1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
base / message_loop / message_pump_win.h [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
#define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
#include <windows.h>
#include <atomic>
#include <memory>
#include <optional>
#include "base/base_export.h"
#include "base/compiler_specific.h"
#include "base/location.h"
#include "base/memory/raw_ptr.h"
#include "base/message_loop/message_pump.h"
#include "base/observer_list.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread_checker.h"
#include "base/time/time.h"
#include "base/win/message_window.h"
#include "base/win/scoped_handle.h"
namespace base {
// MessagePumpWin serves as the base for specialized versions of the MessagePump
// for Windows. It provides basic functionality like handling of observers and
// controlling the lifetime of the message pump.
class BASE_EXPORT MessagePumpWin : public MessagePump {
public:
MessagePumpWin();
~MessagePumpWin() override;
// MessagePump methods:
void Run(Delegate* delegate) override;
void Quit() override;
static void InitializeFeatures();
protected:
struct RunState {
explicit RunState(Delegate* delegate_in) : delegate(delegate_in) {}
const raw_ptr<Delegate> delegate;
// Used to flag that the current Run() invocation should return ASAP.
bool should_quit = false;
// Set to true if this Run() is nested within another Run().
bool is_nested = false;
};
virtual void DoRunLoop() = 0;
// True iff:
// * MessagePumpForUI: there's a kMsgDoWork message pending in the Windows
// Message queue. i.e. when:
// a. The pump is about to wakeup from idle and kUIPumpImprovementsWin
// is not enabled.
// b. The pump is about to enter a nested native loop and a
// `ScopedAllowApplicationTasksInNativeNestedLoop` was instantiated to
// allow application tasks to execute in that nested loop
// (`ScopedAllowApplicationTasksInNativeNestedLoop` invokes
// ScheduleWork()).
// c. While in a native (nested) loop : HandleWorkMessage() =>
// ProcessPumpReplacementMessage() invokes ScheduleWork() before
// processing a native message to guarantee this pump will get another
// time slice if it goes into native Windows code and enters a native
// nested loop. This is different from (b.) because we're not yet
// processing an application task at the current run level and
// therefore are expected to keep pumping application tasks without
// necessitating a `ScopedAllowApplicationTasksInNativeNestedLoop`.
//
// * MessagePumpforIO: there's a dummy IO completion item with `this` as an
// lpCompletionKey in the queue which is about to wakeup
// WaitForIOCompletion(). MessagePumpForIO doesn't support nesting so
// this is simpler than MessagePumpForUI.
//
// Note that this should not be used for memory ordering. It is accessed via
// `memory_order_relaxed` in all cases.
std::atomic_bool native_msg_scheduled_{false};
raw_ptr<RunState> run_state_ = nullptr;
THREAD_CHECKER(bound_thread_);
};
//-----------------------------------------------------------------------------
// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
// MessageLoop instantiated with TYPE_UI.
//
// MessagePumpForUI implements a "traditional" Windows message pump. It contains
// a nearly infinite loop that peeks out messages, and then dispatches them.
// Intermixed with those peeks are callouts to DoWork. When there are no
// events to be serviced, this pump goes into a wait state. In most cases, this
// message pump handles all processing.
//
// However, when a task, or windows event, invokes on the stack a native dialog
// box or such, that window typically provides a bare bones (native?) message
// pump. That bare-bones message pump generally supports little more than a
// peek of the Windows message queue, followed by a dispatch of the peeked
// message. MessageLoop extends that bare-bones message pump to also service
// Tasks, at the cost of some complexity.
//
// The basic structure of the extension (referred to as a sub-pump) is that a
// special message, kMsgHaveWork, is repeatedly injected into the Windows
// Message queue. Each time the kMsgHaveWork message is peeked, checks are made
// for an extended set of events, including the availability of Tasks to run.
//
// After running a task, the special message kMsgHaveWork is again posted to the
// Windows Message queue, ensuring a future time slice for processing a future
// event. To prevent flooding the Windows Message queue, care is taken to be
// sure that at most one kMsgHaveWork message is EVER pending in the Window's
// Message queue.
//
// There are a few additional complexities in this system where, when there are
// no Tasks to run, this otherwise infinite stream of messages which drives the
// sub-pump is halted. The pump is automatically re-started when Tasks are
// queued.
//
// A second complexity is that the presence of this stream of posted tasks may
// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
// Such paint and timer events always give priority to a posted message, such as
// kMsgHaveWork messages. As a result, care is taken to do some peeking in
// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork is
// peeked, and before a replacement kMsgHaveWork is posted).
//
// NOTE: Although it may seem odd that messages are used to start and stop this
// flow (as opposed to signaling objects, etc.), it should be understood that
// the native message pump will *only* respond to messages. As a result, it is
// an excellent choice. It is also helpful that the starter messages that are
// placed in the queue when new task arrive also awakens DoRunLoop.
