1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
base / metrics / persistent_memory_allocator.h [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#ifndef BASE_METRICS_PERSISTENT_MEMORY_ALLOCATOR_H_
#define BASE_METRICS_PERSISTENT_MEMORY_ALLOCATOR_H_
#include <stdint.h>
#include <atomic>
#include <memory>
#include <string_view>
#include <type_traits>
#include "base/atomicops.h"
#include "base/base_export.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/files/file_path.h"
#include "base/gtest_prod_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/memory/shared_memory_mapping.h"
#include "build/build_config.h"
namespace metrics {
class FileMetricsProvider;
}
namespace base {
class HistogramBase;
class MemoryMappedFile;
// Simple allocator for pieces of a memory block that may be persistent
// to some storage or shared across multiple processes. This class resides
// under base/metrics because it was written for that purpose. It is,
// however, fully general-purpose and can be freely moved to base/memory
// if other uses are found.
//
// This class provides for thread-secure (i.e. safe against other threads
// or processes that may be compromised and thus have malicious intent)
// allocation of memory within a designated block and also a mechanism by
// which other threads can learn of these allocations.
//
// There is (currently) no way to release an allocated block of data because
// doing so would risk invalidating pointers held by other processes and
// greatly complicate the allocation algorithm.
//
// Construction of this object can accept new, clean (i.e. zeroed) memory
// or previously initialized memory. In the first case, construction must
// be allowed to complete before letting other allocators attach to the same
// segment. In other words, don't share the segment until at least one
// allocator has been attached to it.
//
// Note that memory not in active use is not accessed so it is possible to
// use virtual memory, including memory-mapped files, as backing storage with
// the OS "pinning" new (zeroed) physical RAM pages only as they are needed.
//
// OBJECTS: Although the allocator can be used in a "malloc" sense, fetching
// character arrays and manipulating that memory manually, the better way is
// generally to use the "object" methods to create and manage allocations. In
// this way the sizing, type-checking, and construction are all automatic. For
// this to work, however, every type of stored object must define two public
// "constexpr" values, kPersistentTypeId and kExpectedInstanceSize, as such:
//
// struct MyPersistentObjectType {
// // SHA1(MyPersistentObjectType): Increment this if structure changes!
// static constexpr uint32_t kPersistentTypeId = 0x3E15F6DE + 1;
//
// // Expected size for 32/64-bit check. Update this if structure changes!
// static constexpr size_t kExpectedInstanceSize = 20;
//
// ...
// };
//
// kPersistentTypeId: This value is an arbitrary identifier that allows the
// identification of these objects in the allocator, including the ability
// to find them via iteration. The number is arbitrary but using the first
// four bytes of the SHA1 hash of the type name means that there shouldn't
// be any conflicts with other types that may also be stored in the memory.
// The fully qualified name (e.g. base::debug::MyPersistentObjectType) could
// be used to generate the hash if the type name seems common. Use a command
// like this to get the hash: echo -n "MyPersistentObjectType" | sha1sum
// If the structure layout changes, ALWAYS increment this number so that
// newer versions of the code don't try to interpret persistent data written
// by older versions with a different layout.
//
// kExpectedInstanceSize: This value is the hard-coded number that matches
// what sizeof(T) would return. By providing it explicitly, the allocator can
// verify that the structure is compatible between both 32-bit and 64-bit
// versions of the code.
//
// Using New manages the memory and then calls the default constructor for the
// object. Given that objects are persistent, no destructor is ever called
// automatically though a caller can explicitly call Delete to destruct it and
// change the type to something indicating it is no longer in use.
//
// Though persistent memory segments are transferrable between programs built
// for different natural word widths, they CANNOT be exchanged between CPUs
// of different endianess. Attempts to do so will simply see the existing data
// as corrupt and refuse to access any of it.
class BASE_EXPORT PersistentMemoryAllocator {
public:
typedef uint32_t Reference;
// All allocations and data-structures must be aligned to this byte boundary.
// Alignment as large as the physical bus between CPU and RAM is _required_
// for some architectures, is simply more efficient on other CPUs, and
// generally a Good Idea(tm) for all platforms as it reduces/eliminates the
// chance that a type will span cache lines. Alignment mustn't be less
// than 8 to ensure proper alignment for all types. The rest is a balance
// between reducing spans across multiple cache lines and wasted space spent
// padding out allocations. An alignment of 16 would ensure that the block
// header structure always sits in a single cache line. An average of about
// 1/2 this value will be wasted with every allocation.
static constexpr size_t kAllocAlignment = 8;
// These states are used to indicate the overall condition of the memory
// segment irrespective of what is stored within it. Because the data is
// often persistent and thus needs to be readable by different versions of
// a program, these values are fixed and can never change.
enum MemoryState : uint8_t {
// Persistent memory starts all zeros and so shows "uninitialized".
