1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
base / metrics / histogram_threadsafe_unittest.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <array>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "base/atomicops.h"
#include "base/containers/span.h"
#include "base/memory/raw_span.h"
#include "base/metrics/bucket_ranges.h"
#include "base/metrics/histogram.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/sparse_histogram.h"
#include "base/no_destructor.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/test/scoped_feature_list.h"
#include "base/threading/simple_thread.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
char const* GetPermanentName(const std::string& name) {
// A set of histogram names that provides the "permanent" lifetime required
// by histogram objects for those strings that are not already code constants
// or held in persistent memory.
static base::NoDestructor<std::set<std::string>> permanent_names;
auto result = permanent_names->insert(name);
return result.first->c_str();
}
size_t GetBucketIndex(HistogramBase::Sample value, const BucketRanges* ranges) {
size_t bucket_count = ranges->bucket_count();
EXPECT_GE(bucket_count, 1U);
for (size_t i = 0; i < bucket_count; ++i) {
if (ranges->range(i) > value) {
return i - 1;
}
}
return bucket_count - 1;
}
// Runs a task in a thread that will emit |num_emission_| times the passed
// |histograms| and snapshot them. The thread will also keep track of the
// actual samples emitted, as well as the ones found in the snapshots taken, so
// that they can be compared.
class SnapshotDeltaThread : public SimpleThread {
public:
SnapshotDeltaThread(const std::string& name,
size_t num_emissions,
span<HistogramBase*> histograms,
HistogramBase::Sample histogram_max,
subtle::Atomic32* real_total_samples_count,
span<subtle::Atomic32> real_bucket_counts,
subtle::Atomic32* snapshots_total_samples_count,
span<subtle::Atomic32> snapshots_bucket_counts)
: SimpleThread(name, Options()),
num_emissions_(num_emissions),
histograms_(histograms),
histogram_max_(histogram_max),
real_total_samples_count_(real_total_samples_count),
real_bucket_counts_(real_bucket_counts),
snapshots_total_samples_count_(snapshots_total_samples_count),
snapshots_bucket_counts_(snapshots_bucket_counts) {}
SnapshotDeltaThread(const SnapshotDeltaThread&) = delete;
SnapshotDeltaThread& operator=(const SnapshotDeltaThread&) = delete;
~SnapshotDeltaThread() override = default;
void Run() override {
for (size_t i = 0; i < num_emissions_; ++i) {
for (HistogramBase* histogram : histograms_) {
// Emit a random sample. rand() is used here to generate such a sample,
// but the randomness does not really matter as thread-safety is what is
// being tested here and there is already a lot of non-determinism
// surrounding scheduling.
Histogram::Sample sample = rand() % histogram_max_;
histogram->Add(sample);
// Take a snapshot of the histogram. Because of the multithreading
// nature of the test, this may or may not include the sample that was
// just emitted, and/or may include samples that came from other
// threads.
std::unique_ptr<HistogramSamples> snapshot = histogram->SnapshotDelta();
// Store the sample that was emitted as well as the snapshot so that
// the totals can be compared later on.
StoreActualSample(histogram, sample);
StoreSnapshot(std::move(snapshot));
}
}
}
private:
// Stores an actual |sample| that was emitted for |histogram|. This is done
// to compare what was found in histogram snapshots (see StoreSnapshot()).
void StoreActualSample(HistogramBase* histogram, Histogram::Sample sample) {
subtle::NoBarrier_AtomicIncrement(real_total_samples_count_, 1);
switch (histogram->GetHistogramType()) {
case HISTOGRAM: {
const BucketRanges* ranges =
static_cast<Histogram*>(histogram)->bucket_ranges();
size_t bucket_index = GetBucketIndex(sample, ranges);
size_t bucket_min = ranges->range(bucket_index);
subtle::NoBarrier_AtomicIncrement(&real_bucket_counts_[bucket_min], 1);
break;
}
case SPARSE_HISTOGRAM:
subtle::NoBarrier_AtomicIncrement(
&real_bucket_counts_[checked_cast<size_t>(sample)], 1);
break;
case LINEAR_HISTOGRAM:
case BOOLEAN_HISTOGRAM:
case CUSTOM_HISTOGRAM:
case DUMMY_HISTOGRAM:
NOTREACHED();
}
}
// Store a |snapshot| that was taken of a histogram. This is done to compare
// what was actually emitted (see StoreActualSample()).
void StoreSnapshot(std::unique_ptr<HistogramSamples> snapshot) {
HistogramBase::Count snapshot_samples_count = snapshot->TotalCount();
subtle::NoBarrier_AtomicIncrement(snapshots_total_samples_count_,
snapshot_samples_count);
for (auto it = snapshot->Iterator(); !it->Done(); it->Next()) {
HistogramBase::Sample min;
int64_t max;
HistogramBase::Count count;
it->Get(&min, &max, &count);
// Verify that the snapshot contains only positive bucket counts.
