1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499

base / metrics / histogram_threadsafe_unittest.cc [blame]

// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <array>
#include <memory>
#include <set>
#include <string>
#include <vector>

#include "base/atomicops.h"
#include "base/containers/span.h"
#include "base/memory/raw_span.h"
#include "base/metrics/bucket_ranges.h"
#include "base/metrics/histogram.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/sparse_histogram.h"
#include "base/no_destructor.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/test/scoped_feature_list.h"
#include "base/threading/simple_thread.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {

namespace {

char const* GetPermanentName(const std::string& name) {
  // A set of histogram names that provides the "permanent" lifetime required
  // by histogram objects for those strings that are not already code constants
  // or held in persistent memory.
  static base::NoDestructor<std::set<std::string>> permanent_names;

  auto result = permanent_names->insert(name);
  return result.first->c_str();
}

size_t GetBucketIndex(HistogramBase::Sample value, const BucketRanges* ranges) {
  size_t bucket_count = ranges->bucket_count();
  EXPECT_GE(bucket_count, 1U);
  for (size_t i = 0; i < bucket_count; ++i) {
    if (ranges->range(i) > value) {
      return i - 1;
    }
  }
  return bucket_count - 1;
}

// Runs a task in a thread that will emit |num_emission_| times the passed
// |histograms| and snapshot them. The thread will also keep track of the
// actual samples emitted, as well as the ones found in the snapshots taken, so
// that they can be compared.
class SnapshotDeltaThread : public SimpleThread {
 public:
  SnapshotDeltaThread(const std::string& name,
                      size_t num_emissions,
                      span<HistogramBase*> histograms,
                      HistogramBase::Sample histogram_max,
                      subtle::Atomic32* real_total_samples_count,
                      span<subtle::Atomic32> real_bucket_counts,
                      subtle::Atomic32* snapshots_total_samples_count,
                      span<subtle::Atomic32> snapshots_bucket_counts)
      : SimpleThread(name, Options()),
        num_emissions_(num_emissions),
        histograms_(histograms),
        histogram_max_(histogram_max),
        real_total_samples_count_(real_total_samples_count),
        real_bucket_counts_(real_bucket_counts),
        snapshots_total_samples_count_(snapshots_total_samples_count),
        snapshots_bucket_counts_(snapshots_bucket_counts) {}

  SnapshotDeltaThread(const SnapshotDeltaThread&) = delete;
  SnapshotDeltaThread& operator=(const SnapshotDeltaThread&) = delete;

  ~SnapshotDeltaThread() override = default;

  void Run() override {
    for (size_t i = 0; i < num_emissions_; ++i) {
      for (HistogramBase* histogram : histograms_) {
        // Emit a random sample. rand() is used here to generate such a sample,
        // but the randomness does not really matter as thread-safety is what is
        // being tested here and there is already a lot of non-determinism
        // surrounding scheduling.
        Histogram::Sample sample = rand() % histogram_max_;
        histogram->Add(sample);

        // Take a snapshot of the histogram. Because of the multithreading
        // nature of the test, this may or may not include the sample that was
        // just emitted, and/or may include samples that came from other
        // threads.
        std::unique_ptr<HistogramSamples> snapshot = histogram->SnapshotDelta();

        // Store the sample that was emitted as well as the snapshot so that
        // the totals can be compared later on.
        StoreActualSample(histogram, sample);
        StoreSnapshot(std::move(snapshot));
      }
    }
  }

