1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
base / metrics / sample_vector.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/sample_vector.h"
#include <ostream>
#include <string_view>
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/containers/heap_array.h"
#include "base/debug/crash_logging.h"
#include "base/debug/leak_annotations.h"
#include "base/lazy_instance.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_span.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/strcat.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
// This SampleVector makes use of the single-sample embedded in the base
// HistogramSamples class. If the count is non-zero then there is guaranteed
// (within the bounds of "eventual consistency") to be no allocated external
// storage. Once the full counts storage is allocated, the single-sample must
// be extracted and disabled.
namespace base {
typedef HistogramBase::Count Count;
typedef HistogramBase::Sample Sample;
namespace {
// An iterator for sample vectors.
template <typename T>
class IteratorTemplate : public SampleCountIterator {
public:
IteratorTemplate(base::span<T> counts, const BucketRanges* bucket_ranges)
: counts_(counts), bucket_ranges_(bucket_ranges) {
SkipEmptyBuckets();
}
~IteratorTemplate() override;
// SampleCountIterator:
bool Done() const override { return index_ >= counts_.size(); }
void Next() override {
DCHECK(!Done());
index_++;
SkipEmptyBuckets();
}
void Get(HistogramBase::Sample* min,
int64_t* max,
HistogramBase::Count* count) override;
// SampleVector uses predefined buckets, so iterator can return bucket index.
bool GetBucketIndex(size_t* index) const override {
DCHECK(!Done());
if (index != nullptr) {
*index = index_;
}
return true;
}
private:
void SkipEmptyBuckets() {
if (Done()) {
return;
}
while (index_ < counts_.size()) {
if (subtle::NoBarrier_Load(&counts_[index_]) != 0) {
return;
}
index_++;
}
}
raw_span<T> counts_;
raw_ptr<const BucketRanges> bucket_ranges_;
size_t index_ = 0;
};
using SampleVectorIterator = IteratorTemplate<const HistogramBase::AtomicCount>;
template <>
SampleVectorIterator::~IteratorTemplate() = default;
// Get() for an iterator of a SampleVector.
template <>
void SampleVectorIterator::Get(HistogramBase::Sample* min,
int64_t* max,
HistogramBase::Count* count) {
DCHECK(!Done());
*min = bucket_ranges_->range(index_);
*max = strict_cast<int64_t>(bucket_ranges_->range(index_ + 1));
*count = subtle::NoBarrier_Load(&counts_[index_]);
}
using ExtractingSampleVectorIterator =
IteratorTemplate<HistogramBase::AtomicCount>;
template <>
ExtractingSampleVectorIterator::~IteratorTemplate() {
// Ensure that the user has consumed all the samples in order to ensure no
// samples are lost.
DCHECK(Done());
}
// Get() for an extracting iterator of a SampleVector.
template <>
void ExtractingSampleVectorIterator::Get(HistogramBase::Sample* min,
int64_t* max,
HistogramBase::Count* count) {
DCHECK(!Done());
*min = bucket_ranges_->range(index_);
*max = strict_cast<int64_t>(bucket_ranges_->range(index_ + 1));
*count = subtle::NoBarrier_AtomicExchange(&counts_[index_], 0);
}
} // namespace
SampleVectorBase::SampleVectorBase(uint64_t id,
Metadata* meta,
const BucketRanges* bucket_ranges)
: HistogramSamples(id, meta),
bucket_ranges_(bucket_ranges),
counts_size_(bucket_ranges_->bucket_count()) {
CHECK_GE(counts_size_, 1u);
}
SampleVectorBase::SampleVectorBase(uint64_t id,
std::unique_ptr<Metadata> meta,
const BucketRanges* bucket_ranges)
: HistogramSamples(id, std::move(meta)),
bucket_ranges_(bucket_ranges),
counts_size_(bucket_ranges_->bucket_count()) {
CHECK_GE(counts_size_, 1u);
}
SampleVectorBase::~SampleVectorBase() = default;
void SampleVectorBase::Accumulate(Sample value, Count count) {
const size_t bucket_index = GetBucketIndex(value);
// Handle the single-sample case.
if (!counts().has_value()) {
// Try to accumulate the parameters into the single-count entry.
if (AccumulateSingleSample(value, count, bucket_index)) {
// A race condition could lead to a new single-sample being accumulated
// above just after another thread executed the MountCountsStorage below.
// Since it is mounted, it could be mounted elsewhere and have values
// written to it. It's not allowed to have both a single-sample and
// entries in the counts array so move the single-sample.
if (counts().has_value()) {
MoveSingleSampleToCounts();
}
return;
}
// Need real storage to store both what was in the single-sample plus the
// parameter information.
