1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
base / message_loop / message_pump_win.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_win.h"
#include <windows.h>
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <type_traits>
#include "base/auto_reset.h"
#include "base/check.h"
#include "base/debug/alias.h"
#include "base/debug/crash_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/task/task_features.h"
#include "base/trace_event/base_tracing.h"
#include "base/tracing_buildflags.h"
#if BUILDFLAG(ENABLE_BASE_TRACING)
#include "third_party/perfetto/protos/perfetto/trace/track_event/chrome_message_pump.pbzero.h" // nogncheck
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
namespace base {
namespace {
// Returns the number of milliseconds before |next_task_time|, clamped between
// zero and the biggest DWORD value (or INFINITE if |next_task_time.is_max()|).
// Optionally, a recent value of Now() may be passed in to avoid resampling it.
DWORD GetSleepTimeoutMs(TimeTicks next_task_time,
TimeTicks recent_now = TimeTicks()) {
// Shouldn't need to sleep or install a timer when there's pending immediate
// work.
DCHECK(!next_task_time.is_null());
if (next_task_time.is_max())
return INFINITE;
auto now = recent_now.is_null() ? TimeTicks::Now() : recent_now;
auto timeout_ms = (next_task_time - now).InMillisecondsRoundedUp();
// A saturated_cast with an unsigned destination automatically clamps negative
// values at zero.
static_assert(!std::is_signed_v<DWORD>, "DWORD is unexpectedly signed");
return saturated_cast<DWORD>(timeout_ms);
}
bool g_ui_pump_improvements_win = false;
} // namespace
// Message sent to get an additional time slice for pumping (processing) another
// task (a series of such messages creates a continuous task pump).
static const int kMsgHaveWork = WM_USER + 1;
//-----------------------------------------------------------------------------
// MessagePumpWin public:
MessagePumpWin::MessagePumpWin() = default;
MessagePumpWin::~MessagePumpWin() = default;
// static
void MessagePumpWin::InitializeFeatures() {
g_ui_pump_improvements_win = FeatureList::IsEnabled(kUIPumpImprovementsWin);
}
void MessagePumpWin::Run(Delegate* delegate) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
RunState run_state(delegate);
if (run_state_)
run_state.is_nested = true;
AutoReset<raw_ptr<RunState>> auto_reset_run_state(&run_state_, &run_state);
DoRunLoop();
}
void MessagePumpWin::Quit() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
DCHECK(run_state_);
run_state_->should_quit = true;
}
//-----------------------------------------------------------------------------
// MessagePumpForUI public:
MessagePumpForUI::MessagePumpForUI() {
bool succeeded = message_window_.Create(
BindRepeating(&MessagePumpForUI::MessageCallback, Unretained(this)));
PCHECK(succeeded) << "Failed to create message-only Window";
}
MessagePumpForUI::~MessagePumpForUI() = default;
void MessagePumpForUI::ScheduleWork() {
// This is the only MessagePumpForUI method which can be called outside of
// |bound_thread_|.
if (g_ui_pump_improvements_win &&
!in_nested_native_loop_with_application_tasks_) {
// The pump is running using `event_` as its chrome-side synchronization
// variable. In this case, no deduplication is done, since the event has its
// own state.
event_.Signal();
return;
}
bool not_scheduled = false;
if (!native_msg_scheduled_.compare_exchange_strong(
not_scheduled, true, std::memory_order_relaxed)) {
return; // Someone else continued the pumping.
}
const BOOL ret = ::PostMessage(message_window_.hwnd(), kMsgHaveWork, 0, 0);
if (ret) {
return; // There was room in the Window Message queue.
}
// We have failed to insert a have-work message, so there is a chance that we
// will starve tasks/timers while sitting in a nested run loop. Nested loops
// only look at Windows Message queues, and don't look at *our* task queues,
// etc., so we might not get a time slice in such. :-(
// We could abort here, but the fear is that this failure mode is plausibly
// common (queue is full, of about 2000 messages), so we'll do a near-graceful
// recovery. Nested loops are pretty transient (we think), so this will
// probably be recoverable.