// This is to ensure SnapshotDelta() is fully thread-safe, not just
// "eventually consistent".
ASSERT_GE(count, 0);
subtle::NoBarrier_AtomicIncrement(
&snapshots_bucket_counts_[checked_cast<size_t>(min)], count);
}
}
const size_t num_emissions_;
raw_span<HistogramBase*> histograms_;
const HistogramBase::Sample histogram_max_;
raw_ptr<subtle::Atomic32> real_total_samples_count_;
raw_span<subtle::Atomic32> real_bucket_counts_;
raw_ptr<subtle::Atomic32> snapshots_total_samples_count_;
raw_span<subtle::Atomic32> snapshots_bucket_counts_;
};
} // namespace
class HistogramThreadsafeTest : public testing::Test {
public:
HistogramThreadsafeTest() = default;
HistogramThreadsafeTest(const HistogramThreadsafeTest&) = delete;
HistogramThreadsafeTest& operator=(const HistogramThreadsafeTest&) = delete;
~HistogramThreadsafeTest() override = default;
void SetUp() override {
GlobalHistogramAllocator::CreateWithLocalMemory(4 << 20, /*id=*/0,
/*name=*/"");
ASSERT_TRUE(GlobalHistogramAllocator::Get());
// Create a second view of the persistent memory with a new persistent
// histogram allocator in order to simulate a subprocess with its own view
// of some shared memory.
PersistentMemoryAllocator* allocator =
GlobalHistogramAllocator::Get()->memory_allocator();
std::unique_ptr<PersistentMemoryAllocator> memory_view =
std::make_unique<PersistentMemoryAllocator>(
/*base=*/const_cast<void*>(allocator->data()), allocator->size(),
/*page_size=*/0, /*id=*/0,
/*name=*/"GlobalHistogramAllocatorView",
PersistentMemoryAllocator::kReadWrite);
allocator_view_ =
std::make_unique<PersistentHistogramAllocator>(std::move(memory_view));
}
void TearDown() override {
histograms_.clear();
allocator_view_.reset();
GlobalHistogramAllocator::ReleaseForTesting();
ASSERT_FALSE(GlobalHistogramAllocator::Get());
}
// Creates and returns various histograms (some that live on the persistent
// memory, some that live on the local heap, and some that point to the same
// underlying data as those that live on the persistent memory but are
// different objects).
std::vector<HistogramBase*> CreateHistograms(size_t suffix,
HistogramBase::Sample max,
size_t bucket_count) {
// There are 4 ways histograms can store their underlying data:
// PersistentSampleVector, PersistentSampleMap, SampleVector, and SampleMap.
// The first two are intended for when the data may be either persisted to a
// file or shared with another process. The last two are when the histograms
// are to be used by the local process only.
// Create 4 histograms that use those storage structures respectively.
std::vector<HistogramBase*> histograms;
// Create histograms on the persistent memory (created through the
// GlobalHistogramAllocator, which is automatically done when using the
// FactoryGet() API). There is no need to store them in |histograms_|
// because these histograms are owned by the StatisticsRecorder.
std::string numeric_histogram_name =
StringPrintf("NumericHistogram%zu", suffix);
Histogram* numeric_histogram = static_cast<Histogram*>(
Histogram::FactoryGet(numeric_histogram_name, /*minimum=*/1, max,
bucket_count, /*flags=*/HistogramBase::kNoFlags));
histograms.push_back(numeric_histogram);
std::string sparse_histogram_name =
StringPrintf("SparseHistogram%zu", suffix);
HistogramBase* sparse_histogram =
SparseHistogram::FactoryGet(sparse_histogram_name,
/*flags=*/HistogramBase::kNoFlags);
histograms.push_back(sparse_histogram);
// Create histograms on the "local heap" (i.e., are not instantiated using
// the GlobalHistogramAllocator, which is automatically done when using the
// FactoryGet() API). Store them in |histograms_| so that they are not freed
// during the test.