MountCountsStorageAndMoveSingleSample();
}
// Handle the multi-sample case.
Count new_bucket_count =
subtle::NoBarrier_AtomicIncrement(&counts_at(bucket_index), count);
IncreaseSumAndCount(strict_cast<int64_t>(count) * value, count);
// TODO(bcwhite) Remove after crbug.com/682680.
Count old_bucket_count = new_bucket_count - count;
bool record_negative_sample =
(new_bucket_count >= 0) != (old_bucket_count >= 0) && count > 0;
if (record_negative_sample) [[unlikely]] {
RecordNegativeSample(SAMPLES_ACCUMULATE_OVERFLOW, count);
}
}
Count SampleVectorBase::GetCount(Sample value) const {
return GetCountAtIndex(GetBucketIndex(value));
}
Count SampleVectorBase::TotalCount() const {
// Handle the single-sample case.
SingleSample sample = single_sample().Load();
if (sample.count != 0) {
return sample.count;
}
// Handle the multi-sample case.
if (counts().has_value() || MountExistingCountsStorage()) {
Count count = 0;
// TODO(danakj): In C++23 we can skip the `counts_span` lvalue and iterate
// over `counts().value()` directly without creating a dangling reference.
span<const HistogramBase::AtomicCount> counts_span = counts().value();
for (const HistogramBase::AtomicCount& c : counts_span) {
count += subtle::NoBarrier_Load(&c);
}
return count;
}
// And the no-value case.
return 0;
}
Count SampleVectorBase::GetCountAtIndex(size_t bucket_index) const {
DCHECK(bucket_index < counts_size());
// Handle the single-sample case.
SingleSample sample = single_sample().Load();
if (sample.count != 0) {
return sample.bucket == bucket_index ? sample.count : 0;
}
// Handle the multi-sample case.
if (counts().has_value() || MountExistingCountsStorage()) {
return subtle::NoBarrier_Load(&counts_at(bucket_index));
}
// And the no-value case.
return 0;
}
std::unique_ptr<SampleCountIterator> SampleVectorBase::Iterator() const {
// Handle the single-sample case.
SingleSample sample = single_sample().Load();
if (sample.count != 0) {
static_assert(std::is_unsigned<decltype(SingleSample::bucket)>::value);
if (sample.bucket >= bucket_ranges_->bucket_count()) {
// Return an empty iterator if the specified bucket is invalid (e.g. due
// to corruption). If a different sample is eventually emitted, we will
// move from SingleSample to a counts storage, and that time, we will
// discard this invalid sample (see MoveSingleSampleToCounts()).
return std::make_unique<SampleVectorIterator>(
base::span<const HistogramBase::AtomicCount>(), bucket_ranges_);
}
return std::make_unique<SingleSampleIterator>(
bucket_ranges_->range(sample.bucket),
bucket_ranges_->range(sample.bucket + 1), sample.count, sample.bucket,
/*value_was_extracted=*/false);
}
// Handle the multi-sample case.
if (counts().has_value() || MountExistingCountsStorage()) {
return std::make_unique<SampleVectorIterator>(*counts(), bucket_ranges_);
}
// And the no-value case.
return std::make_unique<SampleVectorIterator>(
base::span<const HistogramBase::AtomicCount>(), bucket_ranges_);
}
std::unique_ptr<SampleCountIterator> SampleVectorBase::ExtractingIterator() {
// Handle the single-sample case.
SingleSample sample = single_sample().Extract();
if (sample.count != 0) {
static_assert(std::is_unsigned<decltype(SingleSample::bucket)>::value);
if (sample.bucket >= bucket_ranges_->bucket_count()) {
// Return an empty iterator if the specified bucket is invalid (e.g. due
// to corruption). Note that we've already removed the sample from the
// underlying data, so this invalid sample is discarded.
return std::make_unique<ExtractingSampleVectorIterator>(
base::span<HistogramBase::AtomicCount>(), bucket_ranges_);
}
// Note that we have already extracted the samples (i.e., reset the
// underlying data back to 0 samples), even before the iterator has been
// used. This means that the caller needs to ensure that this value is
// eventually consumed, otherwise the sample is lost. There is no iterator
// that simply points to the underlying SingleSample and extracts its value
// on-demand because there are tricky edge cases when the SingleSample is
// disabled between the creation of the iterator and the actual call to
// Get() (for example, due to histogram changing to use a vector to store
// its samples).
return std::make_unique<SingleSampleIterator>(
bucket_ranges_->range(sample.bucket),
bucket_ranges_->range(sample.bucket + 1), sample.count, sample.bucket,
/*value_was_extracted=*/true);
}
// Handle the multi-sample case.
