1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
base / message_loop / message_pump_kqueue.cc [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/message_loop/message_pump_kqueue.h"
#include <sys/errno.h>
#include <atomic>
#include "base/apple/mach_logging.h"
#include "base/apple/scoped_nsautorelease_pool.h"
#include "base/auto_reset.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/notreached.h"
#include "base/posix/eintr_wrapper.h"
#include "base/task/task_features.h"
#include "base/time/time_override.h"
namespace base {
namespace {
// Under this feature native work is batched. Remove it once crbug.com/1200141
// is resolved.
BASE_FEATURE(kBatchNativeEventsInMessagePumpKqueue,
"BatchNativeEventsInMessagePumpKqueue",
base::FEATURE_DISABLED_BY_DEFAULT);
// Caches the state of the "BatchNativeEventsInMessagePumpKqueue".
std::atomic_bool g_use_batched_version = false;
// Caches the state of the "TimerSlackMac" feature for efficiency.
std::atomic_bool g_timer_slack = false;
#if DCHECK_IS_ON()
// Prior to macOS 10.14, kqueue timers may spuriously wake up, because earlier
// wake ups race with timer resets in the kernel. As of macOS 10.14, updating a
// timer from the thread that reads the kqueue does not cause spurious wakeups.
// Note that updating a kqueue timer from one thread while another thread is
// waiting in a kevent64 invocation is still (inherently) racy.
bool KqueueTimersSpuriouslyWakeUp() {
#if BUILDFLAG(IS_MAC)
return false;
#else
// This still happens on iOS15.
return true;
#endif
}
#endif
int ChangeOneEvent(const ScopedFD& kqueue, kevent64_s* event) {
return HANDLE_EINTR(kevent64(kqueue.get(), event, 1, nullptr, 0, 0, nullptr));
}
} // namespace
MessagePumpKqueue::FdWatchController::FdWatchController(
const Location& from_here)
: FdWatchControllerInterface(from_here) {}
MessagePumpKqueue::FdWatchController::~FdWatchController() {
StopWatchingFileDescriptor();
}
bool MessagePumpKqueue::FdWatchController::StopWatchingFileDescriptor() {
if (!pump_)
return true;
return pump_->StopWatchingFileDescriptor(this);
}
void MessagePumpKqueue::FdWatchController::Init(WeakPtr<MessagePumpKqueue> pump,
int fd,
int mode,
FdWatcher* watcher) {
DCHECK_NE(fd, -1);
DCHECK(!watcher_);
DCHECK(watcher);
DCHECK(pump);
fd_ = fd;
mode_ = mode;
watcher_ = watcher;
pump_ = pump;
}
void MessagePumpKqueue::FdWatchController::Reset() {
fd_ = -1;
mode_ = 0;
watcher_ = nullptr;
pump_ = nullptr;
}
MessagePumpKqueue::MachPortWatchController::MachPortWatchController(
const Location& from_here)
: from_here_(from_here) {}
MessagePumpKqueue::MachPortWatchController::~MachPortWatchController() {
StopWatchingMachPort();
}
bool MessagePumpKqueue::MachPortWatchController::StopWatchingMachPort() {
if (!pump_)
return true;
return pump_->StopWatchingMachPort(this);
}
void MessagePumpKqueue::MachPortWatchController::Init(
WeakPtr<MessagePumpKqueue> pump,
mach_port_t port,
MachPortWatcher* watcher) {
DCHECK(!watcher_);
DCHECK(watcher);
DCHECK(pump);
port_ = port;
watcher_ = watcher;
pump_ = pump;
}
void MessagePumpKqueue::MachPortWatchController::Reset() {
port_ = MACH_PORT_NULL;
watcher_ = nullptr;
pump_ = nullptr;
}
MessagePumpKqueue::MessagePumpKqueue()
: kqueue_(kqueue()), weak_factory_(this) {
PCHECK(kqueue_.is_valid()) << "kqueue";
// Create a Mach port that will be used to wake up the pump by sending
// a message in response to ScheduleWork(). This is significantly faster than
// using an EVFILT_USER event, especially when triggered across threads.