MEMORY_UNINITIALIZED = 0,
// The header has been written and the memory is ready for use.
MEMORY_INITIALIZED = 1,
// The data should be considered deleted. This would be set when the
// allocator is being cleaned up. If file-backed, the file is likely
// to be deleted but since deletion can fail for a variety of reasons,
// having this extra status means a future reader can realize what
// should have happened.
MEMORY_DELETED = 2,
// The data should be considered complete. This is usually set when the
// browser is going to exit to indicate that it terminated cleanly and that
// the memory should be well-formed. In theory, this is not perfect as it is
// possible for the browser/device to crash after this has been set, but in
// practice this should be a reasonable indication as to whether the data
// comes from a completed or crashed session (if file-backed). Note that
// this might not be set on certain platforms (e.g. Android, iOS) due to not
// having a guaranteed clean shutdown path.
MEMORY_COMPLETED = 3,
// Outside code can create states starting with this number; these too
// must also never change between code versions.
MEMORY_USER_DEFINED = 100,
};
// Iterator for going through all iterable memory records in an allocator.
// Like the allocator itself, iterators are lock-free and thread-secure.
// That means that multiple threads can share an iterator and the same
// reference will not be returned twice.
//
// The order of the items returned by an iterator matches the order in which
// MakeIterable() was called on them. Once an allocation is made iterable,
// it is always such so the only possible difference between successive
// iterations is for more to be added to the end.
//
// Iteration, in general, is tolerant of corrupted memory. It will return
// what it can and stop only when corruption forces it to. Bad corruption
// could cause the same object to be returned many times but it will
// eventually quit.
class BASE_EXPORT Iterator {
public:
// Constructs an iterator on a given `allocator`, starting at the beginning.
// The allocator must live beyond the lifetime of the iterator. This class
// has read-only access to the allocator (hence "const") but the returned
// references can be used on a read/write version, too.
explicit Iterator(const PersistentMemoryAllocator* allocator);
// As above but resuming from the `starting_after` reference. The first call
// to GetNext() will return the next object found after that reference. The
// reference must be to an "iterable" object; references to non-iterable
// objects (those that never had MakeIterable() called for them) will cause
// a run-time error.
Iterator(const PersistentMemoryAllocator* allocator,
Reference starting_after);
Iterator(const Iterator&) = delete;
Iterator& operator=(const Iterator&) = delete;
~Iterator();
// Resets the iterator back to the beginning.
void Reset();
// Resets the iterator, resuming from the `starting_after` reference.
void Reset(Reference starting_after);
// Returns the previously retrieved reference, or kReferenceNull if none.
// If constructor or reset with a starting_after location, this will return
// that value.
Reference GetLast();
// Gets the next iterable, storing that type in `type_return`. The actual
// return value is a reference to the allocation inside the allocator or
// zero if there are no more. GetNext() may still be called again at a
// later time to retrieve any new allocations that have been added.
Reference GetNext(uint32_t* type_return, size_t* alloc_size = nullptr);
// Similar to above but gets the next iterable of a specific `type_match`.
// This should not be mixed with calls to GetNext() because any allocations
// skipped here due to a type mis-match will never be returned by later
// calls to GetNext() meaning it's possible to completely miss entries.
Reference GetNextOfType(uint32_t type_match, size_t* alloc_size = nullptr);
// As above but works using object type.
template <typename T>
Reference GetNextOfType() {
return GetNextOfType(T::kPersistentTypeId);
}
// As above but works using objects and returns null if not found.
template <typename T>
const T* GetNextOfObject() {
return GetAsObject<T>(GetNextOfType<T>());
}
// Converts references to objects. This is a convenience method so that
// users of the iterator don't need to also have their own pointer to the
// allocator over which the iterator runs in order to retrieve objects.
// Because the iterator is not read/write, only "const" objects can be
// fetched. Non-const objects can be fetched using the reference on a
// non-const (external) pointer to the same allocator (or use const_cast
// to remove the qualifier).
template <typename T>
const T* GetAsObject(Reference ref) const {
return allocator_->GetAsObject<T>(ref);
}
// Similar to GetAsObject() but converts references to arrays of things.
template <typename T>
const T* GetAsArray(Reference ref, uint32_t type_id, size_t count) const {
return allocator_->GetAsArray<T>(ref, type_id, count);
}
// Convert a generic pointer back into a reference. A null reference will
// be returned if `memory` is not inside the persistent segment or does not
// point to an object of the specified `type_id`.