//
class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
public:
MessagePumpForUI();
~MessagePumpForUI() override;
// MessagePump methods:
void ScheduleWork() override;
void ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) override;
bool HandleNestedNativeLoopWithApplicationTasks(
bool application_tasks_desired) override;
// An observer interface to give the scheduler an opportunity to log
// information about MSGs before and after they are dispatched.
class BASE_EXPORT Observer {
public:
virtual void WillDispatchMSG(const MSG& msg) = 0;
virtual void DidDispatchMSG(const MSG& msg) = 0;
};
void AddObserver(Observer* observer);
void RemoveObserver(Observer* obseerver);
private:
bool MessageCallback(UINT message,
WPARAM wparam,
LPARAM lparam,
LRESULT* result);
void DoRunLoop() override;
NOINLINE NOT_TAIL_CALLED void WaitForWork(
Delegate::NextWorkInfo next_work_info);
void HandleWorkMessage();
void HandleTimerMessage();
void ScheduleNativeTimer(Delegate::NextWorkInfo next_work_info);
void KillNativeTimer();
bool ProcessNextWindowsMessage();
bool ProcessMessageHelper(const MSG& msg);
bool ProcessPumpReplacementMessage();
base::win::MessageWindow message_window_;
// Non-nullopt if there's currently a native timer installed. If so, it
// indicates when the timer is set to fire and can be used to avoid setting
// redundant timers.
std::optional<TimeTicks> installed_native_timer_;
// This is used to wake up the pump when the UIPumpImprovementsWin experiment
// is enabled.
WaitableEvent event_{WaitableEvent::ResetPolicy::AUTOMATIC};
// This is set when HandleNestedNativeLoopWithApplicationTasks(true) was
// called (when a `ScopedAllowApplicationTasksInNativeNestedLoop` is
// instantiated).
//
// When running with `event_`, switches to pumping
// `kMsgHaveWork` MSGs when there are application tasks to be done during
// native runloops. In this state, ScheduleDelayedWork() will start a native
// timer.
//
// It is reset when:
// - DoRunLoop() gets control back after ProcessNextWindowsMessage().
// - HandleNestedNativeLoopWithApplicationTasks(false) is called.
bool in_nested_native_loop_with_application_tasks_ = false;
enum class WakeupState {
kApplicationTask,
kNative,
kRunning,
kInactive,
};
// Used to keep track of what the pump knows about the state of its work
// sources at wakeup for the experiment 'UIPumpImprovementsWin'. Its value is
// `kInactive` at construction, but set to `kRunning` on entry to DoRunLoop().
WakeupState wakeup_state_ = WakeupState::kInactive;
ObserverList<Observer>::Unchecked observers_;
};
//-----------------------------------------------------------------------------
// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
// deal with Windows mesagges, and instead has a Run loop based on Completion
// Ports so it is better suited for IO operations.
//
class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
public:
struct BASE_EXPORT IOContext {
IOContext();
OVERLAPPED overlapped;
};
// Clients interested in receiving OS notifications when asynchronous IO
// operations complete should implement this interface and register themselves
// with the message pump.
//
// Typical use #1:
// class MyFile : public IOHandler {
// MyFile() : IOHandler(FROM_HERE) {
// ...
// message_pump->RegisterIOHandler(file_, this);
// }
// // Plus some code to make sure that this destructor is not called
// // while there are pending IO operations.
// ~MyFile() {
// }
// virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
// DWORD error) {
// ...
// delete context;
// }
// void DoSomeIo() {
// ...
// IOContext* context = new IOContext;
// ReadFile(file_, buffer, num_bytes, &read, &context);
// }
// HANDLE file_;
// };
//
// Typical use #2:
// Same as the previous example, except that in order to deal with the
// requirement stated for the destructor, the class calls WaitForIOCompletion
// from the destructor to block until all IO finishes.
// ~MyFile() {
// while(pending_)
// message_pump->WaitForIOCompletion(INFINITE, this);
// }
//
class BASE_EXPORT IOHandler {
public:
explicit IOHandler(const Location& from_here);
virtual ~IOHandler();
IOHandler(const IOHandler&) = delete;
IOHandler& operator=(const IOHandler&) = delete;
// This will be called once the pending IO operation associated with
// |context| completes. |error| is the Win32 error code of the IO operation
// (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
// on error.
virtual void OnIOCompleted(IOContext* context,
DWORD bytes_transfered,
DWORD error) = 0;
const Location& io_handler_location() { return io_handler_location_; }
private:
const Location io_handler_location_;
};
MessagePumpForIO();
~MessagePumpForIO() override;
// MessagePump methods:
void ScheduleWork() override;
void ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) override;
// Register the handler to be used when asynchronous IO for the given file
// completes. The registration persists as long as |file_handle| is valid, so
// |handler| must be valid as long as there is pending IO for the given file.
// Returns true iff the registration succeeds.
[[nodiscard]] bool RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
// Register the handler to be used to process job events. The registration
// persists as long as the job object is live, so |handler| must be valid
// until the job object is destroyed. Returns true if the registration
// succeeded, and false otherwise.
bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
private:
struct IOItem {
raw_ptr<IOHandler> handler;
raw_ptr<IOContext> context;
DWORD bytes_transfered;
DWORD error;
};
void DoRunLoop() override;
NOINLINE NOT_TAIL_CALLED void WaitForWork(
Delegate::NextWorkInfo next_work_info);
bool GetIOItem(DWORD timeout, IOItem* item);
bool ProcessInternalIOItem(const IOItem& item);
// Waits for the next IO completion for up to |timeout| milliseconds.
// Return true if any IO operation completed, and false if the timeout
// expired. If the completion port received any messages, the associated
// handlers will have been invoked before returning from this code.
bool WaitForIOCompletion(DWORD timeout);
// The completion port associated with this thread.
win::ScopedHandle port_;
};
} // namespace base
#endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_