kern_return_t kr = mach_port_allocate(
mach_task_self(), MACH_PORT_RIGHT_RECEIVE,
base::apple::ScopedMachReceiveRight::Receiver(wakeup_).get());
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate";
// Configure the event to directly receive the Mach message as part of the
// kevent64() call.
kevent64_s event{};
event.ident = wakeup_.get();
event.filter = EVFILT_MACHPORT;
event.flags = EV_ADD;
event.fflags = MACH_RCV_MSG;
event.ext[0] = reinterpret_cast<uint64_t>(&wakeup_buffer_);
event.ext[1] = sizeof(wakeup_buffer_);
int rv = ChangeOneEvent(kqueue_, &event);
PCHECK(rv == 0) << "kevent64";
}
MessagePumpKqueue::~MessagePumpKqueue() = default;
void MessagePumpKqueue::InitializeFeatures() {
g_use_batched_version.store(
base::FeatureList::IsEnabled(kBatchNativeEventsInMessagePumpKqueue),
std::memory_order_relaxed);
g_timer_slack.store(FeatureList::IsEnabled(kTimerSlackMac),
std::memory_order_relaxed);
}
void MessagePumpKqueue::Run(Delegate* delegate) {
AutoReset<bool> reset_keep_running(&keep_running_, true);
if (g_use_batched_version.load(std::memory_order_relaxed)) {
RunBatched(delegate);
} else {
while (keep_running_) {
apple::ScopedNSAutoreleasePool pool;
bool do_more_work = DoInternalWork(delegate, nullptr);
if (!keep_running_)
break;
Delegate::NextWorkInfo next_work_info = delegate->DoWork();
do_more_work |= next_work_info.is_immediate();
if (!keep_running_)
break;
if (do_more_work)
continue;
delegate->DoIdleWork();
if (!keep_running_)
break;
DoInternalWork(delegate, &next_work_info);
}
}
}
void MessagePumpKqueue::RunBatched(Delegate* delegate) {
// Look for native work once before the loop starts. Without this call the
// loop would break without checking native work even once in cases where
// QuitWhenIdle was used. This is sometimes the case in tests.
DoInternalWork(delegate, nullptr);
while (keep_running_) {
apple::ScopedNSAutoreleasePool pool;
Delegate::NextWorkInfo next_work_info = delegate->DoWork();
if (!keep_running_)
break;
if (!next_work_info.is_immediate()) {
delegate->DoIdleWork();
}
if (!keep_running_)
break;
int batch_size = 0;
if (DoInternalWork(delegate, &next_work_info)) {
// More than one call can be necessary to fully dispatch all available
// internal work. Making an effort to dispatch more than the minimum
// before moving on to application tasks reduces the overhead of going
// through the whole loop. It also more closely mirrors the behavior of
// application task execution where tasks are batched. A value of 16 was
// chosen via local experimentation showing that is was sufficient to
// dispatch all work in roughly 95% of cases.
constexpr int kMaxAttempts = 16;
while (DoInternalWork(delegate, nullptr) && batch_size < kMaxAttempts) {
++batch_size;
}
}
}
}
void MessagePumpKqueue::Quit() {
keep_running_ = false;
ScheduleWork();
}
void MessagePumpKqueue::ScheduleWork() {
mach_msg_empty_send_t message{};
message.header.msgh_size = sizeof(message);
message.header.msgh_bits =
MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_MAKE_SEND_ONCE);
message.header.msgh_remote_port = wakeup_.get();
kern_return_t kr = mach_msg_send(&message.header);
if (kr != KERN_SUCCESS) {
// If ScheduleWork() is being called by other threads faster than the pump
// can dispatch work, the kernel message queue for the wakeup port can fill
// up (this happens under base_perftests, for example). The kernel does
// return a SEND_ONCE right in the case of failure, which must be destroyed
// to avoid leaking.