// Clarify that we didn't really insert.
native_msg_scheduled_.store(false, std::memory_order_relaxed);
TRACE_EVENT_INSTANT0("base", "Chrome.MessageLoopProblem.MESSAGE_POST_ERROR",
TRACE_EVENT_SCOPE_THREAD);
}
void MessagePumpForUI::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// Since this is always called from |bound_thread_|, there is almost always
// nothing to do as the loop is already running. When the loop becomes idle,
// it will typically WaitForWork() in DoRunLoop() with the timeout provided by
// DoWork(). The only alternative to this is entering a native nested loop
// (e.g. modal dialog) under a
// `ScopedAllowApplicationTasksInNativeNestedLoop`, in which case
// HandleWorkMessage() will be invoked when the system picks up kMsgHaveWork
// and it will ScheduleNativeTimer() if it's out of immediate work. However,
// in that alternate scenario : it's possible for a Windows native work item
// (e.g. https://docs.microsoft.com/en-us/windows/desktop/winmsg/using-hooks)
// to wake the native nested loop and PostDelayedTask() to the current thread
// from it. This is the only case where we must install/adjust the native
// timer from ScheduleDelayedWork() because if we don't, the native loop will
// go back to sleep, unaware of the new |delayed_work_time|.
// See MessageLoopTest.PostDelayedTaskFromSystemPump for an example.
// TODO(gab): This could potentially be replaced by a ForegroundIdleProc hook
// if Windows ends up being the only platform requiring ScheduleDelayedWork().
if (in_nested_native_loop_with_application_tasks_ &&
!native_msg_scheduled_.load(std::memory_order_relaxed)) {
ScheduleNativeTimer(next_work_info);
}
}
bool MessagePumpForUI::HandleNestedNativeLoopWithApplicationTasks(
bool application_tasks_desired) {
// It is here assumed that we will be in a native loop until either
// DoRunLoop() gets control back, or this is called with `false`, and thus the
// Windows event queue is to be used for synchronization. This is to prevent
// being unable to wake up for application tasks in the case of a nested loop.
in_nested_native_loop_with_application_tasks_ = application_tasks_desired;
if (application_tasks_desired) {
ScheduleWork();
}
return true;
}
void MessagePumpForUI::AddObserver(Observer* observer) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
observers_.AddObserver(observer);
}
void MessagePumpForUI::RemoveObserver(Observer* observer) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
observers_.RemoveObserver(observer);
}
//-----------------------------------------------------------------------------
// MessagePumpForUI private:
bool MessagePumpForUI::MessageCallback(
UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
switch (message) {
case kMsgHaveWork:
HandleWorkMessage();
break;
case WM_TIMER:
if (wparam == reinterpret_cast<UINT_PTR>(this))
HandleTimerMessage();
break;
}
return false;
}
void MessagePumpForUI::DoRunLoop() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// IF this was just a simple PeekMessage() loop (servicing all possible work
// queues), then Windows would try to achieve the following order according
// to MSDN documentation about PeekMessage with no filter):
// * Sent messages
// * Posted messages
// * Sent messages (again)
// * WM_PAINT messages
// * WM_TIMER messages
//
// Summary: none of the above classes is starved, and sent messages has twice
// the chance of being processed (i.e., reduced service time).
wakeup_state_ = WakeupState::kRunning;
for (;;) {
// If we do any work, we may create more messages etc., and more work may
// possibly be waiting in another task group. When we (for example)
// ProcessNextWindowsMessage(), there is a good chance there are still more
// messages waiting. On the other hand, when any of these methods return
// having done no work, then it is pretty unlikely that calling them again
// quickly will find any work to do. Finally, if they all say they had no
// work, then it is a good time to consider sleeping (waiting) for more
// work.
in_nested_native_loop_with_application_tasks_ = false;
bool more_work_is_plausible = false;
if (!g_ui_pump_improvements_win ||
wakeup_state_ != WakeupState::kApplicationTask) {
more_work_is_plausible |= ProcessNextWindowsMessage();
// We can end up in native loops which allow application tasks outside of
// DoWork() when Windows calls back a Win32 message window owned by some
// Chromium code.
in_nested_native_loop_with_application_tasks_ = false;
if (run_state_->should_quit) {
break;
}
}
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
// Since nested native loops with application tasks are initiated by a
// scoper, they should always be cleared before exiting DoWork().
