag = kStartRefCountFromOneTag;
};
template <typename T, typename Tag = typename T::RefCountPreferenceTag>
constexpr Tag GetRefCountPreference() {
return RefCountPreferenceTagTraits<Tag>::kTag;
}
// scoped_refptr<T> is typically used with one of several RefCounted<T> base
// classes or with custom AddRef and Release methods. These overloads dispatch
// on which was used.
template <typename T, typename U, typename V>
constexpr bool IsRefCountPreferenceOverridden(const T*,
const RefCounted<U, V>*) {
return !std::same_as<std::decay_t<decltype(GetRefCountPreference<T>())>,
std::decay_t<decltype(GetRefCountPreference<U>())>>;
}
template <typename T, typename U, typename V>
constexpr bool IsRefCountPreferenceOverridden(
const T*,
const RefCountedThreadSafe<U, V>*) {
return !std::same_as<std::decay_t<decltype(GetRefCountPreference<T>())>,
std::decay_t<decltype(GetRefCountPreference<U>())>>;
}
template <typename T, typename U>
constexpr bool IsRefCountPreferenceOverridden(
const T*,
const RefCountedDeleteOnSequence<U>*) {
return !std::same_as<std::decay_t<decltype(GetRefCountPreference<T>())>,
std::decay_t<decltype(GetRefCountPreference<U>())>>;
}
constexpr bool IsRefCountPreferenceOverridden(...) {
return false;
}
template <typename T, typename U, typename V>
constexpr void AssertRefCountBaseMatches(const T*, const RefCounted<U, V>*) {
static_assert(std::derived_from<T, U>,
"T implements RefCounted<U>, but U is not a base of T.");
}
template <typename T, typename U, typename V>
constexpr void AssertRefCountBaseMatches(const T*,
const RefCountedThreadSafe<U, V>*) {
static_assert(
std::derived_from<T, U>,
"T implements RefCountedThreadSafe<U>, but U is not a base of T.");
}
template <typename T, typename U>
constexpr void AssertRefCountBaseMatches(const T*,
const RefCountedDeleteOnSequence<U>*) {
static_assert(
std::derived_from<T, U>,
"T implements RefCountedDeleteOnSequence<U>, but U is not a base of T.");
}
constexpr void AssertRefCountBaseMatches(...) {}
} // namespace subtle
// Creates a scoped_refptr from a raw pointer without incrementing the reference
// count. Use this only for a newly created object whose reference count starts
// from 1 instead of 0.
template <typename T>
scoped_refptr<T> AdoptRef(T* obj) {
using Tag = std::decay_t<decltype(subtle::GetRefCountPreference<T>())>;
static_assert(std::same_as<subtle::StartRefCountFromOneTag, Tag>,
"Use AdoptRef only if the reference count starts from one.");
DCHECK(obj);
DCHECK(obj->HasOneRef());
obj->Adopted();
return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
}
namespace subtle {
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
return scoped_refptr<T>(obj);
}
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
return AdoptRef(obj);
}
} // namespace subtle
// Constructs an instance of T, which is a ref counted type, and wraps the
// object into a scoped_refptr<T>.
template <typename T, typename... Args>
scoped_refptr<T> MakeRefCounted(Args&&... args) {
T* obj = new T(std::forward<Args>(args)...);
return subtle::AdoptRefIfNeeded(obj, subtle::GetRefCountPreference<T>());
}
// Takes an instance of T, which is a ref counted type, and wraps the object
// into a scoped_refptr<T>.
template <typename T>
scoped_refptr<T> WrapRefCounted(T* t) {
return scoped_refptr<T>(t);
}
template <typename T, base::RawPtrTraits Traits = base::RawPtrTraits::kEmpty>
scoped_refptr<T> WrapRefCounted(const raw_ptr<T, Traits>& t) {
return scoped_refptr<T>(t.get());
}
} // namespace base
//
// A smart pointer class for reference counted objects. Use this class instead
// of calling AddRef and Release manually on a reference counted object to
// avoid common memory leaks caused by forgetting to Release an object
// reference. Sample usage:
//
// class MyFoo : public RefCounted<MyFoo> {
// ...
// private:
// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
// ~MyFoo(); // Destructor must be private/protected.
// };
//
// void some_function() {
// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
// foo->Method(param);
// // |foo| is released when this function returns
// }
//
// void some_other_function() {
// scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>();
// ...
// foo.reset(); // explicitly releases |foo|
// ...
// if (foo)
// foo->Method(param);
// }
//
// The above examples show how scoped_refptr<T> acts like a pointer to T.
// Given two scoped_refptr<T> classes, it is also possible to exchange
// references between the two objects, like so:
//
// {
// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
// scoped_refptr<MyFoo> b;
//
// b.swap(a);
// // now, |b| references the MyFoo object, and |a| references nullptr.
// }
//
// To make both |a| and |b| in the above example reference the same MyFoo
// object, simply use the assignment operator:
//
// {
// scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>();
// scoped_refptr<MyFoo> b;
//
// b = a;
// // now, |a| and |b| each own a reference to the same MyFoo object.
