1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
base / message_loop / message_pump_android.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_android.h"
#include <android/looper.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <sys/eventfd.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <map>
#include <memory>
#include <utility>
#include "base/android/input_hint_checker.h"
#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/message_loop/io_watcher.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/run_loop.h"
#include "base/task/task_features.h"
#include "base/time/time.h"
#include "build/build_config.h"
using base::android::InputHintChecker;
using base::android::InputHintResult;
namespace base {
namespace {
// https://crbug.com/873588. The stack may not be aligned when the ALooper calls
// into our code due to the inconsistent ABI on older Android OS versions.
//
// https://crbug.com/330761384#comment3. Calls from libutils.so into
// NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds
// with orderfile instrumentation causing incorrect value in
// __builtin_return_address(0). Disable instrumentation for them. TODO(pasko):
// Add these symbols to the orderfile manually or fix the builtin.
#if defined(ARCH_CPU_X86)
#define NO_INSTRUMENT_STACK_ALIGN \
__attribute__((force_align_arg_pointer, no_instrument_function))
#else
#define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function))
#endif
NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd,
int events,
void* data) {
if (events & ALOOPER_EVENT_HANGUP)
return 0;
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
pump->OnNonDelayedLooperCallback();
return 1; // continue listening for events
}
NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd,
int events,
void* data) {
if (events & ALOOPER_EVENT_HANGUP)
return 0;
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
pump->OnDelayedLooperCallback();
return 1; // continue listening for events
}
// A bit added to the |non_delayed_fd_| to keep it signaled when we yield to
// native work below.
constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32;
std::atomic_bool g_fast_to_sleep = false;
// Implements IOWatcher to allow any MessagePumpAndroid thread to watch
// arbitrary file descriptors for I/O events.
class IOWatcherImpl : public IOWatcher {
public:
explicit IOWatcherImpl(ALooper* looper) : looper_(looper) {}
~IOWatcherImpl() override {
for (auto& [fd, watches] : watched_fds_) {
ALooper_removeFd(looper_, fd);
if (auto read_watch = std::exchange(watches.read_watch, nullptr)) {
read_watch->Detach();
}
if (auto write_watch = std::exchange(watches.write_watch, nullptr)) {
write_watch->Detach();
}
}
}
// IOWatcher:
std::unique_ptr<IOWatcher::FdWatch> WatchFileDescriptorImpl(
int fd,
FdWatchDuration duration,
FdWatchMode mode,
IOWatcher::FdWatcher& watcher,
const Location& location) override {
auto& watches = watched_fds_[fd];
auto watch = std::make_unique<FdWatchImpl>(*this, fd, duration, watcher);
if (mode == FdWatchMode::kRead || mode == FdWatchMode::kReadWrite) {
CHECK(!watches.read_watch) << "Only one watch per FD per condition.";
watches.read_watch = watch.get();
}
if (mode == FdWatchMode::kWrite || mode == FdWatchMode::kReadWrite) {
CHECK(!watches.write_watch) << "Only one watch per FD per condition.";
watches.write_watch = watch.get();
}
const int events = (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
(watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
ALooper_addFd(looper_, fd, 0, events, &OnFdIoEvent, this);
return watch;
}
private:
// Scopes the maximum lifetime of an FD watch started by WatchFileDescriptor.
class FdWatchImpl : public FdWatch {
public:
FdWatchImpl(IOWatcherImpl& io_watcher,
int fd,
FdWatchDuration duration,
FdWatcher& fd_watcher)
: fd_(fd),
duration_(duration),
fd_watcher_(fd_watcher),
io_watcher_(&io_watcher) {}
~FdWatchImpl() override {
Stop();
if (destruction_flag_) {
*destruction_flag_ = true;
}
}
void set_destruction_flag(bool* flag) { destruction_flag_ = flag; }
int fd() const { return fd_; }
FdWatcher& fd_watcher() const { return *fd_watcher_; }
bool is_persistent() const {
return duration_ == FdWatchDuration::kPersistent;
}
void Detach() { io_watcher_ = nullptr; }
void Stop() {
if (io_watcher_) {
std::exchange(io_watcher_, nullptr)->StopWatching(*this);
}
}
private:
const int fd_;
const FdWatchDuration duration_;
raw_ref<FdWatcher> fd_watcher_;
raw_ptr<IOWatcherImpl> io_watcher_;
// If non-null during destruction, the pointee is set to true. Used to
// detect reentrant destruction during dispatch.