std::string local_heap_histogram_name =
StringPrintf("LocalHeapNumericHistogram%zu", suffix);
auto& local_heap_histogram = histograms_.emplace_back(
new Histogram(GetPermanentName(local_heap_histogram_name),
numeric_histogram->bucket_ranges()));
histograms.push_back(local_heap_histogram.get());
std::string local_heap_sparse_histogram_name =
StringPrintf("LocalHeapSparseHistogram%zu", suffix);
auto& local_heap_sparse_histogram =
histograms_.emplace_back(new SparseHistogram(
GetPermanentName(local_heap_sparse_histogram_name)));
histograms.push_back(local_heap_sparse_histogram.get());
// Furthermore, create two additional *different* histogram objects that
// point to the same underlying data as the first two (|numeric_histogram|
// and |sparse_histogram|). This is to simulate subprocess histograms (i.e.,
// both the main browser process and the subprocess have their own histogram
// instance with possibly their own lock, but they both point to the same
// underlying storage, and they may both interact with it simultaneously).
// There is no need to do this for the "local heap" histograms because "by
// definition" they should only be interacted with within the same process.
PersistentHistogramAllocator::Iterator hist_it(allocator_view_.get());
std::unique_ptr<HistogramBase> subprocess_numeric_histogram;
std::unique_ptr<HistogramBase> subprocess_sparse_histogram;
while (true) {
// GetNext() creates a new histogram instance that points to the same
// underlying data as the histogram the iterator is pointing to.
std::unique_ptr<HistogramBase> histogram = hist_it.GetNext();
if (!histogram) {
break;
}
// Make sure the "local heap" histograms are not in persistent memory.
EXPECT_NE(local_heap_histogram_name, histogram->histogram_name());
EXPECT_NE(local_heap_sparse_histogram_name, histogram->histogram_name());
if (histogram->histogram_name() == numeric_histogram_name) {
subprocess_numeric_histogram = std::move(histogram);
} else if (histogram->histogram_name() == sparse_histogram_name) {
subprocess_sparse_histogram = std::move(histogram);
}
}
// Make sure we found the histograms, and ensure that they are not the same
// histogram objects. Assertions to verify that they are actually pointing
// to the same underlying data are not done now (to not mess up the sample
// counts).
EXPECT_TRUE(subprocess_numeric_histogram);
EXPECT_TRUE(subprocess_sparse_histogram);
histograms.push_back(subprocess_numeric_histogram.get());
histograms.push_back(subprocess_sparse_histogram.get());
EXPECT_NE(numeric_histogram, subprocess_numeric_histogram.get());
EXPECT_NE(sparse_histogram, subprocess_sparse_histogram.get());
// Store the histograms in |histograms_| so that they are not freed during
// the test.
histograms_.emplace_back(std::move(subprocess_numeric_histogram));
histograms_.emplace_back(std::move(subprocess_sparse_histogram));
// Lastly, again, create two additional *different* histogram objects that
// point to the same underlying data as the first two (|numeric_histogram|
// and |sparse_histogram|). Unlike above, this is not necessarily done to
// simulate subprocess histograms, but rather to verify that different
// histogram objects created through the *same* allocator work correctly
// together. In particular, the sparse histogram found here will use the
// same "data manager" (see base::PersistentSparseHistogramDataManager) as
// the original |sparse_histogram|. This is in contrast to the "subprocess"
// histograms above, which will use a different "data manager" since those
// histogram objects were created through a different allocator
// (allocator_view_). In production, this is what happens when we try to
// merge the histograms of a child process multiple times concurrently
// (e.g. while we are merging the histograms of a certain child process in
// the background, the browser is backgrounded, triggering another merge but
// on the main thread).
PersistentHistogramAllocator::Iterator hist_it2(
GlobalHistogramAllocator::Get());
std::unique_ptr<HistogramBase> numeric_histogram2;
std::unique_ptr<HistogramBase> sparse_histogram2;
while (true) {
// GetNext() creates a new histogram instance that points to the same
// underlying data as the histogram the iterator is pointing to.
std::unique_ptr<HistogramBase> histogram = hist_it2.GetNext();
if (!histogram) {
break;
}
// Make sure the "local heap" histograms are not in persistent memory.
EXPECT_NE(local_heap_histogram_name, histogram->histogram_name());
EXPECT_NE(local_heap_sparse_histogram_name, histogram->histogram_name());
if (histogram->histogram_name() == numeric_histogram_name) {
numeric_histogram2 = std::move(histogram);
} else if (histogram->histogram_name() == sparse_histogram_name) {
sparse_histogram2 = std::move(histogram);
}
}
// Make sure we found the histograms, and ensure that they are not the same
// histogram objects. Assertions to verify that they are actually pointing
// to the same underlying data are not done now (to not mess up the sample
// counts).