DCHECK(!in_nested_native_loop_with_application_tasks_);
wakeup_state_ = WakeupState::kRunning;
more_work_is_plausible |= next_work_info.is_immediate();
if (run_state_->should_quit) {
break;
}
if (installed_native_timer_) {
// As described in ScheduleNativeTimer(), the native timer is only
// installed and needed while in a nested native loop. If it is installed,
// it means the above work entered such a loop. Having now resumed, the
// native timer is no longer needed.
KillNativeTimer();
}
if (more_work_is_plausible)
continue;
run_state_->delegate->DoIdleWork();
// DoIdleWork() shouldn't end up in native nested loops, nor should it
// permit native nested loops, and thus shouldn't have any chance of
// reinstalling a native timer.
DCHECK(!in_nested_native_loop_with_application_tasks_);
DCHECK(!installed_native_timer_);
if (run_state_->should_quit) {
break;
}
WaitForWork(next_work_info);
}
}
void MessagePumpForUI::WaitForWork(Delegate::NextWorkInfo next_work_info) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// Wait until a message is available, up to the time needed by the timer
// manager to fire the next set of timers.
DWORD wait_flags = MWMO_INPUTAVAILABLE;
bool last_wakeup_was_spurious = false;
for (DWORD delay = GetSleepTimeoutMs(next_work_info.delayed_run_time,
next_work_info.recent_now);
delay != 0; delay = GetSleepTimeoutMs(next_work_info.delayed_run_time)) {
if (!last_wakeup_was_spurious) {
run_state_->delegate->BeforeWait();
}
last_wakeup_was_spurious = false;
// Tell the optimizer to retain these values to simplify analyzing hangs.
base::debug::Alias(&delay);
base::debug::Alias(&wait_flags);
DWORD result;
if (g_ui_pump_improvements_win) {
HANDLE event_handle = event_.handle();
result = MsgWaitForMultipleObjectsEx(1, &event_handle, delay, QS_ALLINPUT,
wait_flags);
DPCHECK(WAIT_FAILED != result);
if (result == WAIT_OBJECT_0) {
wakeup_state_ = WakeupState::kApplicationTask;
} else if (result == WAIT_OBJECT_0 + 1) {
wakeup_state_ = WakeupState::kNative;
} else {
wakeup_state_ = WakeupState::kInactive;
}
} else {
result = MsgWaitForMultipleObjectsEx(0, nullptr, delay, QS_ALLINPUT,
wait_flags);
DPCHECK(WAIT_FAILED != result);
if (result == WAIT_OBJECT_0) {
wakeup_state_ = WakeupState::kNative;
} else {
wakeup_state_ = WakeupState::kInactive;
}
}
if (wakeup_state_ == WakeupState::kApplicationTask) {
// This can only be reached when the pump woke up via `event_`. In that
// case, tasks are prioritized over native.
return;
} else if (wakeup_state_ == WakeupState::kNative) {
// A WM_* message is available.
// If a parent child relationship exists between windows across threads
// then their thread inputs are implicitly attached.
// This causes the MsgWaitForMultipleObjectsEx API to return indicating
// that messages are ready for processing (Specifically, mouse messages
// intended for the child window may appear if the child window has
// capture).
// The subsequent PeekMessages call may fail to return any messages thus
// causing us to enter a tight loop at times.
// The code below is a workaround to give the child window
// some time to process its input messages by looping back to
// MsgWaitForMultipleObjectsEx above when there are no messages for the
// current thread.
// As in ProcessNextWindowsMessage().