Reference GetAsReference(const void* memory, uint32_t type_id) const {
return allocator_->GetAsReference(memory, type_id);
}
// As above but convert an object back into a reference.
template <typename T>
Reference GetAsReference(const T* obj) const {
return allocator_->GetAsReference(obj);
}
private:
// Weak-pointer to memory allocator being iterated over.
raw_ptr<const PersistentMemoryAllocator> allocator_;
// The last record that was returned.
std::atomic<Reference> last_record_;
// The number of records found; used for detecting loops.
std::atomic<uint32_t> record_count_;
};
// Returned information about the internal state of the heap.
struct MemoryInfo {
size_t total;
size_t free;
};
enum : Reference {
// A common "null" reference value.
kReferenceNull = 0,
};
enum : uint32_t {
// A value that will match any type when doing lookups.
kTypeIdAny = 0x00000000,
// A value indicating that the type is in transition. Work is being done
// on the contents to prepare it for a new type to come.
kTypeIdTransitioning = 0xFFFFFFFF,
};
enum : size_t {
kSizeAny = 1 // Constant indicating that any array size is acceptable.
};
// Indicates the mode for accessing the underlying data.
enum AccessMode {
kReadOnly,
kReadWrite,
// Open existing initialized data in R/W mode. If the passed data appears to
// not have been initialized, does not write to it and instead marks the
// allocator as corrupt (without writing anything to the underlying data.)
kReadWriteExisting,
};
// This is the standard file extension (suitable for being passed to the
// AddExtension() method of base::FilePath) for dumps of persistent memory.
static const base::FilePath::CharType kFileExtension[];
// The allocator operates on any arbitrary block of memory. Creation and
// persisting or sharing of that block with another process is the
// responsibility of the caller. The allocator needs to know only the
// block's `base` address, the total `size` of the block, and any internal
// `page` size (zero if not paged) across which allocations should not span.
// The `id` is an arbitrary value the caller can use to identify a
// particular memory segment. It will only be loaded during the initial
// creation of the segment and can be checked by the caller for consistency.
// The `name`, if provided, is used to distinguish histograms for this
// allocator. Only the primary owner of the segment should define this value;
// other processes can learn it from the shared state. If the access mode
// is kReadOnly then no changes will be made to it. The resulting object
// should be stored as a "const" pointer.
//
// PersistentMemoryAllocator does NOT take ownership of the memory block.
// The caller must manage it and ensure it stays available throughout the
// lifetime of this object.
//
// Memory segments for sharing must have had an allocator attached to them
// before actually being shared. If the memory segment was just created, it
// should be zeroed before being passed here. If it was an existing segment,
// the values here will be compared to copies stored in the shared segment
// as a guard against corruption.
//
// Make sure that the memory segment is acceptable (see IsMemoryAcceptable()
// method below) before construction if the definition of the segment can
// vary in any way at run-time. Invalid memory segments will cause a crash.
PersistentMemoryAllocator(void* base,
size_t size,
size_t page_size,
uint64_t id,
std::string_view name,
AccessMode access_mode);
PersistentMemoryAllocator(const PersistentMemoryAllocator&) = delete;
PersistentMemoryAllocator& operator=(const PersistentMemoryAllocator&) =
delete;
virtual ~PersistentMemoryAllocator();
// Check if memory segment is acceptable for creation of an Allocator. This
// doesn't do any analysis of the data and so doesn't guarantee that the
// contents are valid, just that the paramaters won't cause the program to
// abort. The IsCorrupt() method will report detection of data problems
// found during construction and general operation.
static bool IsMemoryAcceptable(const void* data, size_t size,
size_t page_size, bool readonly);
// Get the internal identifier for this persistent memory segment.
uint64_t Id() const;
// Get the internal name of this allocator (possibly an empty string).
const char* Name() const;
// Is this segment open only for read?
bool IsReadonly() const { return access_mode_ == kReadOnly; }
// Manage the saved state of the memory.
void SetMemoryState(uint8_t memory_state);
uint8_t GetMemoryState() const;
// Create internal histograms for tracking memory use and allocation sizes
// for allocator of `name` (which can simply be the result of Name()). This
// is done separately from construction for situations such as when the
// histograms will be backed by memory provided by this very allocator.
//
// IMPORTANT: tools/metrics/histograms/metadata/uma/histograms.xml must
// be updated with the following histograms for each `name` param:
// UMA.PersistentAllocator.name.Errors
// UMA.PersistentAllocator.name.UsedPct
void CreateTrackingHistograms(std::string_view name);
// Flushes the persistent memory to any backing store. This typically does
// nothing but is used by the FilePersistentMemoryAllocator to inform the
// OS that all the data should be sent to the disk immediately. This is
// useful in the rare case where something has just been stored that needs
// to survive a hard shutdown of the machine like from a power failure.
// The `sync` parameter indicates if this call should block until the flush
// is complete but is only advisory and may or may not have an effect
// depending on the capabilities of the OS. Synchronous flushes are allowed
// only from threads that are allowed to do I/O but since `sync` is only
// advisory, all flushes should be done on IO-capable threads.