raw_ptr<bool> destruction_flag_ = nullptr;
};
enum class EventResult {
kStopWatching,
kKeepWatching,
};
static NO_INSTRUMENT_STACK_ALIGN int OnFdIoEvent(int fd,
int events,
void* data) {
switch (static_cast<IOWatcherImpl*>(data)->HandleEvent(fd, events)) {
case EventResult::kStopWatching:
return 0;
case EventResult::kKeepWatching:
return 1;
}
}
EventResult HandleEvent(int fd, int events) {
// NOTE: It is possible for Looper to dispatch one last event for `fd`
// *after* we have removed the FD from the Looper - for example if multiple
// FDs wake the thread at the same time, and a handler for another FD runs
// first and removes the watch for `fd`; this callback will have already
// been queued for `fd` and will still run. As such, we must gracefully
// tolerate receiving a callback for an FD that is no longer watched.
auto it = watched_fds_.find(fd);
if (it == watched_fds_.end()) {
return EventResult::kStopWatching;
}
auto& watches = it->second;
const bool is_readable =
events & (ALOOPER_EVENT_INPUT | ALOOPER_EVENT_HANGUP);
const bool is_writable =
events & (ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_HANGUP);
auto* read_watch = watches.read_watch.get();
auto* write_watch = watches.write_watch.get();
// Any event dispatch can stop any number of watches, so we're careful to
// set up destruction observation before dispatching anything.
bool read_watch_destroyed = false;
bool write_watch_destroyed = false;
bool fd_removed = false;
if (read_watch) {
read_watch->set_destruction_flag(&read_watch_destroyed);
}
if (write_watch && read_watch != write_watch) {
write_watch->set_destruction_flag(&write_watch_destroyed);
}
watches.removed_flag = &fd_removed;
bool did_observe_one_shot_read = false;
if (read_watch && is_readable) {
DCHECK_EQ(read_watch->fd(), fd);
did_observe_one_shot_read = !read_watch->is_persistent();
read_watch->fd_watcher().OnFdReadable(fd);
if (!read_watch_destroyed && did_observe_one_shot_read) {
read_watch->Stop();
}
}
// If the read and write watches are the same object, it may have been
// destroyed; or it may have been a one-shot watch already consumed by a
// read above. In either case we inhibit write dispatch.
if (read_watch == write_watch &&
(read_watch_destroyed || did_observe_one_shot_read)) {
write_watch = nullptr;
}
if (write_watch && is_writable && !write_watch_destroyed) {
DCHECK_EQ(write_watch->fd(), fd);
const bool is_persistent = write_watch->is_persistent();
write_watch->fd_watcher().OnFdWritable(fd);
if (!write_watch_destroyed && !is_persistent) {
write_watch->Stop();
}
}
if (read_watch && !read_watch_destroyed) {
read_watch->set_destruction_flag(nullptr);
}
if (write_watch && !write_watch_destroyed) {
write_watch->set_destruction_flag(nullptr);
}
if (fd_removed) {
return EventResult::kStopWatching;
}
watches.removed_flag = nullptr;
return EventResult::kKeepWatching;
}
void StopWatching(FdWatchImpl& watch) {
const int fd = watch.fd();
auto it = watched_fds_.find(fd);
if (it == watched_fds_.end()) {
return;
}
WatchPair& watches = it->second;
if (watches.read_watch == &watch) {
watches.read_watch = nullptr;
}
if (watches.write_watch == &watch) {
watches.write_watch = nullptr;
}
const int remaining_events =
(watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
(watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
if (remaining_events) {
ALooper_addFd(looper_, fd, 0, remaining_events, &OnFdIoEvent, this);
return;
}
ALooper_removeFd(looper_, fd);
if (watches.removed_flag) {
*watches.removed_flag = true;
}
watched_fds_.erase(it);
}
private:
const raw_ptr<ALooper> looper_;
// The set of active FdWatches. Note that each FD may have up to two active
// watches only - one for read and one for write. No two FdWatches can watch
// the same FD for the same signal. `read_watch` and `write_watch` may point
// to the same object.
struct WatchPair {
raw_ptr<FdWatchImpl> read_watch = nullptr;
raw_ptr<FdWatchImpl> write_watch = nullptr;
// If non-null when this WatchPair is removed, the pointee is set to true.
// Used to track reentrant map mutations during dispatch.
raw_ptr<bool> removed_flag = nullptr;
};
std::map<int, WatchPair> watched_fds_;
};
} // namespace
MessagePumpAndroid::MessagePumpAndroid()
: env_(base::android::AttachCurrentThread()) {
// The Android native ALooper uses epoll to poll our file descriptors and wake
// us up. We use a simple level-triggered eventfd to signal that non-delayed
// work is available, and a timerfd to signal when delayed work is ready to
// be run.
non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
CHECK_NE(non_delayed_fd_, -1);
DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);
delayed_fd_ = checked_cast<int>(
timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC));
CHECK_NE(delayed_fd_, -1);
looper_ = ALooper_prepare(0);
DCHECK(looper_);
// Add a reference to the looper so it isn't deleted on us.