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::WaitForWork GetQueueStatus");
if (HIWORD(::GetQueueStatus(QS_SENDMESSAGE)) & QS_SENDMESSAGE)
return;
}
{
MSG msg;
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::WaitForWork PeekMessage");
if (::PeekMessage(&msg, nullptr, 0, 0, PM_NOREMOVE)) {
return;
}
}
// We know there are no more messages for this thread because PeekMessage
// has returned false. Reset |wait_flags| so that we wait for a *new*
// message.
wait_flags = 0;
} else {
DCHECK_EQ(wakeup_state_, WakeupState::kInactive);
last_wakeup_was_spurious = true;
TRACE_EVENT_INSTANT(
"base", "MessagePumpForUI::WaitForWork Spurious Wakeup",
[&](perfetto::EventContext ctx) {
ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>()
->set_chrome_message_pump_for_ui()
->set_wait_for_object_result(result);
});
}
}
}
void MessagePumpForUI::HandleWorkMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// If we are being called outside of the context of Run, then don't try to do
// any work. This could correspond to a MessageBox call or something of that
// sort.
if (!run_state_) {
// Since we handled a kMsgHaveWork message, we must still update this flag.
native_msg_scheduled_.store(false, std::memory_order_relaxed);
return;
}
// Let whatever would have run had we not been putting messages in the queue
// run now. This is an attempt to make our dummy message not starve other
// messages that may be in the Windows message queue.
ProcessPumpReplacementMessage();
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
if (next_work_info.is_immediate()) {
ScheduleWork();
} else {
run_state_->delegate->BeforeWait();
ScheduleNativeTimer(next_work_info);
}
}
void MessagePumpForUI::HandleTimerMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// ::KillTimer doesn't remove pending WM_TIMER messages from the queue,
// explicitly ignore the last WM_TIMER message in that case to avoid handling
// work from here when DoRunLoop() is active (which could result in scheduling
// work from two places at once). Note: we're still fine in the event that a
// second native nested loop is entered before such a dead WM_TIMER message is
// discarded because ::SetTimer merely resets the timer if invoked twice with
// the same id.
if (!installed_native_timer_)
return;
// We only need to fire once per specific delay, another timer may be
// scheduled below but we're done with this one.
KillNativeTimer();
// If we are being called outside of the context of Run, then don't do
// anything. This could correspond to a MessageBox call or something of
// that sort.
if (!run_state_)
return;
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
if (next_work_info.is_immediate()) {
ScheduleWork();
} else {
run_state_->delegate->BeforeWait();
ScheduleNativeTimer(next_work_info);
}
}
void MessagePumpForUI::ScheduleNativeTimer(
Delegate::NextWorkInfo next_work_info) {
DCHECK(!next_work_info.is_immediate());
// We should only ScheduleNativeTimer() under the new pump implementation
// while nested with application tasks.
DCHECK(!g_ui_pump_improvements_win ||
in_nested_native_loop_with_application_tasks_);
// Do not redundantly set the same native timer again if it was already set.
// This can happen when a nested native loop goes idle with pending delayed
// tasks, then gets woken up by an immediate task, and goes back to idle with
// the same pending delay. No need to kill the native timer if there is
// already one but the |delayed_run_time| has changed as ::SetTimer reuses the
// same id and will replace and reset the existing timer.