// TODO: Since `sync` is ignored on Windows, consider making it re-post on a
// background thread with `sync` set to true so that `sync` is not just
// advisory.
void Flush(bool sync);
// Direct access to underlying memory segment. If the segment is shared
// across threads or processes, reading data through these values does
// not guarantee consistency. Use with care. Do not write.
const void* data() const { return const_cast<const char*>(mem_base_); }
size_t length() const { return mem_size_; }
size_t size() const { return mem_size_; }
size_t used() const;
// Get an object referenced by a `ref`. For safety reasons, the `type_id`
// code and size-of(`T`) are compared to ensure the reference is valid
// and cannot return an object outside of the memory segment. A `type_id` of
// kTypeIdAny (zero) will match any though the size is still checked. NULL is
// returned if any problem is detected, such as corrupted storage or incorrect
// parameters. Callers MUST check that the returned value is not-null EVERY
// TIME before accessing it or risk crashing! Once dereferenced, the pointer
// is safe to reuse forever.
//
// It is essential that the object be of a fixed size. All fields must be of
// a defined type that does not change based on the compiler or the CPU
// natural word size. Acceptable are char, float, double, and (u)intXX_t.
// Unacceptable are int, bool, and wchar_t which are implementation defined
// with regards to their size.
//
// Alignment must also be consistent. A uint64_t after a uint32_t will pad
// differently between 32 and 64 bit architectures. Either put the bigger
// elements first, group smaller elements into blocks the size of larger
// elements, or manually insert padding fields as appropriate for the
// largest architecture, including at the end.
//
// To protected against mistakes, all objects must have the attribute
// `kExpectedInstanceSize` (static constexpr size_t) that is a hard-coded
// numerical value -- NNN, not sizeof(T) -- that can be tested. If the
// instance size is not fixed, at least one build will fail.
//
// If the size of a structure changes, the type-ID used to recognize it
// should also change so later versions of the code don't try to read
// incompatible structures from earlier versions.
//
// NOTE: Though this method will guarantee that an object of the specified
// type can be accessed without going outside the bounds of the memory
// segment, it makes no guarantees of the validity of the data within the
// object itself. If it is expected that the contents of the segment could
// be compromised with malicious intent, the object must be hardened as well.
//
// Though the persistent data may be "volatile" if it is shared with
// other processes, such is not necessarily the case. The internal
// "volatile" designation is discarded so as to not propagate the viral
// nature of that keyword to the caller. It can add it back, if necessary,
// based on knowledge of how the allocator is being used.
template <typename T>
T* GetAsObject(Reference ref, size_t* alloc_size = nullptr) {
static_assert(std::is_standard_layout_v<T>, "only standard objects");
static_assert(!std::is_array_v<T>, "use GetAsArray<>()");
static_assert(T::kExpectedInstanceSize == sizeof(T), "inconsistent size");
return const_cast<T*>(reinterpret_cast<volatile T*>(
GetBlockData(ref, T::kPersistentTypeId, sizeof(T), alloc_size)));
}
template <typename T>
const T* GetAsObject(Reference ref, size_t* alloc_size = nullptr) const {
static_assert(std::is_standard_layout_v<T>, "only standard objects");
static_assert(!std::is_array_v<T>, "use GetAsArray<>()");
static_assert(T::kExpectedInstanceSize == sizeof(T), "inconsistent size");
return const_cast<const T*>(reinterpret_cast<const volatile T*>(
GetBlockData(ref, T::kPersistentTypeId, sizeof(T), alloc_size)));
}
// Like GetAsObject() but get an array of simple, fixed-size types.
//
// Use a `count` of the required number of array elements, or kSizeAny.
// The, optionally returned, `alloc_size` can be used to calculate the upper
// bound but isn't reliable because padding can make space for extra elements
// that were not written.
//
// Remember that an array of char is a string but may not be NUL terminated.
//
// There are no compile-time or run-time checks to ensure 32/64-bit size
// compatibilty when using these accessors. Only use fixed-size types such
// as char, float, double, or (u)intXX_t.
template <typename T>
T* GetAsArray(Reference ref,
uint32_t type_id,
size_t count,
size_t* alloc_size = nullptr) {
static_assert(std::is_fundamental_v<T>, "use GetAsObject<>()");
return const_cast<T*>(reinterpret_cast<volatile T*>(
GetBlockData(ref, type_id, count * sizeof(T), alloc_size)));
}
template <typename T>
const T* GetAsArray(Reference ref,
uint32_t type_id,
size_t count,
size_t* alloc_size = nullptr) const {
static_assert(std::is_fundamental_v<T>, "use GetAsObject<>()");
return const_cast<const char*>(reinterpret_cast<const volatile T*>(
GetBlockData(ref, type_id, count * sizeof(T), alloc_size)));
}
// Get the corresponding reference for an object held in persistent memory.
// If the `memory` is not valid or the type does not match, a kReferenceNull
// result will be returned.
Reference GetAsReference(const void* memory, uint32_t type_id) const;
// Access the internal "type" of an object. This generally isn't necessary
// but can be used to "clear" the type and so effectively mark it as deleted
// even though the memory stays valid and allocated. Changing the type is
// an atomic compare/exchange and so requires knowing the existing value.