// }
//
// Also see Chromium's ownership and calling conventions:
// https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions
// Specifically:
// If the function (at least sometimes) takes a ref on a refcounted object,
// declare the param as scoped_refptr<T>. The caller can decide whether it
// wishes to transfer ownership (by calling std::move(t) when passing t) or
// retain its ref (by simply passing t directly).
// In other words, use scoped_refptr like you would a std::unique_ptr except
// in the odd case where it's required to hold on to a ref while handing one
// to another component (if a component merely needs to use t on the stack
// without keeping a ref: pass t as a raw T*).
template <class T>
class TRIVIAL_ABI scoped_refptr {
public:
typedef T element_type;
constexpr scoped_refptr() = default;
// Allow implicit construction from nullptr.
constexpr scoped_refptr(std::nullptr_t) {}
// Constructs from a raw pointer. Note that this constructor allows implicit
// conversion from T* to scoped_refptr<T> which is strongly discouraged. If
// you are creating a new ref-counted object please use
// base::MakeRefCounted<T>() or base::WrapRefCounted<T>(). Otherwise you
// should move or copy construct from an existing scoped_refptr<T> to the
// ref-counted object.
scoped_refptr(T* p) : ptr_(p) {
if (ptr_)
AddRef(ptr_);
}
// Copy constructor. This is required in addition to the copy conversion
// constructor below.
scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}
// Copy conversion constructor.
template <typename U>
requires(std::convertible_to<U*, T*>)
scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}
// Move constructor. This is required in addition to the move conversion
// constructor below.
scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }
// Move conversion constructor.
template <typename U>
requires(std::convertible_to<U*, T*>)
scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
r.ptr_ = nullptr;
}
~scoped_refptr() {
static_assert(!base::subtle::IsRefCountPreferenceOverridden(
static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
"It's unsafe to override the ref count preference."
" Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
" from subclasses.");
if (ptr_)
Release(ptr_);
}
T* get() const { return ptr_; }
T& operator*() const {
DCHECK(ptr_);
return *ptr_;
}
T* operator->() const {
DCHECK(ptr_);
return ptr_;
}
scoped_refptr& operator=(std::nullptr_t) {
reset();
return *this;
}
scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }
// Unified assignment operator.
scoped_refptr& operator=(scoped_refptr r) noexcept {
swap(r);
return *this;
}
// Sets managed object to null and releases reference to the previous managed
// object, if it existed.
void reset() { scoped_refptr().swap(*this); }
// Returns the owned pointer (if any), releasing ownership to the caller. The
// caller is responsible for managing the lifetime of the reference.
[[nodiscard]] T* release();
void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }
explicit operator bool() const { return ptr_ != nullptr; }
template <typename U>
friend bool operator==(const scoped_refptr<T>& lhs,
const scoped_refptr<U>& rhs) {
return lhs.ptr_ == rhs.ptr_;
}
// This operator is an optimization to avoid implicitly constructing a
// scoped_refptr<U> when comparing scoped_refptr against raw pointer. If the
// implicit conversion is ever removed this operator can also be removed.
template <typename U>
friend bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
return lhs.ptr_ == rhs;
}
friend bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !static_cast<bool>(lhs);
}
template <typename U>
friend auto operator<=>(const scoped_refptr<T>& lhs,
const scoped_refptr<U>& rhs) {
return lhs.ptr_ <=> rhs.ptr_;
}
friend auto operator<=>(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return lhs.ptr_ <=> static_cast<T*>(nullptr);
}
protected:
// RAW_PTR_EXCLUSION: scoped_refptr<> has its own UaF prevention mechanism.
// Given how widespread it is, we it'll likely a perf regression for no
// additional security benefit.
RAW_PTR_EXCLUSION T* ptr_ = nullptr;
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
friend class ::base::SequencedTaskRunner;
scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}
// Friend required for move constructors that set r.ptr_ to null.
template <typename U>
friend class scoped_refptr;
// Non-inline helpers to allow:
// class Opaque;
// extern template class scoped_refptr<Opaque>;
// Otherwise the compiler will complain that Opaque is an incomplete type.
static void AddRef(T* ptr);
static void Release(T* ptr);
};
template <typename T>
T* scoped_refptr<T>::release() {
T* ptr = ptr_;
ptr_ = nullptr;
return ptr;
}
// static
template <typename T>
void scoped_refptr<T>::AddRef(T* ptr) {
base::subtle::AssertRefCountBaseMatches(ptr, ptr);
ptr->AddRef();
}
// static
template <typename T>
void scoped_refptr<T>::Release(T* ptr) {
base::subtle::AssertRefCountBaseMatches(ptr, ptr);
ptr->Release();
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
return out << p.get();
}
template <typename T>
void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
lhs.swap(rhs);
}
#endif // BASE_MEMORY_SCOPED_REFPTR_H_