1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334

base / metrics / persistent_memory_allocator.cc [blame]

// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#include "base/metrics/persistent_memory_allocator.h"

#include <assert.h>

#include <algorithm>
#include <atomic>
#include <optional>
#include <string_view>

#include "base/bits.h"
#include "base/containers/contains.h"
#include "base/debug/alias.h"
#include "base/debug/crash_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/files/memory_mapped_file.h"
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/sparse_histogram.h"
#include "base/notreached.h"
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/strcat.h"
#include "base/system/sys_info.h"
#include "base/threading/scoped_blocking_call.h"
#include "build/build_config.h"

#if BUILDFLAG(IS_WIN)
#include <windows.h>

#include "base/win/winbase_shim.h"
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#include <sys/mman.h>
#if BUILDFLAG(IS_ANDROID)
#include <sys/prctl.h>
#endif
#endif

namespace {

// Limit of memory segment size. It has to fit in an unsigned 32-bit number
// and should be a power of 2 in order to accommodate almost any page size.
constexpr uint32_t kSegmentMaxSize = 1 << 30;  // 1 GiB

// A constant (random) value placed in the shared metadata to identify
// an already initialized memory segment.
constexpr uint32_t kGlobalCookie = 0x408305DC;

// The current version of the metadata. If updates are made that change
// the metadata, the version number can be queried to operate in a backward-
// compatible manner until the memory segment is completely re-initalized.
// Note: If you update the metadata in a non-backwards compatible way, reset
// `kCompatibleVersions`. Otherwise, add the previous version.
constexpr uint32_t kGlobalVersion = 3;
static constexpr uint32_t kOldCompatibleVersions[] = {2};

// Constant values placed in the block headers to indicate its state.
constexpr uint32_t kBlockCookieFree = 0;
constexpr uint32_t kBlockCookieQueue = 1;
constexpr uint32_t kBlockCookieWasted = 0x4B594F52;
constexpr uint32_t kBlockCookieAllocated = 0xC8799269;

// TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
// types rather than combined bitfield.

// Flags stored in the flags_ field of the SharedMetadata structure below.
constexpr uint32_t kFlagCorrupt = 1 << 0;
constexpr uint32_t kFlagFull = 1 << 1;

// Errors that are logged in "errors" histogram.
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
enum AllocatorError : int {
  kMemoryIsCorrupt = 1,
  kMaxValue = kMemoryIsCorrupt,
};

bool CheckFlag(const volatile std::atomic<uint32_t>* flags, uint32_t flag) {
  uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
  return (loaded_flags & flag) != 0;
}

void SetFlag(volatile std::atomic<uint32_t>* flags, uint32_t flag) {
  uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
  for (;;) {
    uint32_t new_flags = (loaded_flags & ~flag) | flag;
    // In the failue case, actual "flags" value stored in loaded_flags.
    // These access are "relaxed" because they are completely independent
    // of all other values.
    if (flags->compare_exchange_weak(loaded_flags, new_flags,
                                     std::memory_order_relaxed,
                                     std::memory_order_relaxed)) {
      break;
    }
  }
}

}  // namespace

namespace base {

// The block-header is placed at the top of every allocation within the
// segment to describe the data that follows it.
struct PersistentMemoryAllocator::BlockHeader {
  uint32_t size;       // Number of bytes in this block, including header.
  uint32_t cookie;     // Constant value indicating completed allocation.
  std::atomic<uint32_t> type_id;  // Arbitrary number indicating data type.
  std::atomic<uint32_t> next;     // Pointer to the next block when iterating.
};

// The shared metadata exists once at the top of the memory segment to
// describe the state of the allocator to all processes. The size of this
// structure must be a multiple of 64-bits to ensure compatibility between
// architectures.
struct PersistentMemoryAllocator::SharedMetadata {
  uint32_t cookie;     // Some value that indicates complete initialization.
  uint32_t size;       // Total size of memory segment.
  uint32_t page_size;  // Paging size within memory segment.
  uint32_t version;    // Version code so upgrades don't break.
  uint64_t id;         // Arbitrary ID number given by creator.
  uint32_t name;       // Reference to stored name string.
  uint32_t padding1;   // Pad-out read-only data to 64-bit alignment.

  // Above is read-only after first construction. Below may be changed and
  // so must be marked "volatile" to provide correct inter-process behavior.

  // State of the memory, plus some padding to keep alignment.
  volatile std::atomic<uint8_t> memory_state;  // MemoryState enum values.
  uint8_t padding2[3];

  // Bitfield of information flags. Access to this should be done through
  // the CheckFlag() and SetFlag() methods defined above.
  volatile std::atomic<uint32_t> flags;

  // Offset/reference to first free space in segment.
  volatile std::atomic<uint32_t> freeptr;

  // The "iterable" queue is an M&S Queue as described here, append-only:
  // https://www.research.ibm.com/people/m/michael/podc-1996.pdf
  // `queue` needs to be 64-bit aligned and is itself a multiple of 64 bits.
  volatile std::atomic<uint32_t> tailptr;  // Last block of iteration queue.
  volatile BlockHeader queue;   // Empty block for linked-list head/tail.
};

// The `queue` block header is used to detect the "last node" so that zero/null
// can be used to indicate that it hasn't been added at all. It is part of
// the SharedMetadata structure which itself is always located at offset zero.
const PersistentMemoryAllocator::Reference
    PersistentMemoryAllocator::kReferenceQueue =
        offsetof(SharedMetadata, queue);

const base::FilePath::CharType PersistentMemoryAllocator::kFileExtension[] =
    FILE_PATH_LITERAL(".pma");


PersistentMemoryAllocator::Iterator::Iterator(
    const PersistentMemoryAllocator* allocator)
    : allocator_(allocator), last_record_(kReferenceQueue), record_count_(0) {}

PersistentMemoryAllocator::Iterator::Iterator(
    const PersistentMemoryAllocator* allocator,
    Reference starting_after)
    : allocator_(allocator), last_record_(0), record_count_(0) {
  Reset(starting_after);
}

PersistentMemoryAllocator::Iterator::~Iterator() = default;

void PersistentMemoryAllocator::Iterator::Reset() {
  last_record_.store(kReferenceQueue, std::memory_order_relaxed);
  record_count_.store(0, std::memory_order_relaxed);
}

void PersistentMemoryAllocator::Iterator::Reset(Reference starting_after) {
  if (starting_after == 0) {
    Reset();
    return;
  }

  last_record_.store(starting_after, std::memory_order_relaxed);
  record_count_.store(0, std::memory_order_relaxed);