// It will return false if the existing type is not what is expected.
//
// Changing the type doesn't mean the data is compatible with the new type.
// Passing true for `clear` will zero the memory after the type has been
// changed away from `from_type_id` but before it becomes `to_type_id` meaning
// that it is done in a manner that is thread-safe. Memory is guaranteed to
// be zeroed atomically by machine-word in a monotonically increasing order.
//
// It will likely be necessary to reconstruct the type before it can be used.
// Changing the type WILL NOT invalidate existing pointers to the data, either
// in this process or others, so changing the data structure could have
// unpredicatable results. USE WITH CARE!
uint32_t GetType(Reference ref) const;
bool ChangeType(Reference ref,
uint32_t to_type_id,
uint32_t from_type_id,
bool clear);
// Allocated objects can be added to an internal list that can then be
// iterated over by other processes. If an allocated object can be found
// another way, such as by having its reference within a different object
// that will be made iterable, then this call is not necessary. This always
// succeeds unless corruption is detected; check IsCorrupted() to find out.
// Once an object is made iterable, its position in iteration can never
// change; new iterable objects will always be added after it in the series.
// Changing the type does not alter its "iterable" status.
void MakeIterable(Reference ref);
// Get the information about the amount of free space in the allocator. The
// amount of free space should be treated as approximate due to extras from
// alignment and metadata. Concurrent allocations from other threads will
// also make the true amount less than what is reported.
void GetMemoryInfo(MemoryInfo* meminfo) const;
// If there is some indication that the memory has become corrupted,
// calling this will attempt to prevent further damage by indicating to
// all processes that something is not as expected.
// If `allow_write` is false, the corrupt bit will not be written to the data.
void SetCorrupt(bool allow_write = true) const;
// This can be called to determine if corruption has been detected in the
// segment, possibly my a malicious actor. Once detected, future allocations
// will fail and iteration may not locate all objects.
bool IsCorrupt() const;
// Flag set if an allocation has failed because the memory segment was full.
bool IsFull() const;
// Update those "tracking" histograms which do not get updates during regular
// operation, such as how much memory is currently used. This should be
// called before such information is to be displayed or uploaded.
void UpdateTrackingHistograms();
// While the above works much like malloc & free, these next methods provide
// an "object" interface similar to new and delete.
// Reserve space in the memory segment of the desired `size` and `type_id`.
//
// A return value of zero indicates the allocation failed, otherwise the
// returned reference can be used by any process to get a real pointer via
// the GetAsObject() or GetAsArray() calls. The actual allocated size may be
// larger and will always be a multiple of 8 bytes (64 bits).
Reference Allocate(size_t size,
uint32_t type_id,
size_t* alloc_size = nullptr);
// Allocate and construct an object in persistent memory. The type must have
// both (size_t) kExpectedInstanceSize and (uint32_t) kPersistentTypeId
// static constexpr fields that are used to ensure compatibility between
// software versions. An optional size parameter can be specified to force
// the allocation to be bigger than the size of the object; this is useful
// when the last field is actually variable length.
template <typename T>
T* New(size_t size) {
static_assert(alignof(T) <= kAllocAlignment);
if (size < sizeof(T))
size = sizeof(T);
Reference ref = Allocate(size, T::kPersistentTypeId);
void* mem =
const_cast<void*>(GetBlockData(ref, T::kPersistentTypeId, size));
if (!mem)
return nullptr;
DCHECK_EQ(0U, reinterpret_cast<uintptr_t>(mem) & (alignof(T) - 1));
return new (mem) T();
}
template <typename T>
T* New() {
return New<T>(sizeof(T));
}
// Similar to New, above, but construct the object out of an existing memory
// block and of an expected type. If `clear` is true, memory will be zeroed
// before construction. Though this is not standard object behavior, it
// is present to match with new allocations that always come from zeroed
// memory. Anything previously present simply ceases to exist; no destructor
// is called for it so explicitly Delete() the old object first if need be.
// Calling this will not invalidate existing pointers to the object, either
// in this process or others, so changing the object could have unpredictable
// results. USE WITH CARE!
template <typename T>
T* New(Reference ref, uint32_t from_type_id, bool clear) {
// Make sure the memory is appropriate. This won't be used until after
// the type is changed but checking first avoids the possibility of having
// to change the type back.
size_t alloc_size = 0;
void* mem = const_cast<void*>(GetBlockData(ref, 0, sizeof(T), &alloc_size));
if (!mem)
return nullptr;
DCHECK_LE(sizeof(T), alloc_size) << "alloc not big enough for obj";
// Ensure the allocator's internal alignment is sufficient for this object.
// This protects against coding errors in the allocator.