 private:
  // Stores an actual |sample| that was emitted for |histogram|. This is done
  // to compare what was found in histogram snapshots (see StoreSnapshot()).
  void StoreActualSample(HistogramBase* histogram, Histogram::Sample sample) {
    subtle::NoBarrier_AtomicIncrement(real_total_samples_count_, 1);
    switch (histogram->GetHistogramType()) {
      case HISTOGRAM: {
        const BucketRanges* ranges =
            static_cast<Histogram*>(histogram)->bucket_ranges();
        size_t bucket_index = GetBucketIndex(sample, ranges);
        size_t bucket_min = ranges->range(bucket_index);
        subtle::NoBarrier_AtomicIncrement(&real_bucket_counts_[bucket_min], 1);
        break;
      }
      case SPARSE_HISTOGRAM:
        subtle::NoBarrier_AtomicIncrement(
            &real_bucket_counts_[checked_cast<size_t>(sample)], 1);
        break;
      case LINEAR_HISTOGRAM:
      case BOOLEAN_HISTOGRAM:
      case CUSTOM_HISTOGRAM:
      case DUMMY_HISTOGRAM:
        NOTREACHED();
    }
  }

  // Store a |snapshot| that was taken of a histogram. This is done to compare
  // what was actually emitted (see StoreActualSample()).
  void StoreSnapshot(std::unique_ptr<HistogramSamples> snapshot) {
    HistogramBase::Count snapshot_samples_count = snapshot->TotalCount();
    subtle::NoBarrier_AtomicIncrement(snapshots_total_samples_count_,
                                      snapshot_samples_count);
    for (auto it = snapshot->Iterator(); !it->Done(); it->Next()) {
      HistogramBase::Sample min;
      int64_t max;
      HistogramBase::Count count;
      it->Get(&min, &max, &count);
      // Verify that the snapshot contains only positive bucket counts.
      // This is to ensure SnapshotDelta() is fully thread-safe, not just
      // "eventually consistent".
      ASSERT_GE(count, 0);
      subtle::NoBarrier_AtomicIncrement(
          &snapshots_bucket_counts_[checked_cast<size_t>(min)], count);
    }
  }

  const size_t num_emissions_;
  raw_span<HistogramBase*> histograms_;
  const HistogramBase::Sample histogram_max_;
  raw_ptr<subtle::Atomic32> real_total_samples_count_;
  raw_span<subtle::Atomic32> real_bucket_counts_;
  raw_ptr<subtle::Atomic32> snapshots_total_samples_count_;
  raw_span<subtle::Atomic32> snapshots_bucket_counts_;
};

}  // namespace

class HistogramThreadsafeTest : public testing::Test {
 public:
  HistogramThreadsafeTest() = default;

  HistogramThreadsafeTest(const HistogramThreadsafeTest&) = delete;
  HistogramThreadsafeTest& operator=(const HistogramThreadsafeTest&) = delete;

  ~HistogramThreadsafeTest() override = default;

  void SetUp() override {
    GlobalHistogramAllocator::CreateWithLocalMemory(4 << 20, /*id=*/0,
                                                    /*name=*/"");
    ASSERT_TRUE(GlobalHistogramAllocator::Get());

    // Create a second view of the persistent memory with a new persistent
    // histogram allocator in order to simulate a subprocess with its own view
    // of some shared memory.
    PersistentMemoryAllocator* allocator =
        GlobalHistogramAllocator::Get()->memory_allocator();
    std::unique_ptr<PersistentMemoryAllocator> memory_view =
        std::make_unique<PersistentMemoryAllocator>(
            /*base=*/const_cast<void*>(allocator->data()), allocator->size(),
            /*page_size=*/0, /*id=*/0,
            /*name=*/"GlobalHistogramAllocatorView",
            PersistentMemoryAllocator::kReadWrite);
    allocator_view_ =
        std::make_unique<PersistentHistogramAllocator>(std::move(memory_view));
  }

  void TearDown() override {
    histograms_.clear();
    allocator_view_.reset();
    GlobalHistogramAllocator::ReleaseForTesting();
    ASSERT_FALSE(GlobalHistogramAllocator::Get());
  }