  // Ensure that the starting point is a valid, iterable block (meaning it can
  // be read and has a non-zero "next" pointer).
  const volatile BlockHeader* block =
      allocator_->GetBlock(starting_after, 0, 0, false, false);
  if (!block || block->next.load(std::memory_order_relaxed) == 0) {
    NOTREACHED();
  }
}

PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetLast() {
  Reference last = last_record_.load(std::memory_order_relaxed);
  if (last == kReferenceQueue)
    return kReferenceNull;
  return last;
}

PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetNext(uint32_t* type_return,
                                             size_t* alloc_size) {
  // Make a copy of the existing count of found-records, acquiring all changes
  // made to the allocator, notably "freeptr" (see comment in loop for why
  // the load of that value cannot be moved above here) that occurred during
  // any previous runs of this method, including those by parallel threads
  // that interrupted it. It pairs with the Release at the end of this method.
  //
  // Otherwise, if the compiler were to arrange the two loads such that
  // "count" was fetched _after_ "freeptr" then it would be possible for
  // this thread to be interrupted between them and other threads perform
  // multiple allocations, make-iterables, and iterations (with the included
  // increment of `record_count_`) culminating in the check at the bottom
  // mistakenly determining that a loop exists. Isn't this stuff fun?
  uint32_t count = record_count_.load(std::memory_order_acquire);

  Reference last = last_record_.load(std::memory_order_acquire);
  Reference next = 0;
  size_t next_size = 0;
  while (true) {
    const volatile BlockHeader* block =
        allocator_->GetBlock(last, 0, 0, true, false);
    if (!block)  // Invalid iterator state.
      return kReferenceNull;

    // The compiler and CPU can freely reorder all memory accesses on which
    // there are no dependencies. It could, for example, move the load of
    // "freeptr" to above this point because there are no explicit dependencies
    // between it and "next". If it did, however, then another block could
    // be queued after that but before the following load meaning there is
    // one more queued block than the future "detect loop by having more
    // blocks that could fit before freeptr" will allow.
    //
    // By "acquiring" the "next" value here, it's synchronized to the enqueue
    // of the node which in turn is synchronized to the allocation (which sets
    // freeptr). Thus, the scenario above cannot happen.
    next = block->next.load(std::memory_order_acquire);
    if (next == kReferenceQueue)  // No next allocation in queue.
      return kReferenceNull;
    block = allocator_->GetBlock(next, 0, 0, false, false, &next_size);
    if (!block) {  // Memory is corrupt.
      allocator_->SetCorrupt();
      return kReferenceNull;
    }

    // Update the "last_record" pointer to be the reference being returned.
    // If it fails then another thread has already iterated past it so loop
    // again. Failing will also load the existing value into "last" so there
    // is no need to do another such load when the while-loop restarts. A
    // "strong" compare-exchange is used because failing unnecessarily would
    // mean repeating some fairly costly validations above.
    if (last_record_.compare_exchange_strong(
            last, next, std::memory_order_acq_rel, std::memory_order_acquire)) {
      *type_return = block->type_id.load(std::memory_order_relaxed);
      break;
    }
  }

  // Memory corruption could cause a loop in the list. Such must be detected
  // so as to not cause an infinite loop in the caller. This is done by simply
  // making sure it doesn't iterate more times than the absolute maximum
  // number of allocations that could have been made. Callers are likely
  // to loop multiple times before it is detected but at least it stops.
  const uint32_t freeptr = std::min(
      allocator_->shared_meta()->freeptr.load(std::memory_order_relaxed),
      allocator_->mem_size_);
  const uint32_t max_records =
      freeptr / (sizeof(BlockHeader) + kAllocAlignment);
  if (count > max_records) {
    allocator_->SetCorrupt();
    return kReferenceNull;
  }

  // Increment the count and release the changes made above. It pairs with
  // the Acquire at the top of this method. Note that this operation is not
  // strictly synchonized with fetching of the object to return, which would
  // have to be done inside the loop and is somewhat complicated to achieve.
  // It does not matter if it falls behind temporarily so long as it never
  // gets ahead.
  record_count_.fetch_add(1, std::memory_order_release);
  if (alloc_size) {
    *alloc_size = next_size;
  }
  return next;
}

PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetNextOfType(uint32_t type_match,
                                                   size_t* alloc_size) {
  Reference ref;
  size_t size;
  uint32_t type_found;
  while ((ref = GetNext(&type_found, &size)) != 0) {
    if (type_found == type_match) {
      if (alloc_size) {
        *alloc_size = size;
      }
      return ref;
    }
  }
  return kReferenceNull;
}

// static
bool PersistentMemoryAllocator::IsMemoryAcceptable(const void* base,
                                                   size_t size,
                                                   size_t page_size,
                                                   bool readonly) {
  return ((base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0) &&
          (size >= sizeof(SharedMetadata) && size <= kSegmentMaxSize) &&
          (size % kAllocAlignment == 0 || readonly) &&
          (page_size == 0 || size % page_size == 0 || readonly));
}

PersistentMemoryAllocator::PersistentMemoryAllocator(void* base,
                                                     size_t size,
                                                     size_t page_size,
                                                     uint64_t id,
                                                     std::string_view name,
                                                     AccessMode access_mode)
    : PersistentMemoryAllocator(Memory(base, MEM_EXTERNAL),
                                size,
                                page_size,
                                id,
                                name,
                                access_mode) {}

PersistentMemoryAllocator::PersistentMemoryAllocator(Memory memory,
                                                     size_t size,
                                                     size_t page_size,
                                                     uint64_t id,
                                                     std::string_view name,
                                                     AccessMode access_mode)
    : mem_base_(static_cast<char*>(memory.base)),
      mem_type_(memory.type),
      mem_size_(checked_cast<uint32_t>(size)),
      mem_page_(checked_cast<uint32_t>((page_size ? page_size : size))),
#if BUILDFLAG(IS_NACL)
      vm_page_size_(4096U),  // SysInfo is not built for NACL.
#else
      vm_page_size_(SysInfo::VMAllocationGranularity()),
#endif
      access_mode_(access_mode) {
  // These asserts ensure that the structures are 32/64-bit agnostic and meet
  // all the requirements of use within the allocator. They access private
  // definitions and so cannot be moved to the global scope.
  static_assert(sizeof(PersistentMemoryAllocator::BlockHeader) == 16,
                "struct is not portable across different natural word widths");
  static_assert(sizeof(PersistentMemoryAllocator::SharedMetadata) == 64,
                "struct is not portable across different natural word widths");

  static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
                "BlockHeader is not a multiple of kAllocAlignment");
  static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
                "SharedMetadata is not a multiple of kAllocAlignment");
  static_assert(kReferenceQueue % kAllocAlignment == 0,
                "\"queue\" is not aligned properly; must be at end of struct");