DCHECK_EQ(0U, reinterpret_cast<uintptr_t>(mem) & (alignof(T) - 1));
// Change the type, clearing the memory if so desired. The new type is
// "transitioning" so that there is no race condition with the construction
// of the object should another thread be simultaneously iterating over
// data. This will "acquire" the memory so no changes get reordered before
// it.
if (!ChangeType(ref, kTypeIdTransitioning, from_type_id, clear))
return nullptr;
// Construct an object of the desired type on this memory, just as if
// New() had been called to create it.
T* obj = new (mem) T();
// Finally change the type to the desired one. This will "release" all of
// the changes above and so provide a consistent view to other threads.
bool success =
ChangeType(ref, T::kPersistentTypeId, kTypeIdTransitioning, false);
DCHECK(success);
return obj;
}
// Deletes an object by destructing it and then changing the type to a
// different value (default 0).
template <typename T>
void Delete(T* obj, uint32_t new_type) {
// Get the reference for the object.
Reference ref = GetAsReference<T>(obj);
// First change the type to "transitioning" so there is no race condition
// where another thread could find the object through iteration while it
// is been destructed. This will "acquire" the memory so no changes get
// reordered before it. It will fail if `ref` is invalid.
if (!ChangeType(ref, kTypeIdTransitioning, T::kPersistentTypeId, false))
return;
// Destruct the object.
obj->~T();
// Finally change the type to the desired value. This will "release" all
// the changes above.
bool success = ChangeType(ref, new_type, kTypeIdTransitioning, false);
DCHECK(success);
}
template <typename T>
void Delete(T* obj) {
Delete<T>(obj, 0);
}
// As above but works with objects allocated from persistent memory.
template <typename T>
Reference GetAsReference(const T* obj) const {
return GetAsReference(obj, T::kPersistentTypeId);
}
// As above but works with an object allocated from persistent memory.
template <typename T>
void MakeIterable(const T* obj) {
MakeIterable(GetAsReference<T>(obj));
}
protected:
enum MemoryType {
MEM_EXTERNAL,
MEM_MALLOC,
MEM_VIRTUAL,
MEM_SHARED,
MEM_FILE,
};
struct Memory {
Memory(void* b, MemoryType t) : base(b), type(t) {}
raw_ptr<void> base;
MemoryType type;
};
// Constructs the allocator. Everything is the same as the public allocator
// except `memory` which is a structure with additional information besides
// the base address.
PersistentMemoryAllocator(Memory memory,
size_t size,
size_t page_size,
uint64_t id,
std::string_view name,
AccessMode access_mode);
// Implementation of Flush that accepts how much to flush.
virtual void FlushPartial(size_t length, bool sync);
// RAW_PTR_EXCLUSION: Never allocated by PartitionAlloc (always mmap'ed), so
// there is no benefit to using a raw_ptr, only cost.
RAW_PTR_EXCLUSION volatile char* const
mem_base_; // Memory base. (char so sizeof guaranteed 1)
const MemoryType mem_type_; // Type of memory allocation.
const uint32_t mem_size_; // Size of entire memory segment.
const uint32_t mem_page_; // Page size allocations shouldn't cross.
const size_t vm_page_size_; // The page size used by the OS.
private:
struct SharedMetadata;
struct BlockHeader;
static const Reference kReferenceQueue;
// The shared metadata is always located at the top of the memory segment.
// These convenience functions eliminate constant casting of the base
// pointer within the code.
const SharedMetadata* shared_meta() const {
return reinterpret_cast<const SharedMetadata*>(
const_cast<const char*>(mem_base_));
}
SharedMetadata* shared_meta() {
return reinterpret_cast<SharedMetadata*>(const_cast<char*>(mem_base_));
}
// Actual method for doing the allocation.
Reference AllocateImpl(size_t size, uint32_t type_id, size_t* alloc_size);
// Dereferences a block `ref` to retrieve a pointer to the block header for
// the reference. This method ensures that the referenced block is valid for
// the desired `type_id` and `size`. Optionally, if `alloc_sizes` is not
// nullptr, the validated size of the underlying allocation is returned.
//
// Special cases for internal use only:
//
// * If `queue_ok` is true and `ref` is kReferenceQueueindicates then the
// block header for the allocation queue is returned.
//
// * if `free_ok` then the block header is allowed to point to a block that
// may not be in the `allocated` state. This bypasses block validation.