EXPECT_TRUE(numeric_histogram2);
EXPECT_TRUE(sparse_histogram2);
histograms.push_back(numeric_histogram2.get());
histograms.push_back(sparse_histogram2.get());
EXPECT_NE(numeric_histogram, numeric_histogram2.get());
EXPECT_NE(sparse_histogram, sparse_histogram2.get());
// Store the histograms in |histograms_| so that they are not freed during
// the test.
histograms_.emplace_back(std::move(numeric_histogram2));
histograms_.emplace_back(std::move(sparse_histogram2));
return histograms;
}
private:
// A view of the GlobalHistogramAllocator to simulate a subprocess having its
// own view of some shared memory.
std::unique_ptr<PersistentHistogramAllocator> allocator_view_;
// Used to prevent histograms from being freed during the test.
std::vector<std::unique_ptr<HistogramBase>> histograms_;
};
// Verifies that SnapshotDelta() is thread safe. That means 1) a sample emitted
// while a snapshot is taken is not lost, and 2) concurrent calls to
// SnapshotDelta() will not return the same samples. Note that the test makes
// use of ASSERT_* instead EXPECT_* because the test is repeated multiple times,
// and the use of EXPECT_* produces spammy outputs as it does not end the test
// immediately.
TEST_F(HistogramThreadsafeTest, SnapshotDeltaThreadsafe) {
// We try this test |kNumIterations| times to have a coverage of different
// scenarios. For example, for a numeric histogram, if it has only samples
// within the same bucket, the samples will be stored in a different way than
// if it had samples in multiple buckets for efficiency reasons (SingleSample
// vs a vector). Hence, the goal of doing this test multiple time is to have
// coverage of the SingleSample scenario, because once the histogram has moved
// to using a vector, it will not use SingleSample again.
// Note: |kNumIterations| was 100 on 4/2023, but was decreased because the
// workload was causing flakiness (timing out).
constexpr size_t kNumIterations = 50;
for (size_t iteration = 0; iteration < kNumIterations; ++iteration) {
// TL;DR of the test: multiple threads are created, which will each emit to
// the same histograms and snapshot their delta multiple times. We keep
// track of the actual number of samples found in the snapshots, and ensure
// that it matches what we actually emitted.
// Create histograms. Two histograms should live on persistent memory,
// two should live on local heap, and two of them should be simulations of
// subprocess histograms that point to the same underlying data as first two
// histograms (but are different objects).
// The max values of the histograms will alternate between 2 and 50 in order
// to have coverage of histograms that are being emitted to with a small
// range of values, and a large range of values.
const HistogramBase::Sample kHistogramMax = (iteration % 2 == 0) ? 2 : 50;
const size_t kBucketCount = (iteration % 2 == 0) ? 3 : 10;
std::vector<HistogramBase*> histograms =
CreateHistograms(/*suffix=*/iteration, kHistogramMax, kBucketCount);
// Start |kNumThreads| that will each emit and snapshot the histograms (see
// SnapshotDeltaThread). We keep track of the real samples as well as the
// samples found in the snapshots so that we can compare that they match
// later on.
constexpr size_t kNumThreads = 2;
constexpr size_t kNumEmissions = 1000;
subtle::Atomic32 real_total_samples_count = 0;
std::vector<subtle::Atomic32> real_bucket_counts(kHistogramMax, 0);
subtle::Atomic32 snapshots_total_samples_count = 0;
std::vector<subtle::Atomic32> snapshots_bucket_counts(kHistogramMax, 0);
std::array<std::unique_ptr<SnapshotDeltaThread>, kNumThreads> threads;
for (size_t i = 0; i < kNumThreads; ++i) {
threads[i] = std::make_unique<SnapshotDeltaThread>(
StringPrintf("SnapshotDeltaThread.%zu.%zu", iteration, i),
kNumEmissions, histograms, kHistogramMax, &real_total_samples_count,
real_bucket_counts, &snapshots_total_samples_count,
snapshots_bucket_counts);
threads[i]->Start();
}
// Wait until all threads have finished.
for (auto& thread : threads) {
thread->Join();
}
// Verify that the samples found in the snapshots match what we emitted.