  // Ensure that memory segment is of acceptable size.
  const bool readonly = access_mode == kReadOnly;
  CHECK(IsMemoryAcceptable(memory.base, size, page_size, readonly));

  // These atomics operate inter-process and so must be lock-free.
  DCHECK(SharedMetadata().freeptr.is_lock_free());
  DCHECK(SharedMetadata().flags.is_lock_free());
  DCHECK(BlockHeader().next.is_lock_free());
  CHECK(corrupt_.is_lock_free());

  // When calling SetCorrupt() during initialization, don't write to the memory
  // in kReadOnly and kReadWriteExisting modes.
  const bool allow_write_for_set_corrupt = (access_mode == kReadWrite);
  if (shared_meta()->cookie != kGlobalCookie) {
    if (access_mode != kReadWrite) {
      SetCorrupt(allow_write_for_set_corrupt);
      return;
    }

    // This block is only executed when a completely new memory segment is
    // being initialized. It's unshared and single-threaded...
    volatile BlockHeader* const first_block =
        reinterpret_cast<volatile BlockHeader*>(mem_base_ +
                                                sizeof(SharedMetadata));
    if (shared_meta()->cookie != 0 ||
        shared_meta()->size != 0 ||
        shared_meta()->version != 0 ||
        shared_meta()->freeptr.load(std::memory_order_relaxed) != 0 ||
        shared_meta()->flags.load(std::memory_order_relaxed) != 0 ||
        shared_meta()->id != 0 ||
        shared_meta()->name != 0 ||
        shared_meta()->tailptr != 0 ||
        shared_meta()->queue.cookie != 0 ||
        shared_meta()->queue.next.load(std::memory_order_relaxed) != 0 ||
        first_block->size != 0 ||
        first_block->cookie != 0 ||
        first_block->type_id.load(std::memory_order_relaxed) != 0 ||
        first_block->next != 0) {
      // ...or something malicious has been playing with the metadata.
      CHECK(allow_write_for_set_corrupt);
      SetCorrupt(allow_write_for_set_corrupt);
    }

    // This is still safe to do even if corruption has been detected.
    shared_meta()->cookie = kGlobalCookie;
    shared_meta()->size = mem_size_;
    shared_meta()->page_size = mem_page_;
    shared_meta()->version = kGlobalVersion;
    shared_meta()->id = id;
    // Don't overwrite `freeptr` if it is set since we could have raced with
    // another allocator. In such a case, `freeptr` would get "rewinded", and
    // new objects would be allocated on top of already allocated objects.
    uint32_t empty_freeptr = 0;
    shared_meta()->freeptr.compare_exchange_strong(
        /*expected=*/empty_freeptr, /*desired=*/sizeof(SharedMetadata),
        /*success=*/std::memory_order_release,
        /*failure=*/std::memory_order_relaxed);

    // Set up the queue of iterable allocations.
    shared_meta()->queue.size = sizeof(BlockHeader);
    shared_meta()->queue.cookie = kBlockCookieQueue;
    shared_meta()->queue.next.store(kReferenceQueue, std::memory_order_release);
    shared_meta()->tailptr.store(kReferenceQueue, std::memory_order_release);

    // Allocate space for the name so other processes can learn it.
    if (!name.empty()) {
      const size_t name_length = name.length() + 1;
      shared_meta()->name = Allocate(name_length, 0);
      char* name_cstr = GetAsArray<char>(shared_meta()->name, 0, name_length);
      if (name_cstr)
        memcpy(name_cstr, name.data(), name.length());
    }

    shared_meta()->memory_state.store(MEMORY_INITIALIZED,
                                      std::memory_order_release);
  } else {
    if (shared_meta()->size == 0 ||
        (shared_meta()->version != kGlobalVersion &&
         !Contains(kOldCompatibleVersions, shared_meta()->version)) ||
        shared_meta()->freeptr.load(std::memory_order_relaxed) == 0 ||
        shared_meta()->tailptr == 0 || shared_meta()->queue.cookie == 0 ||
        shared_meta()->queue.next.load(std::memory_order_relaxed) == 0) {
      SetCorrupt(allow_write_for_set_corrupt);
    }
    if (!readonly) {
      // The allocator is attaching to a previously initialized segment of
      // memory. If the initialization parameters differ, make the best of it
      // by reducing the local construction parameters to match those of the
      // actual memory area. This ensures that the local object never tries to
      // write outside of the original bounds.
      // Because the fields are const to ensure that no code other than the
      // constructor makes changes to them as well as to give optimization hints
      // to the compiler, it's necessary to const-cast them for changes here.
      if (shared_meta()->size < mem_size_)
        *const_cast<uint32_t*>(&mem_size_) = shared_meta()->size;
      if (shared_meta()->page_size < mem_page_)
        *const_cast<uint32_t*>(&mem_page_) = shared_meta()->page_size;

      // Ensure that settings are still valid after the above adjustments.
      if (!IsMemoryAcceptable(memory.base, mem_size_, mem_page_, readonly)) {
        SetCorrupt(allow_write_for_set_corrupt);
      }
    }
  }
}

PersistentMemoryAllocator::~PersistentMemoryAllocator() {
  // It's strictly forbidden to do any memory access here in case there is
  // some issue with the underlying memory segment. The "Local" allocator
  // makes use of this to allow deletion of the segment on the heap from
  // within its destructor.
}

uint64_t PersistentMemoryAllocator::Id() const {
  return shared_meta()->id;
}

const char* PersistentMemoryAllocator::Name() const {
  Reference name_ref = shared_meta()->name;
  size_t name_length = 0;
  const char* name_cstr = GetAsArray<char>(
      name_ref, 0, PersistentMemoryAllocator::kSizeAny, &name_length);
  if (!name_cstr)
    return "";

  if (name_cstr[name_length - 1] != '\0') {
    NOTREACHED();
  }

  return name_cstr;
}

void PersistentMemoryAllocator::CreateTrackingHistograms(
    std::string_view name) {
  if (name.empty() || access_mode_ == kReadOnly) {
    return;
  }
  std::string name_string(name);