if (counts().has_value() || MountExistingCountsStorage()) {
return std::make_unique<ExtractingSampleVectorIterator>(*counts(),
bucket_ranges_);
}
// And the no-value case.
return std::make_unique<ExtractingSampleVectorIterator>(
base::span<HistogramBase::AtomicCount>(), bucket_ranges_);
}
bool SampleVectorBase::AddSubtractImpl(SampleCountIterator* iter,
HistogramSamples::Operator op) {
// Stop now if there's nothing to do.
if (iter->Done()) {
return true;
}
HistogramBase::Count count;
size_t dest_index = GetDestinationBucketIndexAndCount(*iter, &count);
if (dest_index == SIZE_MAX) {
return false;
}
// Post-increment. Information about the current sample is not available
// after this point.
iter->Next();
// Single-value storage is possible if there is no counts storage and the
// retrieved entry is the only one in the iterator.
if (!counts().has_value()) {
if (iter->Done()) {
// Don't call AccumulateSingleSample because that updates sum and count
// which was already done by the caller of this method.
if (single_sample().Accumulate(
dest_index, op == HistogramSamples::ADD ? count : -count)) {
// Handle race-condition that mounted counts storage between above and
// here.
if (counts().has_value()) {
MoveSingleSampleToCounts();
}
return true;
}
}
// The counts storage will be needed to hold the multiple incoming values.
MountCountsStorageAndMoveSingleSample();
}
// Go through the iterator and add the counts into correct bucket.
while (true) {
// Sample's bucket matches exactly. Adjust count.
subtle::NoBarrier_AtomicIncrement(
&counts_at(dest_index), op == HistogramSamples::ADD ? count : -count);
if (iter->Done()) {
return true;
}
dest_index = GetDestinationBucketIndexAndCount(*iter, &count);
if (dest_index == SIZE_MAX) {
return false;
}
iter->Next();
}
}
size_t SampleVectorBase::GetDestinationBucketIndexAndCount(
SampleCountIterator& iter,
HistogramBase::Count* count) {
HistogramBase::Sample min;
int64_t max;
iter.Get(&min, &max, count);
// If the iter has the bucket index, get there in O(1), otherwise look it up
// from the destination via O(logn) binary search.
size_t bucket_index;
if (!iter.GetBucketIndex(&bucket_index)) {
bucket_index = GetBucketIndex(min);
}
// We expect buckets to match between source and destination. If they don't,
// we may be trying to merge a different version of a histogram (e.g. two
// .pma files from different versions of the code), which is not supported.
// We drop the data from the iter in that case.
// Technically, this codepath could result in data being partially merged -
// i.e. if the buckets at the beginning of iter match, but later ones don't.
// As we expect this to be very rare, we intentionally don't handle it to
// avoid having to do two iterations through the buckets in AddSubtractImpl().
if (bucket_index >= counts_size() ||
min != bucket_ranges_->range(bucket_index) ||
max != bucket_ranges_->range(bucket_index + 1)) {
return SIZE_MAX;
}
return bucket_index;
}
// Uses simple binary search or calculates the index directly if it's an "exact"
// linear histogram. This is very general, but there are better approaches if we
// knew that the buckets were linearly distributed.
size_t SampleVectorBase::GetBucketIndex(Sample value) const {
size_t bucket_count = bucket_ranges_->bucket_count();
CHECK_GE(value, bucket_ranges_->range(0));
CHECK_LT(value, bucket_ranges_->range(bucket_count));
// For "exact" linear histograms, e.g. bucket_count = maximum + 1, their
// minimum is 1 and bucket sizes are 1. Thus, we don't need to binary search
// the bucket index. The bucket index for bucket |value| is just the |value|.
Sample maximum = bucket_ranges_->range(bucket_count - 1);
if (maximum == static_cast<Sample>(bucket_count - 1)) {
// |value| is in the underflow bucket.
if (value < 1) {
return 0;
}
// |value| is in the overflow bucket.
if (value > maximum) {
return bucket_count - 1;
}
return static_cast<size_t>(value);
}
size_t under = 0;
size_t over = bucket_count;
size_t mid;
do {
DCHECK_GE(over, under);
mid = under + (over - under) / 2;
if (mid == under) {
break;
}
if (bucket_ranges_->range(mid) <= value) {
under = mid;
} else {
over = mid;
}
} while (true);
DCHECK_LE(bucket_ranges_->range(mid), value);
CHECK_GT(bucket_ranges_->range(mid + 1), value);
return mid;
}
void SampleVectorBase::MoveSingleSampleToCounts() {
DCHECK(counts().has_value());
// Disable the single-sample since there is now counts storage for the data.