ASSERT_EQ(static_cast<size_t>(real_total_samples_count),
kNumThreads * kNumEmissions * histograms.size());
ASSERT_EQ(snapshots_total_samples_count, real_total_samples_count);
for (HistogramBase::Sample i = 0; i < kHistogramMax; ++i) {
ASSERT_EQ(snapshots_bucket_counts[i], real_bucket_counts[i]);
}
// Also verify that no more unlogged samples remain, and that the internal
// logged samples of the histograms match what we emitted.
HistogramBase::Count logged_total_samples_count = 0;
std::vector<HistogramBase::Count> logged_bucket_counts(
/*value=*/kHistogramMax, 0);
// We ignore the last four histograms since they are the same as the first
// two (they are simulations of histogram instances from a subprocess that
// point to the same underlying data, and different histogram instances that
// are created from the same allocator). Otherwise, we will be counting the
// samples from those histograms thrice.
for (size_t i = 0; i < histograms.size() - 4; ++i) {
HistogramBase* histogram = histograms[i];
ASSERT_EQ(histogram->SnapshotDelta()->TotalCount(), 0);
std::unique_ptr<HistogramSamples> logged_samples =
histogram->SnapshotSamples();
// Each individual histograms should have been emitted to a specific
// amount of times. Non-"local heap" histograms were emitted to thrice as
// much because they appeared thrice in the |histograms| array -- once as
// a normal histogram, once as a simulation of a subprocess histogram, and
// once as a duplicate histogram created from the same allocator.
size_t expected_logged_samples_count = kNumThreads * kNumEmissions;
if (!strstr(histogram->histogram_name(), "LocalHeap")) {
expected_logged_samples_count *= 3;
}
ASSERT_EQ(static_cast<size_t>(logged_samples->TotalCount()),
expected_logged_samples_count);
for (auto it = logged_samples->Iterator(); !it->Done(); it->Next()) {
HistogramBase::Sample min;
int64_t max;
HistogramBase::Count count;
it->Get(&min, &max, &count);
ASSERT_GE(count, 0);
logged_total_samples_count += count;
logged_bucket_counts[min] += count;
}
}
ASSERT_EQ(logged_total_samples_count, real_total_samples_count);
for (HistogramBase::Sample i = 0; i < kHistogramMax; ++i) {
ASSERT_EQ(logged_bucket_counts[i], real_bucket_counts[i]);
}
// Verify that our "subprocess histograms" actually point to the same
// underlying data as the "main browser" histograms, despite being different
// instances (this was verified earlier). This is done at the end of the
// test so as to not mess up the sample counts.
HistogramBase* numeric_histogram = histograms[0];
HistogramBase* subprocess_numeric_histogram = histograms[4];
HistogramBase* sparse_histogram = histograms[1];
HistogramBase* subprocess_sparse_histogram = histograms[5];
ASSERT_EQ(subprocess_numeric_histogram->SnapshotDelta()->TotalCount(), 0);
ASSERT_EQ(subprocess_sparse_histogram->SnapshotDelta()->TotalCount(), 0);
numeric_histogram->Add(0);
sparse_histogram->Add(0);
ASSERT_EQ(subprocess_numeric_histogram->SnapshotDelta()->TotalCount(), 1);
ASSERT_EQ(subprocess_sparse_histogram->SnapshotDelta()->TotalCount(), 1);
ASSERT_EQ(numeric_histogram->SnapshotDelta()->TotalCount(), 0);
ASSERT_EQ(sparse_histogram->SnapshotDelta()->TotalCount(), 0);
// Verify that our "duplicate histograms" created from the same allocator
// actually point to the same underlying data as the "main" histograms,
// despite being different instances (this was verified earlier). This is
// done at the end of the test so as to not mess up the sample counts.
HistogramBase* numeric_histogram2 = histograms[6];
HistogramBase* sparse_histogram2 = histograms[7];
ASSERT_EQ(numeric_histogram2->SnapshotDelta()->TotalCount(), 0);
ASSERT_EQ(sparse_histogram2->SnapshotDelta()->TotalCount(), 0);
numeric_histogram->Add(0);
sparse_histogram->Add(0);
ASSERT_EQ(numeric_histogram2->SnapshotDelta()->TotalCount(), 1);
ASSERT_EQ(sparse_histogram2->SnapshotDelta()->TotalCount(), 1);
ASSERT_EQ(numeric_histogram->SnapshotDelta()->TotalCount(), 0);
ASSERT_EQ(sparse_histogram->SnapshotDelta()->TotalCount(), 0);
}
}
} // namespace base