if (installed_native_timer_ &&
*installed_native_timer_ == next_work_info.delayed_run_time) {
return;
}
if (next_work_info.delayed_run_time.is_max())
return;
// We do not use native Windows timers in general as they have a poor, 10ms,
// granularity. Instead we rely on MsgWaitForMultipleObjectsEx's
// high-resolution timeout to sleep without timers in WaitForWork(). However,
// when entering a nested native ::GetMessage() loop (e.g. native modal
// windows) under a `ScopedAllowApplicationTasksInNativeNestedLoop`, we have
// to rely on a native timer when HandleWorkMessage() runs out of immediate
// work. Since `ScopedAllowApplicationTasksInNativeNestedLoop` invokes
// ScheduleWork() : we are guaranteed that HandleWorkMessage() will be called
// after entering a nested native loop that should process application
// tasks. But once HandleWorkMessage() is out of immediate work, ::SetTimer()
// is used to guarantee we are invoked again should the next delayed task
// expire before the nested native loop ends. The native timer being
// unnecessary once we return to our DoRunLoop(), we ::KillTimer when it
// resumes (nested native loops should be rare so we're not worried about
// ::SetTimer<=>::KillTimer churn). TODO(gab): The long-standing legacy
// dependency on the behavior of
// `ScopedAllowApplicationTasksInNativeNestedLoop` is unfortunate, would be
// nice to make this a MessagePump concept (instead of requiring impls to
// invoke ScheduleWork() one-way and no-op DoWork() the other way).
UINT delay_msec = strict_cast<UINT>(GetSleepTimeoutMs(
next_work_info.delayed_run_time, next_work_info.recent_now));
if (delay_msec == 0) {
ScheduleWork();
} else {
// TODO(gab): ::SetTimer()'s documentation claims it does this for us.
// Consider removing this safety net.
delay_msec = std::clamp(delay_msec, static_cast<UINT>(USER_TIMER_MINIMUM),
static_cast<UINT>(USER_TIMER_MAXIMUM));
// Tell the optimizer to retain the delay to simplify analyzing hangs.
base::debug::Alias(&delay_msec);
const UINT_PTR ret =
::SetTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this),
delay_msec, nullptr);
if (ret) {
installed_native_timer_ = next_work_info.delayed_run_time;
return;
}
// This error is likely similar to MESSAGE_POST_ERROR (i.e. native queue is
// full). Since we only use ScheduleNativeTimer() in native nested loops
// this likely means this pump will not be given a chance to run application
// tasks until the nested loop completes.
TRACE_EVENT_INSTANT0("base", "Chrome.MessageLoopProblem.SET_TIMER_ERROR",
TRACE_EVENT_SCOPE_THREAD);
}
}
void MessagePumpForUI::KillNativeTimer() {
DCHECK(installed_native_timer_);
const bool success =
::KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this));
DPCHECK(success);
installed_native_timer_.reset();
}
bool MessagePumpForUI::ProcessNextWindowsMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
MSG msg;
bool has_msg = false;
bool more_work_is_plausible = false;
{
// ::PeekMessage() may process sent and/or internal messages (regardless of
// |had_messages| as ::GetQueueStatus() is an optimistic check that may
// racily have missed an incoming event -- it doesn't hurt to have empty
// internal units of work when ::PeekMessage turns out to be a no-op).
// Instantiate |scoped_do_work| ahead of GetQueueStatus() so that
// trace events it emits fully outscope GetQueueStatus' events
// (GetQueueStatus() itself not being expected to do work; it's fine to use
// only one ScopedDoWorkItem for both calls -- we trace them independently
// just in case internal work stalls).
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
{
// Individually trace ::GetQueueStatus and ::PeekMessage because sampling
// profiler is hinting that we're spending a surprising amount of time
// with these on top of the stack. Tracing will be able to tell us whether
// this is a bias of sampling profiler (e.g. kernel takes ::GetQueueStatus
// as an opportunity to swap threads and is more likely to schedule the
// sampling profiler's thread while the sampled thread is swapped out on
// this frame).
TRACE_EVENT0(
TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::ProcessNextWindowsMessage GetQueueStatus");
DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE);
// If there are sent messages in the queue then PeekMessage internally
// dispatches the message and returns false. We return true in this case
// to ensure that the message loop peeks again instead of calling
// MsgWaitForMultipleObjectsEx.
if (HIWORD(queue_status) & QS_SENDMESSAGE)
more_work_is_plausible = true;
}
{
// PeekMessage can run a message if there are sent messages, trace that
// and emit the boolean param to see if it ever janks independently (ref.
// comment on GetQueueStatus).
