1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284

base / memory / singleton.h [blame]

// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// PLEASE READ: Do you really need a singleton? If possible, use a
// function-local static of type base::NoDestructor<T> instead:
//
// Factory& Factory::GetInstance() {
//   static base::NoDestructor<Factory> instance;
//   return *instance;
// }
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//
// Singletons make it hard to determine the lifetime of an object, which can
// lead to buggy code and spurious crashes.
//
// Instead of adding another singleton into the mix, try to identify either:
//   a) An existing singleton that can manage your object's lifetime
//   b) Locations where you can deterministically create the object and pass
//      into other objects
//
// If you absolutely need a singleton, please keep them as trivial as possible
// and ideally a leaf dependency. Singletons get problematic when they attempt
// to do too much in their destructor or have circular dependencies.

#ifndef BASE_MEMORY_SINGLETON_H_
#define BASE_MEMORY_SINGLETON_H_

#include <atomic>

#include "base/dcheck_is_on.h"
#include "base/lazy_instance_helpers.h"
#include "base/threading/thread_restrictions.h"

namespace base {

// Default traits for Singleton<Type>. Calls operator new and operator delete on
// the object. Registers automatic deletion at process exit.
// Overload if you need arguments or another memory allocation function.
template<typename Type>
struct DefaultSingletonTraits {
  // Allocates the object.
  static Type* New() {
    // The parenthesis is very important here; it forces POD type
    // initialization.
    return new Type();
  }

  // Destroys the object.
  static void Delete(Type* x) {
    delete x;
  }

  // Set to true to automatically register deletion of the object on process
  // exit. See below for the required call that makes this happen.
  static const bool kRegisterAtExit = true;

#if DCHECK_IS_ON()
  // Set to false to disallow access on a non-joinable thread.  This is
  // different from kRegisterAtExit because StaticMemorySingletonTraits allows
  // access on non-joinable threads, and gracefully handles this.
  static const bool kAllowedToAccessOnNonjoinableThread = false;
#endif
};


// Alternate traits for use with the Singleton<Type>.  Identical to
// DefaultSingletonTraits except that the Singleton will not be cleaned up
// at exit.
template<typename Type>
struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
  static const bool kRegisterAtExit = false;
#if DCHECK_IS_ON()
  static const bool kAllowedToAccessOnNonjoinableThread = true;
#endif
};

// Alternate traits for use with the Singleton<Type>.  Allocates memory
// for the singleton instance from a static buffer.  The singleton will
// be cleaned up at exit, but can't be revived after destruction unless
// the ResurrectForTesting() method is called.
//
// This is useful for a certain category of things, notably logging and
// tracing, where the singleton instance is of a type carefully constructed to
// be safe to access post-destruction.
// In logging and tracing you'll typically get stray calls at odd times, like
// during static destruction, thread teardown and the like, and there's a
// termination race on the heap-based singleton - e.g. if one thread calls
// get(), but then another thread initiates AtExit processing, the first thread
// may call into an object residing in unallocated memory. If the instance is
// allocated from the data segment, then this is survivable.
//
// The destructor is to deallocate system resources, in this case to unregister
// a callback the system will invoke when logging levels change. Note that
// this is also used in e.g. Chrome Frame, where you have to allow for the
// possibility of loading briefly into someone else's process space, and
// so leaking is not an option, as that would sabotage the state of your host
// process once you've unloaded.
template <typename Type>
struct StaticMemorySingletonTraits {
  // WARNING: User has to support a New() which returns null.
  static Type* New() {
    // Only constructs once and returns pointer; otherwise returns null.
    if (dead_.exchange(true, std::memory_order_relaxed))
      return nullptr;

    return new (buffer_) Type();
  }

  static void Delete(Type* p) {
    if (p)
      p->Type::~Type();
  }

  static const bool kRegisterAtExit = true;

#if DCHECK_IS_ON()
  static const bool kAllowedToAccessOnNonjoinableThread = true;
#endif

  static void ResurrectForTesting() {
    dead_.store(false, std::memory_order_relaxed);
  }

 private:
  alignas(Type) static char buffer_[sizeof(Type)];
  // Signal the object was already deleted, so it is not revived.
  static std::atomic<bool> dead_;
};

template <typename Type>
alignas(Type) char StaticMemorySingletonTraits<Type>::buffer_[sizeof(Type)];
template <typename Type>
std::atomic<bool> StaticMemorySingletonTraits<Type>::dead_ = false;