SingleSample sample = single_sample().ExtractAndDisable();
// Stop here if there is no "count" as trying to find the bucket index of
// an invalid (including zero) "value" will crash.
if (sample.count == 0) {
return;
}
// Stop here if the sample bucket would be out of range for the AtomicCount
// array.
if (sample.bucket >= counts_size()) {
return;
}
// Move the value into storage. Sum and redundant-count already account
// for this entry so no need to call IncreaseSumAndCount().
subtle::NoBarrier_AtomicIncrement(&counts_at(sample.bucket), sample.count);
}
void SampleVectorBase::MountCountsStorageAndMoveSingleSample() {
// There are many SampleVector objects and the lock is needed very
// infrequently (just when advancing from single-sample to multi-sample) so
// define a single, global lock that all can use. This lock only prevents
// concurrent entry into the code below; access and updates to |counts_data_|
// still requires atomic operations.
static LazyInstance<Lock>::Leaky counts_lock = LAZY_INSTANCE_INITIALIZER;
if (counts_data_.load(std::memory_order_relaxed) == nullptr) {
AutoLock lock(counts_lock.Get());
if (counts_data_.load(std::memory_order_relaxed) == nullptr) {
// Create the actual counts storage while the above lock is acquired.
span<HistogramBase::Count> counts = CreateCountsStorageWhileLocked();
// Point |counts()| to the newly created storage. This is done while
// locked to prevent possible concurrent calls to CreateCountsStorage
// but, between that call and here, other threads could notice the
// existence of the storage and race with this to set_counts(). That's
// okay because (a) it's atomic and (b) it always writes the same value.
set_counts(counts);
}
}
// Move any single-sample into the newly mounted storage.
MoveSingleSampleToCounts();
}
SampleVector::SampleVector(const BucketRanges* bucket_ranges)
: SampleVector(0, bucket_ranges) {}
SampleVector::SampleVector(uint64_t id, const BucketRanges* bucket_ranges)
: SampleVectorBase(id, std::make_unique<LocalMetadata>(), bucket_ranges) {}
SampleVector::~SampleVector() = default;
bool SampleVector::IsDefinitelyEmpty() const {
// If we are still using SingleSample, and it has a count of 0, then |this|
// has no samples. If we are not using SingleSample, always return false, even
// though it is possible that |this| has no samples (e.g. we are using a
// counts array and all the bucket counts are 0). If we are wrong, this will
// just make the caller perform some extra work thinking that |this| is
// non-empty.
AtomicSingleSample sample = single_sample();
return HistogramSamples::IsDefinitelyEmpty() && !sample.IsDisabled() &&
sample.Load().count == 0;
}
bool SampleVector::MountExistingCountsStorage() const {
// There is never any existing storage other than what is already in use.
return counts().has_value();
}
std::string SampleVector::GetAsciiHeader(std::string_view histogram_name,
int32_t flags) const {
Count sample_count = TotalCount();
std::string output;
StrAppend(&output, {"Histogram: ", histogram_name, " recorded ",
NumberToString(sample_count), " samples"});
if (sample_count == 0) {
DCHECK_EQ(sum(), 0);
} else {
double mean = static_cast<float>(sum()) / sample_count;
StringAppendF(&output, ", mean = %.1f", mean);
}
if (flags) {
StringAppendF(&output, " (flags = 0x%x)", flags);
}
return output;
}
std::string SampleVector::GetAsciiBody() const {
Count sample_count = TotalCount();
// Prepare to normalize graphical rendering of bucket contents.
double max_size = 0;
double scaling_factor = 1;
max_size = GetPeakBucketSize();
// Scale histogram bucket counts to take at most 72 characters.
// Note: Keep in sync w/ kLineLength histogram_samples.cc
const double kLineLength = 72;
if (max_size > kLineLength) {
scaling_factor = kLineLength / max_size;
}
// Calculate largest print width needed for any of our bucket range displays.
size_t print_width = 1;
for (uint32_t i = 0; i < bucket_count(); ++i) {
if (GetCountAtIndex(i)) {
size_t width =
GetSimpleAsciiBucketRange(bucket_ranges()->range(i)).size() + 1;
if (width > print_width) {
print_width = width;
}
}
}
int64_t remaining = sample_count;
int64_t past = 0;
std::string output;
// Output the actual histogram graph.
for (uint32_t i = 0; i < bucket_count(); ++i) {
Count current = GetCountAtIndex(i);
remaining -= current;
std::string range = GetSimpleAsciiBucketRange(bucket_ranges()->range(i));
output.append(range);
for (size_t j = 0; range.size() + j < print_width + 1; ++j) {
output.push_back(' ');
}
if (0 == current && i < bucket_count() - 1 && 0 == GetCountAtIndex(i + 1)) {
while (i < bucket_count() - 1 && 0 == GetCountAtIndex(i + 1)) {
++i;
}
output.append("... \n");
continue; // No reason to plot emptiness.