  DCHECK(!used_histogram_);
  used_histogram_ = LinearHistogram::FactoryGet(
      "UMA.PersistentAllocator." + name_string + ".UsedPct", 1, 101, 21,
      HistogramBase::kUmaTargetedHistogramFlag);
}

void PersistentMemoryAllocator::Flush(bool sync) {
  FlushPartial(used(), sync);
}

void PersistentMemoryAllocator::SetMemoryState(uint8_t memory_state) {
  shared_meta()->memory_state.store(memory_state, std::memory_order_relaxed);
  FlushPartial(sizeof(SharedMetadata), false);
}

uint8_t PersistentMemoryAllocator::GetMemoryState() const {
  return shared_meta()->memory_state.load(std::memory_order_relaxed);
}

size_t PersistentMemoryAllocator::used() const {
  return std::min(shared_meta()->freeptr.load(std::memory_order_relaxed),
                  mem_size_);
}

PersistentMemoryAllocator::Reference PersistentMemoryAllocator::GetAsReference(
    const void* memory,
    uint32_t type_id) const {
  uintptr_t address = reinterpret_cast<uintptr_t>(memory);
  if (address < reinterpret_cast<uintptr_t>(mem_base_))
    return kReferenceNull;

  uintptr_t offset = address - reinterpret_cast<uintptr_t>(mem_base_);
  if (offset >= mem_size_ || offset < sizeof(BlockHeader))
    return kReferenceNull;

  Reference ref = static_cast<Reference>(offset) - sizeof(BlockHeader);
  if (!GetBlockData(ref, type_id, kSizeAny))
    return kReferenceNull;

  return ref;
}

uint32_t PersistentMemoryAllocator::GetType(Reference ref) const {
  const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
  if (!block)
    return 0;
  return block->type_id.load(std::memory_order_relaxed);
}

bool PersistentMemoryAllocator::ChangeType(Reference ref,
                                           uint32_t to_type_id,
                                           uint32_t from_type_id,
                                           bool clear) {
  DCHECK_NE(access_mode_, kReadOnly);
  volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
  if (!block)
    return false;

  // "Strong" exchanges are used below because there is no loop that can retry
  // in the wake of spurious failures possible with "weak" exchanges. It is,
  // in aggregate, an "acquire-release" operation so no memory accesses can be
  // reordered either before or after this method (since changes based on type
  // could happen on either side).

  if (clear) {
    // If clearing the memory, first change it to the "transitioning" type so
    // there can be no confusion by other threads. After the memory is cleared,
    // it can be changed to its final type.
    if (!block->type_id.compare_exchange_strong(
            from_type_id, kTypeIdTransitioning, std::memory_order_acquire,
            std::memory_order_acquire)) {
      // Existing type wasn't what was expected: fail (with no changes)
      return false;
    }

    // Clear the memory in an atomic manner. Using "release" stores force
    // every write to be done after the ones before it. This is better than
    // using memset because (a) it supports "volatile" and (b) it creates a
    // reliable pattern upon which other threads may rely.
    volatile std::atomic<int>* data =
        reinterpret_cast<volatile std::atomic<int>*>(
            reinterpret_cast<volatile char*>(block) + sizeof(BlockHeader));
    const uint32_t words = (block->size - sizeof(BlockHeader)) / sizeof(int);
    DCHECK_EQ(0U, (block->size - sizeof(BlockHeader)) % sizeof(int));
    for (uint32_t i = 0; i < words; ++i) {
      data->store(0, std::memory_order_release);
      ++data;
    }

    // If the destination type is "transitioning" then skip the final exchange.
    if (to_type_id == kTypeIdTransitioning)
      return true;

    // Finish the change to the desired type.
    from_type_id = kTypeIdTransitioning;  // Exchange needs modifiable original.
    bool success = block->type_id.compare_exchange_strong(
        from_type_id, to_type_id, std::memory_order_release,
        std::memory_order_relaxed);
    DCHECK(success);  // Should never fail.
    return success;
  }

  // One step change to the new type. Will return false if the existing value
  // doesn't match what is expected.
  return block->type_id.compare_exchange_strong(from_type_id, to_type_id,
                                                std::memory_order_acq_rel,
                                                std::memory_order_acquire);
}

PersistentMemoryAllocator::Reference PersistentMemoryAllocator::Allocate(
    size_t req_size,
    uint32_t type_id,
    size_t* alloc_size) {
  return AllocateImpl(req_size, type_id, alloc_size);
}

PersistentMemoryAllocator::Reference PersistentMemoryAllocator::AllocateImpl(
    size_t req_size,
    uint32_t type_id,
    size_t* alloc_size) {
  DCHECK_NE(access_mode_, kReadOnly);

  // Validate req_size to ensure it won't overflow when used as 32-bit value.
  if (req_size > kSegmentMaxSize - sizeof(BlockHeader)) {
    NOTREACHED();
  }

  // Round up the requested size, plus header, to the next allocation alignment.
  size_t size = bits::AlignUp(req_size + sizeof(BlockHeader), kAllocAlignment);
  if (size <= sizeof(BlockHeader) || size > mem_page_) {
    // This shouldn't be reached through normal means.
    debug::DumpWithoutCrashing();
    return kReferenceNull;
  }

  // Get the current start of unallocated memory. Other threads may
  // update this at any time and cause us to retry these operations.
  // This value should be treated as "const" to avoid confusion through
  // the code below but recognize that any failed compare-exchange operation
  // involving it will cause it to be loaded with a more recent value. The
  // code should either exit or restart the loop in that case.
  /* const */ uint32_t freeptr =
      shared_meta()->freeptr.load(std::memory_order_acquire);

  // Allocation is lockless so we do all our caculation and then, if saving
  // indicates a change has occurred since we started, scrap everything and
  // start over.
  for (;;) {
    if (IsCorrupt())
      return kReferenceNull;

    if (freeptr + size > mem_size_) {
      SetFlag(&shared_meta()->flags, kFlagFull);
      return kReferenceNull;
    }

    // Get pointer to the "free" block. If something has been allocated since
    // the load of freeptr above, it is still safe as nothing will be written
    // to that location until after the compare-exchange below.
    volatile BlockHeader* const block = GetBlock(freeptr, 0, 0, false, true);
    if (!block) {
      SetCorrupt();
      return kReferenceNull;
    }