// The Singleton<Type, Traits, DifferentiatingType> class manages a single
// instance of Type which will be created on first use and will be destroyed at
// normal process exit). The Trait::Delete function will not be called on
// abnormal process exit.
//
// DifferentiatingType is used as a key to differentiate two different
// singletons having the same memory allocation functions but serving a
// different purpose. This is mainly used for Locks serving different purposes.
//
// Example usage:
//
// In your header:
//   namespace base {
//   template <typename T>
//   struct DefaultSingletonTraits;
//   }
//   class FooClass {
//    public:
//     static FooClass* GetInstance();  <-- See comment below on this.
//
//     FooClass(const FooClass&) = delete;
//     FooClass& operator=(const FooClass&) = delete;
//
//     void Bar() { ... }
//
//    private:
//     FooClass() { ... }
//     friend struct base::DefaultSingletonTraits<FooClass>;
//   };
//
// In your source file:
//  #include "base/memory/singleton.h"
//  FooClass* FooClass::GetInstance() {
//    return base::Singleton<FooClass>::get();
//  }
//
// Or for leaky singletons:
//  #include "base/memory/singleton.h"
//  FooClass* FooClass::GetInstance() {
//    return base::Singleton<
//        FooClass, base::LeakySingletonTraits<FooClass>>::get();
//  }
//
// And to call methods on FooClass:
//   FooClass::GetInstance()->Bar();
//
// NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
// and it is important that FooClass::GetInstance() is not inlined in the
// header. This makes sure that when source files from multiple targets include
// this header they don't end up with different copies of the inlined code
// creating multiple copies of the singleton.
//
// Singleton<> has no non-static members and doesn't need to actually be
// instantiated.
//
// This class is itself thread-safe. The underlying Type must of course be
// thread-safe if you want to use it concurrently. Two parameters may be tuned
// depending on the user's requirements.
//
// Glossary:
//   RAE = kRegisterAtExit
//
// On every platform, if Traits::RAE is true, the singleton will be destroyed at
// process exit. More precisely it uses AtExitManager which requires an
// object of this type to be instantiated. AtExitManager mimics the semantics
// of atexit() such as LIFO order but under Windows is safer to call. For more
// information see at_exit.h.
//
// If Traits::RAE is false, the singleton will not be freed at process exit,
// thus the singleton will be leaked if it is ever accessed. Traits::RAE
// shouldn't be false unless absolutely necessary. Remember that the heap where
// the object is allocated may be destroyed by the CRT anyway.
//
// Caveats:
// (a) Every call to get(), operator->() and operator*() incurs some overhead
//     (16ns on my P4/2.8GHz) to check whether the object has already been
//     initialized.  You may wish to cache the result of get(); it will not
//     change.
//
// (b) Your factory function must never throw an exception. This class is not
//     exception-safe.
//

template <typename Type,
          typename Traits = DefaultSingletonTraits<Type>,
          typename DifferentiatingType = Type>
class Singleton {
 private:
  // A class T using the Singleton<T> pattern should declare a GetInstance()
  // method and call Singleton::get() from within that. T may also declare a
  // GetInstanceIfExists() method to invoke Singleton::GetIfExists().
  friend Type;

  // This class is safe to be constructed and copy-constructed since it has no
  // member.

  // Returns a pointer to the one true instance of the class.
  static Type* get() {
#if DCHECK_IS_ON()
    if (!Traits::kAllowedToAccessOnNonjoinableThread)
      internal::AssertSingletonAllowed();
#endif

    return subtle::GetOrCreateLazyPointer(
        instance_, &CreatorFunc, nullptr,
        Traits::kRegisterAtExit ? OnExit : nullptr, nullptr);
  }

  // Returns the same result as get() if the instance exists but doesn't
  // construct it (and returns null) if it doesn't.
  static Type* GetIfExists() {
#if DCHECK_IS_ON()
    if (!Traits::kAllowedToAccessOnNonjoinableThread)
      internal::AssertSingletonAllowed();
#endif

    if (!instance_.load(std::memory_order_relaxed))
      return nullptr;

    // Need to invoke get() nonetheless as some Traits return null after
    // destruction (even though |instance_| still holds garbage).
    return get();
  }

  // Internal method used as an adaptor for GetOrCreateLazyPointer(). Do not use
  // outside of that use case.
  static Type* CreatorFunc(void* /* creator_arg*/) { return Traits::New(); }

  // Adapter function for use with AtExit().  This should be called single
  // threaded, so don't use atomic operations.
  // Calling OnExit while singleton is in use by other threads is a mistake.
  static void OnExit(void* /*unused*/) {
    // AtExit should only ever be register after the singleton instance was
    // created.  We should only ever get here with a valid instance_ pointer.
    Traits::Delete(
        reinterpret_cast<Type*>(instance_.load(std::memory_order_relaxed)));
    instance_.store(0, std::memory_order_relaxed);
  }
  static std::atomic<uintptr_t> instance_;
};

template <typename Type, typename Traits, typename DifferentiatingType>
std::atomic<uintptr_t> Singleton<Type, Traits, DifferentiatingType>::instance_ =
    0;

}  // namespace base

#endif  // BASE_MEMORY_SINGLETON_H_