ALooper_acquire(looper_);
ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&NonDelayedLooperCallback, reinterpret_cast<void*>(this));
ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&DelayedLooperCallback, reinterpret_cast<void*>(this));
}
MessagePumpAndroid::~MessagePumpAndroid() {
DCHECK_EQ(ALooper_forThread(), looper_);
io_watcher_.reset();
ALooper_removeFd(looper_, non_delayed_fd_);
ALooper_removeFd(looper_, delayed_fd_);
ALooper_release(looper_);
looper_ = nullptr;
close(non_delayed_fd_);
close(delayed_fd_);
}
void MessagePumpAndroid::InitializeFeatures() {
g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid);
}
void MessagePumpAndroid::OnDelayedLooperCallback() {
OnReturnFromLooper();
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_))
return;
// ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit())
return;
// Clear the fd.
uint64_t value;
long ret = read(delayed_fd_, &value, sizeof(value));
// TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
// According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
// EAGAIN only happens if no timer has expired. Also according to the man page
// poll only returns readable when a timer has expired. So this function will
// only be called when a timer has expired, but reading reveals no timer has
// expired...
// Quit() and ScheduleDelayedWork() are the only other functions that touch
// the timerfd, and they both run on the same thread as this callback, so
// there are no obvious timing or multi-threading related issues.
DPCHECK(ret >= 0 || errno == EAGAIN);
DoDelayedLooperWork();
}
void MessagePumpAndroid::DoDelayedLooperWork() {
delayed_scheduled_time_.reset();
Delegate::NextWorkInfo next_work_info = delegate_->DoWork();
if (ShouldQuit())
return;
if (next_work_info.is_immediate()) {
ScheduleWork();
return;
}
delegate_->DoIdleWork();
if (!next_work_info.delayed_run_time.is_max())
ScheduleDelayedWork(next_work_info);
}
void MessagePumpAndroid::OnNonDelayedLooperCallback() {
OnReturnFromLooper();
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_))
return;
// ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit())
return;
// We're about to process all the work requested by ScheduleWork().
// MessagePump users are expected to do their best not to invoke
// ScheduleWork() again before DoWork() returns a non-immediate
// NextWorkInfo below. Hence, capturing the file descriptor's value now and
// resetting its contents to 0 should be okay. The value currently stored
// should be greater than 0 since work having been scheduled is the reason
// we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html
uint64_t value = 0;
long ret = read(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
DCHECK_GT(value, 0U);
bool do_idle_work = value == kTryNativeWorkBeforeIdleBit;
DoNonDelayedLooperWork(do_idle_work);
}
void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) {
// Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no
// additional ScheduleWork() since yielding to native) as delayed tasks might
// have come in and we need to re-sample |next_work_info|.
// Runs all application tasks scheduled to run.
Delegate::NextWorkInfo next_work_info;
do {
if (ShouldQuit())
return;
next_work_info = delegate_->DoWork();
// If we are prioritizing native, and the next work would normally run
// immediately, skip the next work and let the native work items have a
// chance to run. This is useful when user input is waiting for native to
// have a chance to run.
if (next_work_info.is_immediate() && next_work_info.yield_to_native) {
ScheduleWork();
return;
}
// As an optimization, yield to the Looper when input events are waiting to
// be handled. In some cases input events can remain undetected. Such "input
// hint false negatives" happen, for example, during initialization, in
// multi-window cases, or when a previous value is cached to throttle
// polling the input channel.
if (is_type_ui_ && next_work_info.is_immediate() &&
InputHintChecker::HasInput()) {
InputHintChecker::GetInstance().set_is_after_input_yield(true);
ScheduleWork();
return;
}
} while (next_work_info.is_immediate());
// Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't
// allow nesting so needing to resume in an outer loop is not an issue
// either).
if (ShouldQuit())
return;
// Under the fast to sleep feature, `do_idle_work` is ignored, and the pump
// will always "sleep" after finishing all its work items.
if (!g_fast_to_sleep) {
// Before declaring this loop idle, yield to native work items and arrange
// to be called again (unless we're already in that second call).
if (!do_idle_work) {
ScheduleWorkInternal(/*do_idle_work=*/true);
return;
}
// We yielded to native work items already and they didn't generate a
// ScheduleWork() request so we can declare idleness. It's possible for a
// ScheduleWork() request to come in racily while this method unwinds, this
// is fine and will merely result in it being re-invoked shortly after it
// returns.