    // An allocation cannot cross page boundaries. If it would, create a
    // "wasted" block and begin again at the top of the next page. This
    // area could just be left empty but we fill in the block header just
    // for completeness sake.
    const uint32_t page_free = mem_page_ - freeptr % mem_page_;
    if (size > page_free) {
      if (page_free <= sizeof(BlockHeader)) {
        SetCorrupt();
        return kReferenceNull;
      }

#if !BUILDFLAG(IS_NACL)
      // In production, with the current state of the code, this code path
      // should not be reached. However, crash reports have been hinting that it
      // is. Add crash keys to investigate this.
      // TODO(crbug.com/40064026): Remove them once done.
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "mem_size_",
                              mem_size_);
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "mem_page_",
                              mem_page_);
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "freeptr", freeptr);
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "page_free",
                              page_free);
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "size", size);
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "req_size",
                              req_size);
      SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "type_id", type_id);
      std::string persistent_file_name = "N/A";
      auto* allocator = GlobalHistogramAllocator::Get();
      if (allocator && allocator->HasPersistentLocation()) {
        persistent_file_name =
            allocator->GetPersistentLocation().BaseName().AsUTF8Unsafe();
      }
      SCOPED_CRASH_KEY_STRING256("PersistentMemoryAllocator", "file_name",
                                 persistent_file_name);
      debug::DumpWithoutCrashing();
#endif  // !BUILDFLAG(IS_NACL)

      const uint32_t new_freeptr = freeptr + page_free;
      if (shared_meta()->freeptr.compare_exchange_strong(
              freeptr, new_freeptr, std::memory_order_acq_rel,
              std::memory_order_acquire)) {
        block->size = page_free;
        block->cookie = kBlockCookieWasted;
      }
      continue;
    }

    // Don't leave a slice at the end of a page too small for anything. This
    // can result in an allocation up to two alignment-sizes greater than the
    // minimum required by requested-size + header + alignment.
    if (page_free - size < sizeof(BlockHeader) + kAllocAlignment) {
      size = page_free;
      if (freeptr + size > mem_size_) {
        SetCorrupt();
        return kReferenceNull;
      }
    }

    // This cast is safe because (freeptr + size) <= mem_size_.
    const uint32_t new_freeptr = static_cast<uint32_t>(freeptr + size);

    // Save our work. Try again if another thread has completed an allocation
    // while we were processing. A "weak" exchange would be permissable here
    // because the code will just loop and try again but the above processing
    // is significant so make the extra effort of a "strong" exchange.
    if (!shared_meta()->freeptr.compare_exchange_strong(
            freeptr, new_freeptr, std::memory_order_acq_rel,
            std::memory_order_acquire)) {
      continue;
    }

    // Given that all memory was zeroed before ever being given to an instance
    // of this class and given that we only allocate in a monotomic fashion
    // going forward, it must be that the newly allocated block is completely
    // full of zeros. If we find anything in the block header that is NOT a
    // zero then something must have previously run amuck through memory,
    // writing beyond the allocated space and into unallocated space.
    if (block->size != 0 ||
        block->cookie != kBlockCookieFree ||
        block->type_id.load(std::memory_order_relaxed) != 0 ||
        block->next.load(std::memory_order_relaxed) != 0) {
      SetCorrupt();
      return kReferenceNull;
    }

    // Make sure the memory exists by writing to the first byte of every memory
    // page it touches beyond the one containing the block header itself.
    // As the underlying storage is often memory mapped from disk or shared
    // space, sometimes things go wrong and those address don't actually exist
    // leading to a SIGBUS (or Windows equivalent) at some arbitrary location
    // in the code. This should concentrate all those failures into this
    // location for easy tracking and, eventually, proper handling.
    volatile char* mem_end = reinterpret_cast<volatile char*>(block) + size;
    volatile char* mem_begin = reinterpret_cast<volatile char*>(
        (reinterpret_cast<uintptr_t>(block) + sizeof(BlockHeader) +
         (vm_page_size_ - 1)) &
        ~static_cast<uintptr_t>(vm_page_size_ - 1));
    for (volatile char* memory = mem_begin; memory < mem_end;
         memory += vm_page_size_) {
      // It's required that a memory segment start as all zeros and thus the
      // newly allocated block is all zeros at this point. Thus, writing a
      // zero to it allows testing that the memory exists without actually
      // changing its contents. The compiler doesn't know about the requirement
      // and so cannot optimize-away these writes.
      *memory = 0;
    }

    // Load information into the block header. There is no "release" of the
    // data here because this memory can, currently, be seen only by the thread
    // performing the allocation. When it comes time to share this, the thread
    // will call MakeIterable() which does the release operation.
    // `size` is at most kSegmentMaxSize, so this cast is safe.
    block->size = static_cast<uint32_t>(size);
    block->cookie = kBlockCookieAllocated;
    block->type_id.store(type_id, std::memory_order_relaxed);

    // Return the allocation size if requested.
    if (alloc_size) {
      *alloc_size = size - sizeof(BlockHeader);
    }
    return freeptr;
  }
}

void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) const {
  uint32_t remaining = std::max(
      mem_size_ - shared_meta()->freeptr.load(std::memory_order_relaxed),
      (uint32_t)sizeof(BlockHeader));
  meminfo->total = mem_size_;
  meminfo->free = remaining - sizeof(BlockHeader);
}

void PersistentMemoryAllocator::MakeIterable(Reference ref) {
  DCHECK_NE(access_mode_, kReadOnly);
  if (IsCorrupt())
    return;
  volatile BlockHeader* block = GetBlock(ref, 0, 0, false, false);
  if (!block)  // invalid reference
    return;

  Reference empty_ref = 0;
  if (!block->next.compare_exchange_strong(
          /*expected=*/empty_ref, /*desired=*/kReferenceQueue,
          /*success=*/std::memory_order_acq_rel,
          /*failure=*/std::memory_order_acquire)) {
    // Already iterable (or another thread is currently making this iterable).
    return;
  }

  // Try to add this block to the tail of the queue. May take multiple tries.
  // If so, tail will be automatically updated with a more recent value during
  // compare-exchange operations.
  uint32_t tail = shared_meta()->tailptr.load(std::memory_order_acquire);
  for (;;) {
    // Acquire the current tail-pointer released by previous call to this
    // method and validate it.
    block = GetBlock(tail, 0, 0, true, false);
    if (!block) {
      SetCorrupt();
      return;
    }