//
// Because they bypass block valoidation, it is not premitted to request the
// `alloc_size` when either of `queue_ok` or `free_ok` are true.
const volatile BlockHeader* GetBlock(Reference ref,
uint32_t type_id,
size_t size,
bool queue_ok,
bool free_ok,
size_t* alloc_size = nullptr) const;
volatile BlockHeader* GetBlock(Reference ref,
uint32_t type_id,
size_t size,
bool queue_ok,
bool free_ok,
size_t* alloc_size = nullptr) {
return const_cast<volatile BlockHeader*>(
const_cast<const PersistentMemoryAllocator*>(this)->GetBlock(
ref, type_id, size, queue_ok, free_ok, alloc_size));
}
// Gets the actual data within a block associated with a specific reference.
const volatile void* GetBlockData(Reference ref,
uint32_t type_id,
size_t size,
size_t* alloc_size = nullptr) const;
volatile void* GetBlockData(Reference ref,
uint32_t type_id,
size_t size,
size_t* alloc_size = nullptr) {
return const_cast<volatile void*>(
const_cast<const PersistentMemoryAllocator*>(this)->GetBlockData(
ref, type_id, size, alloc_size));
}
// Returns the offset to the first free space segment.
uint32_t freeptr() const;
// Returns the metadata version used in this allocator.
uint32_t version() const;
const AccessMode access_mode_;
// Local version of "corrupted" flag.
mutable std::atomic<bool> corrupt_ = false;
// Histogram recording used space.
raw_ptr<HistogramBase> used_histogram_ = nullptr;
// TODO(crbug.com/40064026) For debugging purposes. Remove these once done.
friend class DelayedPersistentAllocation;
friend class metrics::FileMetricsProvider;
friend class PersistentMemoryAllocatorTest;
FRIEND_TEST_ALL_PREFIXES(PersistentMemoryAllocatorTest, AllocateAndIterate);
};
// This allocator uses a local memory block it allocates from the general
// heap. It is generally used when some kind of "death rattle" handler will
// save the contents to persistent storage during process shutdown. It is
// also useful for testing.
class BASE_EXPORT LocalPersistentMemoryAllocator
: public PersistentMemoryAllocator {
public:
LocalPersistentMemoryAllocator(size_t size,
uint64_t id,
std::string_view name);
LocalPersistentMemoryAllocator(const LocalPersistentMemoryAllocator&) =
delete;
LocalPersistentMemoryAllocator& operator=(
const LocalPersistentMemoryAllocator&) = delete;
~LocalPersistentMemoryAllocator() override;
private:
// Allocates a block of local memory of the specified `size`, ensuring that
// the memory will not be physically allocated until accessed and will read
// as zero when that happens.
static Memory AllocateLocalMemory(size_t size, std::string_view name);
// Deallocates a block of local `memory` of the specified `size`.
static void DeallocateLocalMemory(void* memory, size_t size, MemoryType type);
};
// This allocator takes a writable shared memory mapping object and performs
// allocation from it. The allocator takes ownership of the mapping object.
class BASE_EXPORT WritableSharedPersistentMemoryAllocator
: public PersistentMemoryAllocator {
public:
WritableSharedPersistentMemoryAllocator(
base::WritableSharedMemoryMapping memory,
uint64_t id,
std::string_view name);
WritableSharedPersistentMemoryAllocator(
const WritableSharedPersistentMemoryAllocator&) = delete;
WritableSharedPersistentMemoryAllocator& operator=(
const WritableSharedPersistentMemoryAllocator&) = delete;
~WritableSharedPersistentMemoryAllocator() override;
// Ensure that the memory isn't so invalid that it would crash when passing it
// to the allocator. This doesn't guarantee the data is valid, just that it
// won't cause the program to abort. The existing IsCorrupt() call will handle
// the rest.
static bool IsSharedMemoryAcceptable(
const base::WritableSharedMemoryMapping& memory);
private:
base::WritableSharedMemoryMapping shared_memory_;
};
// This allocator takes a read-only shared memory mapping object and performs
// allocation from it. The allocator takes ownership of the mapping object.
class BASE_EXPORT ReadOnlySharedPersistentMemoryAllocator
: public PersistentMemoryAllocator {
public:
ReadOnlySharedPersistentMemoryAllocator(
base::ReadOnlySharedMemoryMapping memory,
uint64_t id,
std::string_view name);
ReadOnlySharedPersistentMemoryAllocator(
const ReadOnlySharedPersistentMemoryAllocator&) = delete;
ReadOnlySharedPersistentMemoryAllocator& operator=(
const ReadOnlySharedPersistentMemoryAllocator&) = delete;
~ReadOnlySharedPersistentMemoryAllocator() override;
// Ensure that the memory isn't so invalid that it would crash when passing it
// to the allocator. This doesn't guarantee the data is valid, just that it
// won't cause the program to abort. The existing IsCorrupt() call will handle
// the rest.
static bool IsSharedMemoryAcceptable(
const base::ReadOnlySharedMemoryMapping& memory);
private:
base::ReadOnlySharedMemoryMapping shared_memory_;
};
// NACL doesn't support any kind of file access in build.
#if !BUILDFLAG(IS_NACL)
// This allocator takes a memory-mapped file object and performs allocation
// from it. The allocator takes ownership of the file object.
class BASE_EXPORT FilePersistentMemoryAllocator
: public PersistentMemoryAllocator {
public:
// A `max_size` of zero will use the length of the file as the maximum
// size. The `file` object must have been already created with sufficient
// permissions (read, read/write, or read/write/extend).