TRACE_EVENT(
TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::ProcessNextWindowsMessage PeekMessage",
[&](perfetto::EventContext ctx) {
perfetto::protos::pbzero::ChromeMessagePump* msg_pump_data =
ctx.event()->set_chrome_message_pump();
msg_pump_data->set_sent_messages_in_queue(more_work_is_plausible);
});
has_msg = ::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE;
}
}
if (has_msg)
more_work_is_plausible |= ProcessMessageHelper(msg);
return more_work_is_plausible;
}
bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
if (msg.message == WM_QUIT) {
// WM_QUIT is the standard way to exit a ::GetMessage() loop. Our
// MessageLoop has its own quit mechanism, so WM_QUIT is generally
// unexpected.
TRACE_EVENT_INSTANT0("base",
"Chrome.MessageLoopProblem.RECEIVED_WM_QUIT_ERROR",
TRACE_EVENT_SCOPE_THREAD);
return true;
}
// While running our main message pump, we discard kMsgHaveWork messages.
if (msg.message == kMsgHaveWork && msg.hwnd == message_window_.hwnd())
return ProcessPumpReplacementMessage();
run_state_->delegate->BeginNativeWorkBeforeDoWork();
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
TRACE_EVENT("base,toplevel", "MessagePumpForUI DispatchMessage",
[&](perfetto::EventContext ctx) {
ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>()
->set_chrome_message_pump_for_ui()
->set_message_id(msg.message);
});
for (Observer& observer : observers_)
observer.WillDispatchMSG(msg);
::TranslateMessage(&msg);
::DispatchMessage(&msg);
for (Observer& observer : observers_)
observer.DidDispatchMSG(msg);
return true;
}
bool MessagePumpForUI::ProcessPumpReplacementMessage() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// When we encounter a kMsgHaveWork message, this method is called to peek and
// process a replacement message. The goal is to make the kMsgHaveWork as non-
// intrusive as possible, even though a continuous stream of such messages are
// posted. This method carefully peeks a message while there is no chance for
// a kMsgHaveWork to be pending, then resets the |have_work_| flag (allowing a
// replacement kMsgHaveWork to possibly be posted), and finally dispatches
// that peeked replacement. Note that the re-post of kMsgHaveWork may be
// asynchronous to this thread!!
MSG msg;
bool have_message = false;
{
// Note: Ideally this call wouldn't process sent-messages (as we already did
// that in the PeekMessage call that lead to receiving this kMsgHaveWork),
// but there's no way to specify this (omitting PM_QS_SENDMESSAGE as in
// crrev.com/791043 doesn't do anything). Hence this call must be considered
// as a potential work item.
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("base"),
"MessagePumpForUI::ProcessPumpReplacementMessage PeekMessage");
have_message = ::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE;
}
// Expect no message or a message different than kMsgHaveWork.
DCHECK(!have_message || kMsgHaveWork != msg.message ||
msg.hwnd != message_window_.hwnd());
// Since we discarded a kMsgHaveWork message, we must update the flag.
DCHECK(native_msg_scheduled_.load(std::memory_order_relaxed));
native_msg_scheduled_.store(false, std::memory_order_relaxed);
// We don't need a special time slice if we didn't |have_message| to process.
if (!have_message)
return false;
if (msg.message == WM_QUIT) {
// If we're in a nested ::GetMessage() loop then we must let that loop see
// the WM_QUIT in order for it to exit. If we're in DoRunLoop then the re-
// posted WM_QUIT will be either ignored, or handled, by
// ProcessMessageHelper() called directly from ProcessNextWindowsMessage().
::PostQuitMessage(static_cast<int>(msg.wParam));
// Note: we *must not* ScheduleWork() here as WM_QUIT is a low-priority
// message on Windows (it is only returned by ::PeekMessage() when idle) :
// https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453. As
// such posting a kMsgHaveWork message via ScheduleWork() would cause an
// infinite loop (kMsgHaveWork message handled first means we end up here
// again and repost WM_QUIT+ScheduleWork() again, etc.). Not leaving a
// kMsgHaveWork message behind however is also problematic as unwinding
// multiple layers of nested ::GetMessage() loops can result in starving
// application tasks. TODO(crbug.com/40595757) : Fix this.