}
Count current_size = round(current * scaling_factor);
WriteAsciiBucketGraph(current_size, kLineLength, &output);
WriteAsciiBucketContext(past, current, remaining, i, &output);
output.append("\n");
past += current;
}
DCHECK_EQ(sample_count, past);
return output;
}
double SampleVector::GetPeakBucketSize() const {
Count max = 0;
for (uint32_t i = 0; i < bucket_count(); ++i) {
Count current = GetCountAtIndex(i);
if (current > max) {
max = current;
}
}
return max;
}
void SampleVector::WriteAsciiBucketContext(int64_t past,
Count current,
int64_t remaining,
uint32_t current_bucket_index,
std::string* output) const {
double scaled_sum = (past + current + remaining) / 100.0;
WriteAsciiBucketValue(current, scaled_sum, output);
if (0 < current_bucket_index) {
double percentage = past / scaled_sum;
StringAppendF(output, " {%3.1f%%}", percentage);
}
}
span<HistogramBase::AtomicCount>
SampleVector::CreateCountsStorageWhileLocked() {
local_counts_.resize(counts_size());
return local_counts_;
}
PersistentSampleVector::PersistentSampleVector(
uint64_t id,
const BucketRanges* bucket_ranges,
Metadata* meta,
const DelayedPersistentAllocation& counts)
: SampleVectorBase(id, meta, bucket_ranges), persistent_counts_(counts) {
// Only mount the full storage if the single-sample has been disabled.
// Otherwise, it is possible for this object instance to start using (empty)
// storage that was created incidentally while another instance continues to
// update to the single sample. This "incidental creation" can happen because
// the memory is a DelayedPersistentAllocation which allows multiple memory
// blocks within it and applies an all-or-nothing approach to the allocation.
// Thus, a request elsewhere for one of the _other_ blocks would make _this_
// block available even though nothing has explicitly requested it.
//
// Note that it's not possible for the ctor to mount existing storage and
// move any single-sample to it because sometimes the persistent memory is
// read-only. Only non-const methods (which assume that memory is read/write)
// can do that.
if (single_sample().IsDisabled()) {
bool success = MountExistingCountsStorage();
DCHECK(success);
}
}
PersistentSampleVector::~PersistentSampleVector() = default;
bool PersistentSampleVector::IsDefinitelyEmpty() const {
// Not implemented.
NOTREACHED();
}
bool PersistentSampleVector::MountExistingCountsStorage() const {
// There is no early exit if counts is not yet mounted because, given that
// this is a virtual function, it's more efficient to do that at the call-
// site. There is no danger, however, should this get called anyway (perhaps
// because of a race condition) because at worst the `counts_data_` and
// `counts_size_` members would be over-written (in an atomic manner)
// with the exact same values.
if (!persistent_counts_.reference()) {
return false; // Nothing to mount.
}
// Mount the counts array in position. This shouldn't fail but can if the
// data is corrupt or incomplete.
span<HistogramBase::AtomicCount> mem =
persistent_counts_.Get<HistogramBase::AtomicCount>();
if (mem.empty()) {
return false;
}
// Uses a span that only covers the counts the SampleVector should have
// access to, which can be a subset of the entire persistent allocation.
set_counts(mem.first(counts_size()));
return true;
}
span<HistogramBase::AtomicCount>
PersistentSampleVector::CreateCountsStorageWhileLocked() {
span<HistogramBase::AtomicCount> mem =
persistent_counts_.Get<HistogramBase::AtomicCount>();
if (mem.empty()) {
// The above shouldn't fail but can if Bad Things(tm) are occurring in
// the persistent allocator. Crashing isn't a good option so instead
// just allocate something from the heap that we will leak and return that.
// There will be no sharing or persistence but worse things are already
// happening.
auto array = HeapArray<HistogramBase::AtomicCount>::WithSize(counts_size());
ANNOTATE_LEAKING_OBJECT_PTR(array.data());
return std::move(array).leak();
}
// Returns a span that only covers the counts the SampleVector should have
// access to, which can be a subset of the entire persistent allocation.
return mem.first(counts_size());
}
} // namespace base