// TODO(scheduler-dev): this doesn't account for tasks that don't ever call
// SchedulerWork() but still keep the system non-idle (e.g., the Java
// Handler API). It would be better to add an API to query the presence of
// native tasks instead of relying on yielding once +
// kTryNativeWorkBeforeIdleBit.
DCHECK(do_idle_work);
}
if (ShouldQuit()) {
return;
}
// Do the idle work.
//
// At this point, the Java Looper might not be idle. It is possible to skip
// idle work if !MessageQueue.isIdle(), but this check is not very accurate
// because the MessageQueue does not know about the additional tasks
// potentially waiting in the Looper.
//
// Note that this won't cause us to fail to run java tasks using QuitWhenIdle,
// as the JavaHandlerThread will finish running all currently scheduled tasks
// before it quits. Also note that we can't just add an idle callback to the
// java looper, as that will fire even if application tasks are still queued
// up.
delegate_->DoIdleWork();
if (!next_work_info.delayed_run_time.is_max()) {
ScheduleDelayedWork(next_work_info);
}
}
void MessagePumpAndroid::Run(Delegate* delegate) {
NOTREACHED() << "Unexpected call to Run()";
}
void MessagePumpAndroid::Attach(Delegate* delegate) {
DCHECK(!quit_);
// Since the Looper is controlled by the UI thread or JavaHandlerThread, we
// can't use Run() like we do on other platforms or we would prevent Java
// tasks from running. Instead we create and initialize a run loop here, then
// return control back to the Looper.
SetDelegate(delegate);
run_loop_ = std::make_unique<RunLoop>();
// Since the RunLoop was just created above, BeforeRun should be guaranteed to
// return true (it only returns false if the RunLoop has been Quit already).
CHECK(run_loop_->BeforeRun());
}
void MessagePumpAndroid::Quit() {
if (quit_)
return;
quit_ = true;
int64_t value;
// Clear any pending timer.
read(delayed_fd_, &value, sizeof(value));
// Clear the eventfd.
read(non_delayed_fd_, &value, sizeof(value));
if (run_loop_) {
run_loop_->AfterRun();
run_loop_ = nullptr;
}
if (on_quit_callback_) {
std::move(on_quit_callback_).Run();
}
}
void MessagePumpAndroid::ScheduleWork() {
ScheduleWorkInternal(/*do_idle_work=*/false);
}
void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) {
// Write (add) |value| to the eventfd. This tells the Looper to wake up and
// call our callback, allowing us to run tasks. This also allows us to detect,
// when we clear the fd, whether additional work was scheduled after we
// finished performing work, but before we cleared the fd, as we'll read back
// >=2 instead of 1 in that case. See the eventfd man pages
// (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
// the read and write APIs for this file descriptor work, specifically without
// EFD_SEMAPHORE.
// Note: Calls with |do_idle_work| set to true may race with potential calls
// where the parameter is false. This is fine as write() is adding |value|,
// not overwriting the existing value, and as such racing calls would merely
// have their values added together. Since idle work is only executed when the
// value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle
// work from being run and trigger another call to this method with
// |do_idle_work| set to true.
uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1;
long ret = write(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
}
void MessagePumpAndroid::OnReturnFromLooper() {
if (!is_type_ui_) {
return;
}
auto& checker = InputHintChecker::GetInstance();
if (checker.is_after_input_yield()) {
InputHintChecker::RecordInputHintResult(InputHintResult::kBackToNative);
}
checker.set_is_after_input_yield(false);
}
void MessagePumpAndroid::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
if (ShouldQuit())
return;
if (delayed_scheduled_time_ &&
*delayed_scheduled_time_ == next_work_info.delayed_run_time) {
return;
}
DCHECK(!next_work_info.is_immediate());
delayed_scheduled_time_ = next_work_info.delayed_run_time;
int64_t nanos =
next_work_info.delayed_run_time.since_origin().InNanoseconds();
struct itimerspec ts;
ts.it_interval.tv_sec = 0; // Don't repeat.
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec =
static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond);
ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;
long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
DPCHECK(ret >= 0);
}
IOWatcher* MessagePumpAndroid::GetIOWatcher() {
if (!io_watcher_) {
io_watcher_ = std::make_unique<IOWatcherImpl>(looper_);
}
return io_watcher_.get();
}
void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) {
DCHECK(!on_quit_callback_);
DCHECK(run_loop_);
on_quit_callback_ = std::move(callback);
run_loop_->QuitWhenIdle();
// Pump the loop in case we're already idle.
ScheduleWork();
}
MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) {
return std::exchange(delegate_, delegate);
}
bool MessagePumpAndroid::SetQuit(bool quit) {
return std::exchange(quit_, quit);
}
} // namespace base