// The return value is mostly irrelevant but return true like we would after
// processing a QuitClosure() task.
return true;
} else if (msg.message == WM_TIMER &&
msg.wParam == reinterpret_cast<UINT_PTR>(this)) {
// This happens when a native nested loop invokes HandleWorkMessage() =>
// ProcessPumpReplacementMessage() which finds the WM_TIMER message
// installed by ScheduleNativeTimer(). That message needs to be handled
// directly as handing it off to ProcessMessageHelper() below would cause an
// unnecessary ScopedDoWorkItem which may incorrectly lead the Delegate's
// heuristics to conclude that the DoWork() in HandleTimerMessage() is
// nested inside a native work item. It's also safe to skip the below
// ScheduleWork() as it is not mandatory before invoking DoWork() and
// HandleTimerMessage() handles re-installing the necessary followup
// messages.
HandleTimerMessage();
return true;
}
// Guarantee we'll get another time slice in the case where we go into native
// windows code. This ScheduleWork() may hurt performance a tiny bit when
// tasks appear very infrequently, but when the event queue is busy, the
// kMsgHaveWork events get (percentage wise) rarer and rarer.
ScheduleWork();
return ProcessMessageHelper(msg);
}
//-----------------------------------------------------------------------------
// MessagePumpForIO public:
MessagePumpForIO::IOContext::IOContext() {
memset(&overlapped, 0, sizeof(overlapped));
}
MessagePumpForIO::IOHandler::IOHandler(const Location& from_here)
: io_handler_location_(from_here) {}
MessagePumpForIO::IOHandler::~IOHandler() = default;
MessagePumpForIO::MessagePumpForIO() {
port_.Set(::CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr,
reinterpret_cast<ULONG_PTR>(nullptr), 1));
DCHECK(port_.is_valid());
}
MessagePumpForIO::~MessagePumpForIO() = default;
void MessagePumpForIO::ScheduleWork() {
// This is the only MessagePumpForIO method which can be called outside of
// |bound_thread_|.
bool not_scheduled = false;
if (!native_msg_scheduled_.compare_exchange_strong(
not_scheduled, true, std::memory_order_relaxed)) {
return; // Work already scheduled.
}
// Make sure the MessagePump does some work for us.
const BOOL ret = ::PostQueuedCompletionStatus(
port_.get(), 0, reinterpret_cast<ULONG_PTR>(this),
reinterpret_cast<OVERLAPPED*>(this));
if (ret)
return; // Post worked perfectly.
// See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
native_msg_scheduled_.store(
false, std::memory_order_relaxed); // Clarify that we didn't succeed.
TRACE_EVENT_INSTANT0("base",
"Chrome.MessageLoopProblem.COMPLETION_POST_ERROR",
TRACE_EVENT_SCOPE_THREAD);
}
void MessagePumpForIO::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// Since this is always called from |bound_thread_|, there is nothing to do as
// the loop is already running. It will WaitForWork() in
// DoRunLoop() with the correct timeout when it's out of immediate tasks.
}
bool MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
IOHandler* handler) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
HANDLE port = ::CreateIoCompletionPort(
file_handle, port_.get(), reinterpret_cast<ULONG_PTR>(handler), 1);
if (port == nullptr) {
const DWORD last_error = ::GetLastError();
// Use `debug::AllocateCrashKeyString` instead of `SCOPED_CRASH_KEY_NUMBER`
// so that the key is set for any crash report generated after this, not
// only for the crash report from the `debug::DumpWithoutCrashing` below.
static auto* const crash_key = debug::AllocateCrashKeyString(
"RegisterIOHandlerError", debug::CrashKeySize::Size32);
debug::SetCrashKeyString(crash_key, NumberToString(last_error));
// TODO(crbug.com/372194029): Remove when failures are well understood.