  // Creates and returns various histograms (some that live on the persistent
  // memory, some that live on the local heap, and some that point to the same
  // underlying data as those that live on the persistent memory but are
  // different objects).
  std::vector<HistogramBase*> CreateHistograms(size_t suffix,
                                               HistogramBase::Sample max,
                                               size_t bucket_count) {
    // There are 4 ways histograms can store their underlying data:
    // PersistentSampleVector, PersistentSampleMap, SampleVector, and SampleMap.
    // The first two are intended for when the data may be either persisted to a
    // file or shared with another process. The last two are when the histograms
    // are to be used by the local process only.
    // Create 4 histograms that use those storage structures respectively.
    std::vector<HistogramBase*> histograms;

    // Create histograms on the persistent memory (created through the
    // GlobalHistogramAllocator, which is automatically done when using the
    // FactoryGet() API). There is no need to store them in |histograms_|
    // because these histograms are owned by the StatisticsRecorder.
    std::string numeric_histogram_name =
        StringPrintf("NumericHistogram%zu", suffix);
    Histogram* numeric_histogram = static_cast<Histogram*>(
        Histogram::FactoryGet(numeric_histogram_name, /*minimum=*/1, max,
                              bucket_count, /*flags=*/HistogramBase::kNoFlags));
    histograms.push_back(numeric_histogram);
    std::string sparse_histogram_name =
        StringPrintf("SparseHistogram%zu", suffix);
    HistogramBase* sparse_histogram =
        SparseHistogram::FactoryGet(sparse_histogram_name,
                                    /*flags=*/HistogramBase::kNoFlags);
    histograms.push_back(sparse_histogram);

    // Create histograms on the "local heap" (i.e., are not instantiated using
    // the GlobalHistogramAllocator, which is automatically done when using the
    // FactoryGet() API). Store them in |histograms_| so that they are not freed
    // during the test.
    std::string local_heap_histogram_name =
        StringPrintf("LocalHeapNumericHistogram%zu", suffix);
    auto& local_heap_histogram = histograms_.emplace_back(
        new Histogram(GetPermanentName(local_heap_histogram_name),
                      numeric_histogram->bucket_ranges()));
    histograms.push_back(local_heap_histogram.get());
    std::string local_heap_sparse_histogram_name =
        StringPrintf("LocalHeapSparseHistogram%zu", suffix);
    auto& local_heap_sparse_histogram =
        histograms_.emplace_back(new SparseHistogram(
            GetPermanentName(local_heap_sparse_histogram_name)));
    histograms.push_back(local_heap_sparse_histogram.get());

    // Furthermore, create two additional *different* histogram objects that
    // point to the same underlying data as the first two (|numeric_histogram|
    // and |sparse_histogram|). This is to simulate subprocess histograms (i.e.,
    // both the main browser process and the subprocess have their own histogram
    // instance with possibly their own lock, but they both point to the same
    // underlying storage, and they may both interact with it simultaneously).
    // There is no need to do this for the "local heap" histograms because "by
    // definition" they should only be interacted with within the same process.
    PersistentHistogramAllocator::Iterator hist_it(allocator_view_.get());
    std::unique_ptr<HistogramBase> subprocess_numeric_histogram;
    std::unique_ptr<HistogramBase> subprocess_sparse_histogram;
    while (true) {
      // GetNext() creates a new histogram instance that points to the same
      // underlying data as the histogram the iterator is pointing to.
      std::unique_ptr<HistogramBase> histogram = hist_it.GetNext();
      if (!histogram) {
        break;
      }

      // Make sure the "local heap" histograms are not in persistent memory.
      EXPECT_NE(local_heap_histogram_name, histogram->histogram_name());
      EXPECT_NE(local_heap_sparse_histogram_name, histogram->histogram_name());

      if (histogram->histogram_name() == numeric_histogram_name) {
        subprocess_numeric_histogram = std::move(histogram);
      } else if (histogram->histogram_name() == sparse_histogram_name) {
        subprocess_sparse_histogram = std::move(histogram);
      }
    }
    // Make sure we found the histograms, and ensure that they are not the same
    // histogram objects. Assertions to verify that they are actually pointing
    // to the same underlying data are not done now (to not mess up the sample
    // counts).
    EXPECT_TRUE(subprocess_numeric_histogram);
    EXPECT_TRUE(subprocess_sparse_histogram);
    histograms.push_back(subprocess_numeric_histogram.get());
    histograms.push_back(subprocess_sparse_histogram.get());
    EXPECT_NE(numeric_histogram, subprocess_numeric_histogram.get());
    EXPECT_NE(sparse_histogram, subprocess_sparse_histogram.get());