    // Try to insert the block at the tail of the queue. The tail node always
    // has an existing value of kReferenceQueue; if that is somehow not the
    // existing value then another thread has acted in the meantime. A "strong"
    // exchange is necessary so the "else" block does not get executed when
    // that is not actually the case (which can happen with a "weak" exchange).
    uint32_t next = kReferenceQueue;  // Will get replaced with existing value.
    if (block->next.compare_exchange_strong(next, ref,
                                            std::memory_order_acq_rel,
                                            std::memory_order_acquire)) {
      // Update the tail pointer to the new offset. If the "else" clause did
      // not exist, then this could be a simple Release_Store to set the new
      // value but because it does, it's possible that other threads could add
      // one or more nodes at the tail before reaching this point. We don't
      // have to check the return value because it either operates correctly
      // or the exact same operation has already been done (by the "else"
      // clause) on some other thread.
      shared_meta()->tailptr.compare_exchange_strong(tail, ref,
                                                     std::memory_order_release,
                                                     std::memory_order_relaxed);
      return;
    }
    // In the unlikely case that a thread crashed or was killed between the
    // update of "next" and the update of "tailptr", it is necessary to
    // perform the operation that would have been done. There's no explicit
    // check for crash/kill which means that this operation may also happen
    // even when the other thread is in perfect working order which is what
    // necessitates the CompareAndSwap above.
    shared_meta()->tailptr.compare_exchange_strong(
        tail, next, std::memory_order_acq_rel, std::memory_order_acquire);
  }
}

// The "corrupted" state is held both locally and globally (shared). The
// shared flag can't be trusted since a malicious actor could overwrite it.
// Because corruption can be detected during read-only operations such as
// iteration, this method may be called by other "const" methods. In this
// case, it's safe to discard the constness and modify the local flag and
// maybe even the shared flag if the underlying data isn't actually read-only.
void PersistentMemoryAllocator::SetCorrupt(bool allow_write) const {
  if (!corrupt_.load(std::memory_order_relaxed) &&
      !CheckFlag(
          const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
          kFlagCorrupt)) {
    LOG(ERROR) << "Corruption detected in shared-memory segment.";
  }

  corrupt_.store(true, std::memory_order_relaxed);
  if (allow_write && access_mode_ != kReadOnly) {
    SetFlag(const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
            kFlagCorrupt);
  }
}

bool PersistentMemoryAllocator::IsCorrupt() const {
  if (corrupt_.load(std::memory_order_relaxed)) {
    return true;
  }
  if (CheckFlag(&shared_meta()->flags, kFlagCorrupt)) {
    // Set the local flag if we found the flag in the data.
    SetCorrupt(/*allow_write=*/false);
    return true;
  }
  return false;
}

bool PersistentMemoryAllocator::IsFull() const {
  return CheckFlag(&shared_meta()->flags, kFlagFull);
}

const volatile PersistentMemoryAllocator::BlockHeader*
PersistentMemoryAllocator::GetBlock(Reference ref,
                                    uint32_t type_id,
                                    size_t size,
                                    bool queue_ok,
                                    bool free_ok,
                                    size_t* alloc_size) const {
  // The caller cannot request `alloc_size` if `queue_ok` or `free_ok`.
  CHECK(!(alloc_size && (queue_ok || free_ok)));

  // Handle special cases.
  if (ref == kReferenceQueue && queue_ok)
    return reinterpret_cast<const volatile BlockHeader*>(mem_base_ + ref);

  // Validation of parameters.
  if (ref < sizeof(SharedMetadata))
    return nullptr;
  if (ref % kAllocAlignment != 0)
    return nullptr;
  size += sizeof(BlockHeader);
  uint32_t total_size;
  if (!base::CheckAdd(ref, size).AssignIfValid(&total_size)) {
    return nullptr;
  }
  if (total_size > mem_size_) {
    return nullptr;
  }

  const volatile BlockHeader* const block =
      reinterpret_cast<volatile BlockHeader*>(mem_base_ + ref);

  // Validation of referenced block-header.
  if (!free_ok) {
    if (block->cookie != kBlockCookieAllocated)
      return nullptr;
    const uint32_t block_size = block->size;
    if (block_size < size) {
      return nullptr;
    }
    // Find a validate the end of the block.
    uint32_t block_end_ref;
    if (!base::CheckAdd(ref, block_size).AssignIfValid(&block_end_ref)) {
      return nullptr;
    }
    if (block_end_ref > mem_size_) {
      // The end of the alloc extends beyond the allocator's bounds.
      SetCorrupt();
      return nullptr;
    }
    if (type_id != 0 &&
        block->type_id.load(std::memory_order_relaxed) != type_id) {
      return nullptr;
    }
    // Return `alloc_size` if requested by the caller.
    if (alloc_size) {
      *alloc_size = block_size - sizeof(BlockHeader);
    }
  }

  // Return pointer to block data.
  return block;
}

void PersistentMemoryAllocator::FlushPartial(size_t length, bool sync) {
  // Generally there is nothing to do as every write is done through volatile
  // memory with atomic instructions to guarantee consistency. This (virtual)
  // method exists so that derived classes can do special things, such as tell
  // the OS to write changes to disk now rather than when convenient.
}

uint32_t PersistentMemoryAllocator::freeptr() const {
  return shared_meta()->freeptr.load(std::memory_order_relaxed);
}

uint32_t PersistentMemoryAllocator::version() const {
  return shared_meta()->version;
}

const volatile void* PersistentMemoryAllocator::GetBlockData(
    Reference ref,
    uint32_t type_id,
    size_t size,
    size_t* alloc_size) const {
  DCHECK(size > 0);
  const volatile BlockHeader* block =
      GetBlock(ref, type_id, size, false, false, alloc_size);
  if (!block)
    return nullptr;
  return reinterpret_cast<const volatile char*>(block) + sizeof(BlockHeader);
}

void PersistentMemoryAllocator::UpdateTrackingHistograms() {
  DCHECK_NE(access_mode_, kReadOnly);
  if (used_histogram_) {
    MemoryInfo meminfo;
    GetMemoryInfo(&meminfo);
    HistogramBase::Sample used_percent = static_cast<HistogramBase::Sample>(
        ((meminfo.total - meminfo.free) * 100ULL / meminfo.total));
    used_histogram_->Add(used_percent);
  }
}