MACH_DLOG_IF(ERROR, (kr & ~MACH_MSG_IPC_SPACE) != MACH_SEND_NO_BUFFER, kr)
<< "mach_msg_send";
mach_msg_destroy(&message.header);
}
}
void MessagePumpKqueue::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
// Nothing to do. This MessagePump uses DoWork().
}
bool MessagePumpKqueue::WatchMachReceivePort(
mach_port_t port,
MachPortWatchController* controller,
MachPortWatcher* delegate) {
DCHECK(port != MACH_PORT_NULL);
DCHECK(controller);
DCHECK(delegate);
if (controller->port() != MACH_PORT_NULL) {
DLOG(ERROR)
<< "Cannot use the same MachPortWatchController while it is active";
return false;
}
kevent64_s event{};
event.ident = port;
event.filter = EVFILT_MACHPORT;
event.flags = EV_ADD;
int rv = ChangeOneEvent(kqueue_, &event);
if (rv < 0) {
DPLOG(ERROR) << "kevent64";
return false;
}
++event_count_;
controller->Init(weak_factory_.GetWeakPtr(), port, delegate);
port_controllers_.AddWithID(controller, port);
return true;
}
TimeTicks MessagePumpKqueue::AdjustDelayedRunTime(TimeTicks earliest_time,
TimeTicks run_time,
TimeTicks latest_time) {
if (GetAlignWakeUpsEnabled() &&
g_timer_slack.load(std::memory_order_relaxed)) {
return earliest_time;
}
return MessagePump::AdjustDelayedRunTime(earliest_time, run_time,
latest_time);
}
bool MessagePumpKqueue::WatchFileDescriptor(int fd,
bool persistent,
int mode,
FdWatchController* controller,
FdWatcher* delegate) {
DCHECK_GE(fd, 0);
DCHECK(controller);
DCHECK(delegate);
DCHECK_NE(mode & Mode::WATCH_READ_WRITE, 0);
if (controller->fd() != -1 && controller->fd() != fd) {
DLOG(ERROR) << "Cannot use the same FdWatchController on two different FDs";
return false;
}
StopWatchingFileDescriptor(controller);
std::vector<kevent64_s> events;
kevent64_s base_event{};
base_event.ident = static_cast<uint64_t>(fd);
base_event.flags = EV_ADD | (!persistent ? EV_ONESHOT : 0);
if (mode & Mode::WATCH_READ) {
base_event.filter = EVFILT_READ;
base_event.udata = fd_controllers_.Add(controller);
events.push_back(base_event);
}
if (mode & Mode::WATCH_WRITE) {
base_event.filter = EVFILT_WRITE;
base_event.udata = fd_controllers_.Add(controller);
events.push_back(base_event);
}
int rv = HANDLE_EINTR(kevent64(kqueue_.get(), events.data(),
checked_cast<int>(events.size()), nullptr, 0,
0, nullptr));
if (rv < 0) {
DPLOG(ERROR) << "WatchFileDescriptor kevent64";
return false;
}
event_count_ += events.size();
controller->Init(weak_factory_.GetWeakPtr(), fd, mode, delegate);
return true;
}
void MessagePumpKqueue::SetWakeupTimerEvent(const base::TimeTicks& wakeup_time,
base::TimeDelta leeway,
kevent64_s* timer_event) {
// The ident of the wakeup timer. There's only the one timer as the pair
// (ident, filter) is the identity of the event.
constexpr uint64_t kWakeupTimerIdent = 0x0;
timer_event->ident = kWakeupTimerIdent;
timer_event->filter = EVFILT_TIMER;
if (wakeup_time == base::TimeTicks::Max()) {
timer_event->flags = EV_DELETE;
} else {
timer_event->filter = EVFILT_TIMER;
// This updates the timer if it already exists in |kqueue_|.
timer_event->flags = EV_ADD | EV_ONESHOT;
// Specify the sleep in microseconds to avoid undersleeping due to
// numeric problems. The sleep is computed from TimeTicks::Now rather than
// NextWorkInfo::recent_now because recent_now is strictly earlier than
// current wall-clock. Using an earlier wall clock time to compute the
// delta to the next wakeup wall-clock time would guarantee oversleep.