    // Store the histograms in |histograms_| so that they are not freed during
    // the test.
    histograms_.emplace_back(std::move(subprocess_numeric_histogram));
    histograms_.emplace_back(std::move(subprocess_sparse_histogram));

    // Lastly, again, create two additional *different* histogram objects that
    // point to the same underlying data as the first two (|numeric_histogram|
    // and |sparse_histogram|). Unlike above, this is not necessarily done to
    // simulate subprocess histograms, but rather to verify that different
    // histogram objects created through the *same* allocator work correctly
    // together. In particular, the sparse histogram found here will use the
    // same "data manager" (see base::PersistentSparseHistogramDataManager) as
    // the original |sparse_histogram|. This is in contrast to the "subprocess"
    // histograms above, which will use a different "data manager" since those
    // histogram objects were created through a different allocator
    // (allocator_view_). In production, this is what happens when we try to
    // merge the histograms of a child process multiple times concurrently
    // (e.g. while we are merging the histograms of a certain child process in
    // the background, the browser is backgrounded, triggering another merge but
    // on the main thread).
    PersistentHistogramAllocator::Iterator hist_it2(
        GlobalHistogramAllocator::Get());
    std::unique_ptr<HistogramBase> numeric_histogram2;
    std::unique_ptr<HistogramBase> sparse_histogram2;
    while (true) {
      // GetNext() creates a new histogram instance that points to the same
      // underlying data as the histogram the iterator is pointing to.
      std::unique_ptr<HistogramBase> histogram = hist_it2.GetNext();
      if (!histogram) {
        break;
      }

      // Make sure the "local heap" histograms are not in persistent memory.
      EXPECT_NE(local_heap_histogram_name, histogram->histogram_name());
      EXPECT_NE(local_heap_sparse_histogram_name, histogram->histogram_name());

      if (histogram->histogram_name() == numeric_histogram_name) {
        numeric_histogram2 = std::move(histogram);
      } else if (histogram->histogram_name() == sparse_histogram_name) {
        sparse_histogram2 = std::move(histogram);
      }
    }
    // Make sure we found the histograms, and ensure that they are not the same
    // histogram objects. Assertions to verify that they are actually pointing
    // to the same underlying data are not done now (to not mess up the sample
    // counts).
    EXPECT_TRUE(numeric_histogram2);
    EXPECT_TRUE(sparse_histogram2);
    histograms.push_back(numeric_histogram2.get());
    histograms.push_back(sparse_histogram2.get());
    EXPECT_NE(numeric_histogram, numeric_histogram2.get());
    EXPECT_NE(sparse_histogram, sparse_histogram2.get());

    // Store the histograms in |histograms_| so that they are not freed during
    // the test.
    histograms_.emplace_back(std::move(numeric_histogram2));
    histograms_.emplace_back(std::move(sparse_histogram2));

    return histograms;
  }

 private:
  // A view of the GlobalHistogramAllocator to simulate a subprocess having its
  // own view of some shared memory.
  std::unique_ptr<PersistentHistogramAllocator> allocator_view_;

  // Used to prevent histograms from being freed during the test.
  std::vector<std::unique_ptr<HistogramBase>> histograms_;
};