debug::DumpWithoutCrashing();
return false;
}
return true;
}
bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
IOHandler* handler) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
info.CompletionKey = handler;
info.CompletionPort = port_.get();
return ::SetInformationJobObject(job_handle,
JobObjectAssociateCompletionPortInformation,
&info, sizeof(info)) != FALSE;
}
//-----------------------------------------------------------------------------
// MessagePumpForIO private:
void MessagePumpForIO::DoRunLoop() {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
for (;;) {
// If we do any work, we may create more messages etc., and more work may
// possibly be waiting in another task group. When we (for example)
// WaitForIOCompletion(), there is a good chance there are still more
// messages waiting. On the other hand, when any of these methods return
// having done no work, then it is pretty unlikely that calling them
// again quickly will find any work to do. Finally, if they all say they
// had no work, then it is a good time to consider sleeping (waiting) for
// more work.
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
bool more_work_is_plausible = next_work_info.is_immediate();
if (run_state_->should_quit)
break;
more_work_is_plausible |= WaitForIOCompletion(0);
if (run_state_->should_quit)
break;
if (more_work_is_plausible)
continue;
run_state_->delegate->DoIdleWork();
if (run_state_->should_quit)
break;
run_state_->delegate->BeforeWait();
WaitForWork(next_work_info);
}
}
// Wait until IO completes, up to the time needed by the timer manager to fire
// the next set of timers.
void MessagePumpForIO::WaitForWork(Delegate::NextWorkInfo next_work_info) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
// We do not support nested IO message loops. This is to avoid messy
// recursion problems.
DCHECK(!run_state_->is_nested) << "Cannot nest an IO message loop!";
DWORD timeout = GetSleepTimeoutMs(next_work_info.delayed_run_time,
next_work_info.recent_now);
// Tell the optimizer to retain these values to simplify analyzing hangs.
base::debug::Alias(&timeout);
WaitForIOCompletion(timeout);
}
bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
IOItem item;
if (!GetIOItem(timeout, &item))
return false;
if (ProcessInternalIOItem(item))
return true;
run_state_->delegate->BeginNativeWorkBeforeDoWork();
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
TRACE_EVENT(
"base,toplevel", "IOHandler::OnIOCompleted",
[&](perfetto::EventContext ctx) {
ctx.event()->set_chrome_message_pump()->set_io_handler_location_iid(
base::trace_event::InternedSourceLocation::Get(
&ctx, base::trace_event::TraceSourceLocation(
item.handler->io_handler_location())));
});
item.handler.ExtractAsDangling()->OnIOCompleted(
item.context.ExtractAsDangling(), item.bytes_transfered, item.error);
return true;
}
// Asks the OS for another IO completion result.
bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
ULONG_PTR key = reinterpret_cast<ULONG_PTR>(nullptr);
OVERLAPPED* overlapped = nullptr;
// Clear the value for the number of bytes transferred in case extracting the
// packet doesn't populate it.
item->bytes_transfered = 0;
if (!::GetQueuedCompletionStatus(port_.get(), &item->bytes_transfered, &key,
&overlapped, timeout)) {
if (!overlapped)
return false; // Nothing in the queue.
// A completion packet for a failed operation was processed. The Windows
// last error code pertains to the operation that failed.
item->error = ::GetLastError();
// The packet may have contained a value for the number of bytes
// transferred, so pass along whatever value was populated from it.
} else {
// The packet corresponded to an operation that succeeded, so clear out
// the error value so that the handler sees the operation as a success.
item->error = ERROR_SUCCESS;
}
item->handler = reinterpret_cast<IOHandler*>(key);
item->context = reinterpret_cast<IOContext*>(overlapped);
return true;
}
bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
if (reinterpret_cast<void*>(this) ==
reinterpret_cast<void*>(item.context.get()) &&
reinterpret_cast<void*>(this) ==
reinterpret_cast<void*>(item.handler.get())) {
// This is our internal completion.
DCHECK(!item.bytes_transfered);
native_msg_scheduled_.store(false, std::memory_order_relaxed);
return true;
}
return false;
}
} // namespace base