// If wakeup_time is in the past, the delta below will be negative and the
// timer is set immediately.
timer_event->fflags = NOTE_USECONDS;
timer_event->data = (wakeup_time - base::TimeTicks::Now()).InMicroseconds();
if (!leeway.is_zero() && g_timer_slack.load(std::memory_order_relaxed)) {
// Specify slack based on |leeway|.
// See "man kqueue" in recent macOSen for documentation.
timer_event->fflags |= NOTE_LEEWAY;
timer_event->ext[1] = static_cast<uint64_t>(leeway.InMicroseconds());
}
}
}
bool MessagePumpKqueue::StopWatchingMachPort(
MachPortWatchController* controller) {
mach_port_t port = controller->port();
controller->Reset();
port_controllers_.Remove(port);
kevent64_s event{};
event.ident = port;
event.filter = EVFILT_MACHPORT;
event.flags = EV_DELETE;
--event_count_;
int rv = ChangeOneEvent(kqueue_, &event);
if (rv < 0) {
DPLOG(ERROR) << "kevent64";
return false;
}
return true;
}
bool MessagePumpKqueue::StopWatchingFileDescriptor(
FdWatchController* controller) {
int fd = controller->fd();
int mode = controller->mode();
controller->Reset();
if (fd < 0)
return true;
std::vector<kevent64_s> events;
kevent64_s base_event{};
base_event.ident = static_cast<uint64_t>(fd);
base_event.flags = EV_DELETE;
if (mode & Mode::WATCH_READ) {
base_event.filter = EVFILT_READ;
events.push_back(base_event);
}
if (mode & Mode::WATCH_WRITE) {
base_event.filter = EVFILT_WRITE;
events.push_back(base_event);
}
int rv = HANDLE_EINTR(kevent64(kqueue_.get(), events.data(),
checked_cast<int>(events.size()), nullptr, 0,
0, nullptr));
DPLOG_IF(ERROR, rv < 0) << "StopWatchingFileDescriptor kevent64";
// The keys for the IDMap aren't recorded anywhere (they're attached to the
// kevent object in the kernel), so locate the entries by controller pointer.
for (IDMap<FdWatchController*, uint64_t>::iterator it(&fd_controllers_);
!it.IsAtEnd(); it.Advance()) {
if (it.GetCurrentValue() == controller) {
fd_controllers_.Remove(it.GetCurrentKey());
}
}
event_count_ -= events.size();
return rv >= 0;
}
bool MessagePumpKqueue::DoInternalWork(Delegate* delegate,
Delegate::NextWorkInfo* next_work_info) {
if (events_.size() < event_count_) {
events_.resize(event_count_);
}
bool immediate = next_work_info == nullptr;
unsigned int flags = immediate ? KEVENT_FLAG_IMMEDIATE : 0;
if (!immediate) {
MaybeUpdateWakeupTimer(next_work_info->delayed_run_time,
next_work_info->leeway);
DCHECK_EQ(scheduled_wakeup_time_, next_work_info->delayed_run_time);
delegate->BeforeWait();
}
int rv =
HANDLE_EINTR(kevent64(kqueue_.get(), nullptr, 0, events_.data(),
checked_cast<int>(events_.size()), flags, nullptr));
if (rv == 0) {
// No events to dispatch so no need to call ProcessEvents().
return false;
}
PCHECK(rv > 0) << "kevent64";
return ProcessEvents(delegate, static_cast<size_t>(rv));
}
bool MessagePumpKqueue::ProcessEvents(Delegate* delegate, size_t count) {
bool did_work = false;
delegate->BeginNativeWorkBeforeDoWork();
for (size_t i = 0; i < count; ++i) {
auto* event = &events_[i];
if (event->filter == EVFILT_READ || event->filter == EVFILT_WRITE) {
did_work = true;
FdWatchController* controller = fd_controllers_.Lookup(event->udata);
if (!controller) {
// The controller was removed by some other work callout before
// this event could be processed.