//----- LocalPersistentMemoryAllocator -----------------------------------------

LocalPersistentMemoryAllocator::LocalPersistentMemoryAllocator(
    size_t size,
    uint64_t id,
    std::string_view name)
    : PersistentMemoryAllocator(AllocateLocalMemory(size, name),
                                size,
                                0,
                                id,
                                name,
                                kReadWrite) {}

LocalPersistentMemoryAllocator::~LocalPersistentMemoryAllocator() {
  DeallocateLocalMemory(const_cast<char*>(mem_base_), mem_size_, mem_type_);
}

// static
PersistentMemoryAllocator::Memory
LocalPersistentMemoryAllocator::AllocateLocalMemory(size_t size,
                                                    std::string_view name) {
  void* address;

#if BUILDFLAG(IS_WIN)
  address =
      ::VirtualAlloc(nullptr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
  if (address)
    return Memory(address, MEM_VIRTUAL);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
  // MAP_ANON is deprecated on Linux but MAP_ANONYMOUS is not universal on Mac.
  // MAP_SHARED is not available on Linux <2.4 but required on Mac.
  address = ::mmap(nullptr, size, PROT_READ | PROT_WRITE,
                   MAP_ANON | MAP_SHARED, -1, 0);
  if (address != MAP_FAILED) {
#if BUILDFLAG(IS_ANDROID)
    // Allow the anonymous memory region allocated by mmap(MAP_ANON) to be
    // identified in /proc/$PID/smaps.  This helps improve visibility into
    // Chrome's memory usage on Android.
    const std::string arena_name = base::StrCat({"persistent:", name});
    prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, address, size, arena_name.c_str());
#endif
    return Memory(address, MEM_VIRTUAL);
  }
#else
#error This architecture is not (yet) supported.
#endif

  // As a last resort, just allocate the memory from the heap. This will
  // achieve the same basic result but the acquired memory has to be
  // explicitly zeroed and thus realized immediately (i.e. all pages are
  // added to the process now istead of only when first accessed).
  address = malloc(size);
  DPCHECK(address);
  memset(address, 0, size);
  return Memory(address, MEM_MALLOC);
}

// static
void LocalPersistentMemoryAllocator::DeallocateLocalMemory(void* memory,
                                                           size_t size,
                                                           MemoryType type) {
  if (type == MEM_MALLOC) {
    free(memory);
    return;
  }

  DCHECK_EQ(MEM_VIRTUAL, type);
#if BUILDFLAG(IS_WIN)
  BOOL success = ::VirtualFree(memory, 0, MEM_DECOMMIT);
  DCHECK(success);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
  int result = ::munmap(memory, size);
  DCHECK_EQ(0, result);
#else
#error This architecture is not (yet) supported.
#endif
}

//----- WritableSharedPersistentMemoryAllocator --------------------------------

WritableSharedPersistentMemoryAllocator::
    WritableSharedPersistentMemoryAllocator(
        base::WritableSharedMemoryMapping memory,
        uint64_t id,
        std::string_view name)
    : PersistentMemoryAllocator(Memory(memory.memory(), MEM_SHARED),
                                memory.size(),
                                0,
                                id,
                                name,
                                kReadWrite),
      shared_memory_(std::move(memory)) {}

WritableSharedPersistentMemoryAllocator::
    ~WritableSharedPersistentMemoryAllocator() = default;

// static
bool WritableSharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(
    const base::WritableSharedMemoryMapping& memory) {
  return IsMemoryAcceptable(memory.memory(), memory.size(), 0, false);
}

//----- ReadOnlySharedPersistentMemoryAllocator --------------------------------

ReadOnlySharedPersistentMemoryAllocator::
    ReadOnlySharedPersistentMemoryAllocator(
        base::ReadOnlySharedMemoryMapping memory,
        uint64_t id,
        std::string_view name)
    : PersistentMemoryAllocator(
          Memory(const_cast<void*>(memory.memory()), MEM_SHARED),
          memory.size(),
          0,
          id,
          name,
          kReadOnly),
      shared_memory_(std::move(memory)) {}

ReadOnlySharedPersistentMemoryAllocator::
    ~ReadOnlySharedPersistentMemoryAllocator() = default;

// static
bool ReadOnlySharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(
    const base::ReadOnlySharedMemoryMapping& memory) {
  return IsMemoryAcceptable(memory.memory(), memory.size(), 0, true);
}

#if !BUILDFLAG(IS_NACL)
//----- FilePersistentMemoryAllocator ------------------------------------------

FilePersistentMemoryAllocator::FilePersistentMemoryAllocator(
    std::unique_ptr<MemoryMappedFile> file,
    size_t max_size,
    uint64_t id,
    std::string_view name,
    AccessMode access_mode)
    : PersistentMemoryAllocator(
          Memory(const_cast<uint8_t*>(file->data()), MEM_FILE),
          max_size != 0 ? max_size : file->length(),
          0,
          id,
          name,
          access_mode),
      mapped_file_(std::move(file)) {}

FilePersistentMemoryAllocator::~FilePersistentMemoryAllocator() = default;

// static
bool FilePersistentMemoryAllocator::IsFileAcceptable(
    const MemoryMappedFile& file,
    bool readonly) {
  return IsMemoryAcceptable(file.data(), file.length(), 0, readonly);
}

void FilePersistentMemoryAllocator::Cache() {
  // Since this method is expected to load data from permanent storage
  // into memory, blocking I/O may occur.
  base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
                                                base::BlockingType::MAY_BLOCK);

  // Calculate begin/end addresses so that the first byte of every page
  // in that range can be read. Keep within the used space. The `volatile`
  // keyword makes it so the compiler can't make assumptions about what is
  // in a given memory location and thus possibly avoid the read.
  const volatile char* mem_end = mem_base_ + used();
  const volatile char* mem_begin = mem_base_;

  // Iterate over the memory a page at a time, reading the first byte of
  // every page. The values are added to a `total` so that the compiler
  // can't omit the read.
  int total = 0;
  for (const volatile char* memory = mem_begin; memory < mem_end;
       memory += vm_page_size_) {
    total += *memory;
  }

  // Tell the compiler that `total` is used so that it can't optimize away
  // the memory accesses above.
  debug::Alias(&total);
}

void FilePersistentMemoryAllocator::FlushPartial(size_t length, bool sync) {
  if (IsReadonly())
    return;

  std::optional<base::ScopedBlockingCall> scoped_blocking_call;
  if (sync)
    scoped_blocking_call.emplace(FROM_HERE, base::BlockingType::MAY_BLOCK);