// Verifies that SnapshotDelta() is thread safe. That means 1) a sample emitted
// while a snapshot is taken is not lost, and 2) concurrent calls to
// SnapshotDelta() will not return the same samples. Note that the test makes
// use of ASSERT_* instead EXPECT_* because the test is repeated multiple times,
// and the use of EXPECT_* produces spammy outputs as it does not end the test
// immediately.
TEST_F(HistogramThreadsafeTest, SnapshotDeltaThreadsafe) {
  // We try this test |kNumIterations| times to have a coverage of different
  // scenarios. For example, for a numeric histogram, if it has only samples
  // within the same bucket, the samples will be stored in a different way than
  // if it had samples in multiple buckets for efficiency reasons (SingleSample
  // vs a vector). Hence, the goal of doing this test multiple time is to have
  // coverage of the SingleSample scenario, because once the histogram has moved
  // to using a vector, it will not use SingleSample again.
  // Note: |kNumIterations| was 100 on 4/2023, but was decreased because the
  // workload was causing flakiness (timing out).
  constexpr size_t kNumIterations = 50;
  for (size_t iteration = 0; iteration < kNumIterations; ++iteration) {
    // TL;DR of the test: multiple threads are created, which will each emit to
    // the same histograms and snapshot their delta multiple times. We keep
    // track of the actual number of samples found in the snapshots, and ensure
    // that it matches what we actually emitted.

    // Create histograms. Two histograms should live on persistent memory,
    // two should live on local heap, and two of them should be simulations of
    // subprocess histograms that point to the same underlying data as first two
    // histograms (but are different objects).
    // The max values of the histograms will alternate between 2 and 50 in order
    // to have coverage of histograms that are being emitted to with a small
    // range of values, and a large range of values.
    const HistogramBase::Sample kHistogramMax = (iteration % 2 == 0) ? 2 : 50;
    const size_t kBucketCount = (iteration % 2 == 0) ? 3 : 10;
    std::vector<HistogramBase*> histograms =
        CreateHistograms(/*suffix=*/iteration, kHistogramMax, kBucketCount);

    // Start |kNumThreads| that will each emit and snapshot the histograms (see
    // SnapshotDeltaThread). We keep track of the real samples as well as the
    // samples found in the snapshots so that we can compare that they match
    // later on.
    constexpr size_t kNumThreads = 2;
    constexpr size_t kNumEmissions = 1000;
    subtle::Atomic32 real_total_samples_count = 0;
    std::vector<subtle::Atomic32> real_bucket_counts(kHistogramMax, 0);
    subtle::Atomic32 snapshots_total_samples_count = 0;
    std::vector<subtle::Atomic32> snapshots_bucket_counts(kHistogramMax, 0);
    std::array<std::unique_ptr<SnapshotDeltaThread>, kNumThreads> threads;
    for (size_t i = 0; i < kNumThreads; ++i) {
      threads[i] = std::make_unique<SnapshotDeltaThread>(
          StringPrintf("SnapshotDeltaThread.%zu.%zu", iteration, i),
          kNumEmissions, histograms, kHistogramMax, &real_total_samples_count,
          real_bucket_counts, &snapshots_total_samples_count,
          snapshots_bucket_counts);
      threads[i]->Start();
    }

    // Wait until all threads have finished.
    for (auto& thread : threads) {
      thread->Join();
    }

    // Verify that the samples found in the snapshots match what we emitted.
    ASSERT_EQ(static_cast<size_t>(real_total_samples_count),
              kNumThreads * kNumEmissions * histograms.size());
    ASSERT_EQ(snapshots_total_samples_count, real_total_samples_count);
    for (HistogramBase::Sample i = 0; i < kHistogramMax; ++i) {
      ASSERT_EQ(snapshots_bucket_counts[i], real_bucket_counts[i]);
    }

    // Also verify that no more unlogged samples remain, and that the internal
    // logged samples of the histograms match what we emitted.