FilePersistentMemoryAllocator(std::unique_ptr<MemoryMappedFile> file,
size_t max_size,
uint64_t id,
std::string_view name,
AccessMode access_mode);
FilePersistentMemoryAllocator(const FilePersistentMemoryAllocator&) = delete;
FilePersistentMemoryAllocator& operator=(
const FilePersistentMemoryAllocator&) = delete;
~FilePersistentMemoryAllocator() override;
// Ensure that the file isn't so invalid that it would crash when passing it
// to the allocator. This doesn't guarantee the file is valid, just that it
// won't cause the program to abort. The existing IsCorrupt() call will handle
// the rest.
static bool IsFileAcceptable(const MemoryMappedFile& file, bool read_only);
// Load all or a portion of the file into memory for fast access. This can
// be used to force the disk access to be done on a background thread and
// then have the data available to be read on the main thread with a greatly
// reduced risk of blocking due to I/O. The risk isn't eliminated completely
// because the system could always release the memory when under pressure
// but this can happen to any block of memory (i.e. swapped out).
void Cache();
protected:
// PersistentMemoryAllocator:
void FlushPartial(size_t length, bool sync) override;
private:
std::unique_ptr<MemoryMappedFile> mapped_file_;
};
#endif // !BUILDFLAG(IS_NACL)
// An allocation that is defined but not executed until required at a later
// time. This allows for potential users of an allocation to be decoupled
// from the logic that defines it. In addition, there can be multiple users
// of the same allocation or any region thereof that are guaranteed to always
// use the same space. It's okay to copy/move these objects.
//
// This is a top-level class instead of an inner class of the PMA so that it
// can be forward-declared in other header files without the need to include
// the full contents of this file.
class BASE_EXPORT DelayedPersistentAllocation {
public:
using Reference = PersistentMemoryAllocator::Reference;
// Creates a delayed allocation using the specified `allocator`. When
// needed, the memory will be allocated using the specified `type` and
// `size`. If `offset` is given, the returned pointer will be at that
// offset into the segment; this allows combining allocations into a
// single persistent segment to reduce overhead and means an "all or
// nothing" request. Note that `size` is always the total memory size
// and `offset` is just indicating the start of a block within it.
//
// Once allocated, a reference to the segment will be stored at `ref`.
// This shared location must be initialized to zero (0); it is checked
// with every Get() request to see if the allocation has already been
// done. If reading `ref` outside of this object, be sure to do an
// "acquire" load. Don't write to it -- leave that to this object.
DelayedPersistentAllocation(PersistentMemoryAllocator* allocator,
std::atomic<Reference>* ref,
uint32_t type,
size_t size,
size_t offset = 0);
~DelayedPersistentAllocation();
// Gets a span to the defined allocation. This will realize the request
// and update the reference provided during construction. The memory will
// be zeroed the first time it is returned, after that it is shared with
// all other Get() requests and so shows any changes made to it elsewhere.
//
// If the allocation fails for any reason, an empty span will be returned.
// This works even on "const" objects because the allocation is already
// defined, just delayed.
template <typename T>
span<T> Get() const {
// PersistentMemoryAllocator only supports types with alignment at most
// kAllocAlignment.
static_assert(alignof(T) <= PersistentMemoryAllocator::kAllocAlignment);
// The offset must be a multiple of the alignment or misaligned pointers
// will result.
CHECK_EQ(offset_ % alignof(T), 0u);
span<uint8_t> untyped = GetUntyped();
return span(reinterpret_cast<T*>(untyped.data()),
untyped.size() / sizeof(T));
}
// Gets the internal reference value. If this returns a non-zero value then
// a subsequent call to Get() will do nothing but convert that reference into
// a memory location -- useful for accessing an existing allocation without
// creating one unnecessarily.
Reference reference() const {
return reference_->load(std::memory_order_relaxed);
}
private:
span<uint8_t> GetUntyped() const;
// The underlying object that does the actual allocation of memory. Its
// lifetime must exceed that of all DelayedPersistentAllocation objects
// that use it.
const raw_ptr<PersistentMemoryAllocator> allocator_;
// The desired type and size of the allocated segment plus the offset
// within it for the defined request.
const uint32_t type_;
const uint32_t size_;
const uint32_t offset_;
// The location at which a reference to the allocated segment is to be
// stored once the allocation is complete. If multiple delayed allocations
// share the same pointer then an allocation on one will amount to an
// allocation for all.
const raw_ptr<volatile std::atomic<Reference>, AllowPtrArithmetic> reference_;
// No DISALLOW_COPY_AND_ASSIGN as it's okay to copy/move these objects.
};
} // namespace base
#endif // BASE_METRICS_PERSISTENT_MEMORY_ALLOCATOR_H_