#if BUILDFLAG(IS_WIN)
  // Windows doesn't support asynchronous flush.
  scoped_blocking_call.emplace(FROM_HERE, base::BlockingType::MAY_BLOCK);
  BOOL success = ::FlushViewOfFile(data(), length);
  DPCHECK(success);
#elif BUILDFLAG(IS_APPLE)
  // On OSX, "invalidate" removes all cached pages, forcing a re-read from
  // disk. That's not applicable to "flush" so omit it.
  int result =
      ::msync(const_cast<void*>(data()), length, sync ? MS_SYNC : MS_ASYNC);
  DCHECK_NE(EINVAL, result);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
  // On POSIX, "invalidate" forces _other_ processes to recognize what has
  // been written to disk and so is applicable to "flush".
  int result = ::msync(const_cast<void*>(data()), length,
                       MS_INVALIDATE | (sync ? MS_SYNC : MS_ASYNC));
  DCHECK_NE(EINVAL, result);
#else
#error Unsupported OS.
#endif
}
#endif  // !BUILDFLAG(IS_NACL)

//----- DelayedPersistentAllocation --------------------------------------------

DelayedPersistentAllocation::DelayedPersistentAllocation(
    PersistentMemoryAllocator* allocator,
    std::atomic<Reference>* ref,
    uint32_t type,
    size_t size,
    size_t offset)
    : allocator_(allocator),
      type_(type),
      size_(checked_cast<uint32_t>(size)),
      offset_(checked_cast<uint32_t>(offset)),
      reference_(ref) {
  DCHECK(allocator_);
  DCHECK_NE(0U, type_);
  DCHECK_LT(0U, size_);
  DCHECK(reference_);
}

DelayedPersistentAllocation::~DelayedPersistentAllocation() = default;

span<uint8_t> DelayedPersistentAllocation::GetUntyped() const {
  // Relaxed operations are acceptable here because it's not protecting the
  // contents of the allocation in any way.
  Reference ref = reference_->load(std::memory_order_acquire);

#if !BUILDFLAG(IS_NACL)
  // TODO(crbug.com/40064026): Remove these. They are used to investigate
  // unexpected failures.
  bool ref_found = (ref != 0);
  bool raced = false;
#endif  // !BUILDFLAG(IS_NACL)

  if (!ref) {
    [[maybe_unused]] size_t alloc_size = 0;
    ref = allocator_->Allocate(size_, type_, &alloc_size);
    if (!ref) {
      return span<uint8_t>();
    }

    // Store the new reference in its proper location using compare-and-swap.
    // Use a "strong" exchange to ensure no false-negatives since the operation
    // cannot be retried.
    Reference existing = 0;  // Must be mutable; receives actual value.
    if (!reference_->compare_exchange_strong(existing, ref,
                                             std::memory_order_release,
                                             std::memory_order_relaxed)) {
      // Failure indicates that something else has raced ahead, performed the
      // allocation, and stored its reference. Purge the allocation that was
      // just done and use the other one instead.
      DCHECK_EQ(type_, allocator_->GetType(existing));
      DCHECK_LE(size_, alloc_size);
      allocator_->ChangeType(ref, 0, type_, /*clear=*/false);
      ref = existing;
#if !BUILDFLAG(IS_NACL)
      raced = true;
#endif  // !BUILDFLAG(IS_NACL)
    }
  }

  uint8_t* mem = allocator_->GetAsArray<uint8_t>(ref, type_, size_);
  if (!mem) {
#if !BUILDFLAG(IS_NACL)
    // TODO(crbug.com/40064026): Remove these. They are used to investigate
    // unexpected failures.
    SCOPED_CRASH_KEY_BOOL("PersistentMemoryAllocator", "full",
                          allocator_->IsFull());
    SCOPED_CRASH_KEY_BOOL("PersistentMemoryAllocator", "corrupted",
                          allocator_->IsCorrupt());
    SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "freeptr",
                            allocator_->freeptr());
    // The allocator's cookie should always be `kGlobalCookie`. Add it to crash
    // keys to see if the file was corrupted externally, e.g. by a file
    // shredder. Cast to volatile to avoid compiler optimizations and ensure
    // that the actual value is read.
    SCOPED_CRASH_KEY_NUMBER(
        "PersistentMemoryAllocator", "cookie",
        static_cast<volatile PersistentMemoryAllocator::SharedMetadata*>(
            allocator_->shared_meta())
            ->cookie);
    SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "ref", ref);
    SCOPED_CRASH_KEY_BOOL("PersistentMemoryAllocator", "ref_found", ref_found);
    SCOPED_CRASH_KEY_BOOL("PersistentMemoryAllocator", "raced", raced);
    SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "type_", type_);
    SCOPED_CRASH_KEY_NUMBER("PersistentMemoryAllocator", "size_", size_);
    if (ref == 0xC8799269) {
      // There are many crash reports containing the corrupted "0xC8799269"
      // value in `ref`. This value is actually a "magic" number to indicate
      // that a certain block in persistent memory was successfully allocated,
      // so it should not appear there. Include some extra crash keys to see if
      // the surrounding values were also corrupted. If so, the value before
      // would be the size of the allocated object, and the value after would be
      // the type id of the allocated object. If they are not corrupted, these
      // would contain `ranges_checksum` and the start of `samples_metadata`
      // respectively (see PersistentHistogramData struct). We do some pointer
      // arithmetic here -- it should theoretically be safe, unless something
      // went terribly wrong...
      SCOPED_CRASH_KEY_NUMBER(
          "PersistentMemoryAllocator", "ref_before",
          (reference_ - 1)->load(std::memory_order_relaxed));
      SCOPED_CRASH_KEY_NUMBER(
          "PersistentMemoryAllocator", "ref_after",
          (reference_ + 1)->load(std::memory_order_relaxed));
      DUMP_WILL_BE_NOTREACHED();
      return span<uint8_t>();
    }
#endif  // !BUILDFLAG(IS_NACL)
    // This should never happen but be tolerant if it does as corruption from
    // the outside is something to guard against.
    DUMP_WILL_BE_NOTREACHED();
    return span<uint8_t>();
  }
  return span(mem + offset_, size_ - offset_);
}

}  // namespace base