continue;
}
FdWatcher* fd_watcher = controller->watcher();
if (event->flags & EV_ONESHOT) {
// If this was a one-shot event, the Controller needs to stop tracking
// the descriptor, so it is not double-removed when it is told to stop
// watching.
controller->Reset();
fd_controllers_.Remove(event->udata);
--event_count_;
}
if (fd_watcher) {
auto scoped_do_work_item = delegate->BeginWorkItem();
// WatchFileDescriptor() originally upcasts event->ident from an int.
if (event->filter == EVFILT_READ) {
fd_watcher->OnFileCanReadWithoutBlocking(
static_cast<int>(event->ident));
} else if (event->filter == EVFILT_WRITE) {
fd_watcher->OnFileCanWriteWithoutBlocking(
static_cast<int>(event->ident));
}
}
} else if (event->filter == EVFILT_MACHPORT) {
// WatchMachReceivePort() originally sets event->ident from a mach_port_t.
mach_port_t port = static_cast<mach_port_t>(event->ident);
if (port == wakeup_.get()) {
// The wakeup event has been received, do not treat this as "doing
// work", this just wakes up the pump.
continue;
}
did_work = true;
MachPortWatchController* controller = port_controllers_.Lookup(port);
// The controller could have been removed by some other work callout
// before this event could be processed.
if (controller) {
auto scoped_do_work_item = delegate->BeginWorkItem();
controller->watcher()->OnMachMessageReceived(port);
}
} else if (event->filter == EVFILT_TIMER) {
// The wakeup timer fired.
#if DCHECK_IS_ON()
// On macOS 10.13 and earlier, kqueue timers may spuriously wake up.
// When this happens, the timer will be re-scheduled the next time
// DoInternalWork is entered, which means this doesn't lead to a
// spinning wait.
// When clock overrides are active, TimeTicks::Now may be decoupled from
// wall-clock time, and can therefore not be used to validate whether the
// expected wall-clock time has passed.
if (!KqueueTimersSpuriouslyWakeUp() &&
!subtle::ScopedTimeClockOverrides::overrides_active()) {
// Given the caveats above, assert that the timer didn't fire early.
DCHECK_LE(scheduled_wakeup_time_, base::TimeTicks::Now());
}
#endif
DCHECK_NE(scheduled_wakeup_time_, base::TimeTicks::Max());
scheduled_wakeup_time_ = base::TimeTicks::Max();
--event_count_;
} else {
NOTREACHED() << "Unexpected event for filter " << event->filter;
}
}
return did_work;
}
void MessagePumpKqueue::MaybeUpdateWakeupTimer(
const base::TimeTicks& wakeup_time,
base::TimeDelta leeway) {
if (wakeup_time == scheduled_wakeup_time_) {
// No change in the timer setting necessary.
return;
}
if (wakeup_time == base::TimeTicks::Max()) {
// If the timer was already reset, don't re-reset it on a suspend toggle.
if (scheduled_wakeup_time_ != base::TimeTicks::Max()) {
// Clear the timer.
kevent64_s timer{};
SetWakeupTimerEvent(wakeup_time, leeway, &timer);
int rv = ChangeOneEvent(kqueue_, &timer);
PCHECK(rv == 0) << "kevent64, delete timer";
--event_count_;
}
} else {
// Set/reset the timer.
kevent64_s timer{};
SetWakeupTimerEvent(wakeup_time, leeway, &timer);
int rv = ChangeOneEvent(kqueue_, &timer);
PCHECK(rv == 0) << "kevent64, set timer";
// Bump the event count if we just added the timer.
if (scheduled_wakeup_time_ == base::TimeTicks::Max())
++event_count_;
}
scheduled_wakeup_time_ = wakeup_time;
}
} // namespace base