    HistogramBase::Count logged_total_samples_count = 0;
    std::vector<HistogramBase::Count> logged_bucket_counts(
        /*value=*/kHistogramMax, 0);
    // We ignore the last four histograms since they are the same as the first
    // two (they are simulations of histogram instances from a subprocess that
    // point to the same underlying data, and different histogram instances that
    // are created from the same allocator). Otherwise, we will be counting the
    // samples from those histograms thrice.
    for (size_t i = 0; i < histograms.size() - 4; ++i) {
      HistogramBase* histogram = histograms[i];
      ASSERT_EQ(histogram->SnapshotDelta()->TotalCount(), 0);
      std::unique_ptr<HistogramSamples> logged_samples =
          histogram->SnapshotSamples();
      // Each individual histograms should have been emitted to a specific
      // amount of times. Non-"local heap" histograms were emitted to thrice as
      // much because they appeared thrice in the |histograms| array -- once as
      // a normal histogram, once as a simulation of a subprocess histogram, and
      // once as a duplicate histogram created from the same allocator.
      size_t expected_logged_samples_count = kNumThreads * kNumEmissions;
      if (!strstr(histogram->histogram_name(), "LocalHeap")) {
        expected_logged_samples_count *= 3;
      }
      ASSERT_EQ(static_cast<size_t>(logged_samples->TotalCount()),
                expected_logged_samples_count);

      for (auto it = logged_samples->Iterator(); !it->Done(); it->Next()) {
        HistogramBase::Sample min;
        int64_t max;
        HistogramBase::Count count;
        it->Get(&min, &max, &count);
        ASSERT_GE(count, 0);
        logged_total_samples_count += count;
        logged_bucket_counts[min] += count;
      }
    }
    ASSERT_EQ(logged_total_samples_count, real_total_samples_count);
    for (HistogramBase::Sample i = 0; i < kHistogramMax; ++i) {
      ASSERT_EQ(logged_bucket_counts[i], real_bucket_counts[i]);
    }

    // Verify that our "subprocess histograms" actually point to the same
    // underlying data as the "main browser" histograms, despite being different
    // instances (this was verified earlier). This is done at the end of the
    // test so as to not mess up the sample counts.
    HistogramBase* numeric_histogram = histograms[0];
    HistogramBase* subprocess_numeric_histogram = histograms[4];
    HistogramBase* sparse_histogram = histograms[1];
    HistogramBase* subprocess_sparse_histogram = histograms[5];
    ASSERT_EQ(subprocess_numeric_histogram->SnapshotDelta()->TotalCount(), 0);
    ASSERT_EQ(subprocess_sparse_histogram->SnapshotDelta()->TotalCount(), 0);
    numeric_histogram->Add(0);
    sparse_histogram->Add(0);
    ASSERT_EQ(subprocess_numeric_histogram->SnapshotDelta()->TotalCount(), 1);
    ASSERT_EQ(subprocess_sparse_histogram->SnapshotDelta()->TotalCount(), 1);
    ASSERT_EQ(numeric_histogram->SnapshotDelta()->TotalCount(), 0);
    ASSERT_EQ(sparse_histogram->SnapshotDelta()->TotalCount(), 0);

    // Verify that our "duplicate histograms" created from the same allocator
    // actually point to the same underlying data as the "main" histograms,
    // despite being different instances (this was verified earlier). This is
    // done at the end of the test so as to not mess up the sample counts.
    HistogramBase* numeric_histogram2 = histograms[6];
    HistogramBase* sparse_histogram2 = histograms[7];
    ASSERT_EQ(numeric_histogram2->SnapshotDelta()->TotalCount(), 0);
    ASSERT_EQ(sparse_histogram2->SnapshotDelta()->TotalCount(), 0);
    numeric_histogram->Add(0);
    sparse_histogram->Add(0);
    ASSERT_EQ(numeric_histogram2->SnapshotDelta()->TotalCount(), 1);
    ASSERT_EQ(sparse_histogram2->SnapshotDelta()->TotalCount(), 1);
    ASSERT_EQ(numeric_histogram->SnapshotDelta()->TotalCount(), 0);
    ASSERT_EQ(sparse_histogram->SnapshotDelta()->TotalCount(), 0);
  }
}

}  // namespace base