1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717

base / moving_window.h [blame]

// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_MOVING_WINDOW_H_
#define BASE_MOVING_WINDOW_H_

#include <math.h>
#include <stddef.h>

#include <cmath>
#include <functional>
#include <limits>
#include <vector>

#include "base/check_op.h"
#include "base/memory/raw_ref.h"
#include "base/time/time.h"

namespace base {

// Class to efficiently calculate statistics in a sliding window.
// This class isn't thread safe.
// Supported statistics are Min/Max/Mean/Deviation.
// You can also iterate through the items in the window.
// The class is modular: required features must be specified in the template
// arguments.
// Non listed features don't consume memory or runtime cycles at all.
//
// Usage:
// base::MovingWindow<int,
//                    base::MovingWindowFeatures::Min,
//                    base::MovingWindowFeatures::Max>
//                    moving_window(window_size);
//
// Following convenience shortcuts are provided with predefined sets of
// features:
// MovingMax/MovingMin/MovingAverage/MovingAverageDeviation/MovingMinMax.
//
// Methods:
// Constructor:
//   MovingWindow(size_t window_size);
//
// Window update (available for all templates):
//   AddSample(T value) const;
//   size_t Count() const;
//   void Reset();
//
// Available for MovingWindowFeatures::Min:
//    T Min() const;
//
// Available for MovingWindowFeatures::Max:
//    T Max() const;
//
// Available for MovingWindowFeatures::Mean:
//    U Mean<U>() const;
//
// Available for MovingWindowFeatures::Deviation:
//    U Deviation<U>() const;
//
// Available for MovingWindowFeatures::Iteration. Iterating through the window:
//    iterator begin() const;
//    iterator begin() const;
//    size_t size() const;

// Features supported by the class.
struct MovingWindowFeatures {
  struct Min {
    static bool has_min;
  };

  struct Max {
    static bool has_max;
  };

  // Need to specify a type capable of holding a sum of all elements in the
  // window.
  template <typename SumType>
  struct Mean {
    static SumType has_mean;
  };

  // Need to specify a type capable of holding a sum of squares of all elements
  // in the window.
  template <typename SumType>
  struct Deviation {
    static SumType has_deviation;
  };

  struct Iteration {
    static bool has_iteration;
  };
};

// Main template.
template <typename T, typename... Features>
class MovingWindow;

// Convenience shortcuts.
template <typename T>
using MovingMax = MovingWindow<T, MovingWindowFeatures::Max>;

template <typename T>
using MovingMin = MovingWindow<T, MovingWindowFeatures::Min>;

template <typename T>
using MovingMinMax =
    MovingWindow<T, MovingWindowFeatures::Min, MovingWindowFeatures::Max>;

template <typename T, typename SumType>
using MovingAverage = MovingWindow<T, MovingWindowFeatures::Mean<SumType>>;

template <typename T>
using MovingAverageDeviation =
    MovingWindow<T,
                 MovingWindowFeatures::Mean<T>,
                 MovingWindowFeatures::Deviation<double>>;

namespace internal {

// Class responsible only for calculating maximum in the window.
// It's reused to calculate both min and max via inverting the comparator.
template <typename T, typename Comparator>
class MovingExtremumBase {
 public:
  explicit MovingExtremumBase(size_t window_size)
      : window_size_(window_size),
        values_(window_size),
        added_at_(window_size),
        last_idx_(window_size - 1),
        compare_(Comparator()) {}
  ~MovingExtremumBase() = default;

  // Add new sample to the stream.
  void AddSample(const T& value, size_t total_added) {
    // Remove old elements from the back of the window;
    while (size_ > 0 && added_at_[begin_idx_] + window_size_ <= total_added) {
      ++begin_idx_;
      if (begin_idx_ == window_size_) {
        begin_idx_ = 0;
      }
      --size_;
    }
    // Remove small elements from the front of the window because they can never
    // become the maximum in the window since the currently added element is
    // bigger than them and will leave the window later.
    while (size_ > 0 && compare_(values_[last_idx_], value)) {
      if (last_idx_ == 0) {
        last_idx_ = window_size_;
      }
      --last_idx_;
      --size_;
    }
    DCHECK_LT(size_, window_size_);
    ++last_idx_;
    if (last_idx_ == window_size_) {
      last_idx_ = 0;
    }
    values_[last_idx_] = value;
    added_at_[last_idx_] = total_added;
    ++size_;
  }

  // Get the maximum of the last `window_size` elements.
  T Value() const {
    DCHECK_GT(size_, 0u);
    return values_[begin_idx_];
  }

  // Clear all samples.
  void Reset() {
    size_ = 0;
    begin_idx_ = 0;
    last_idx_ = window_size_ - 1;
  }

 private:
  const size_t window_size_;
  // Circular buffer with some values in the window.
  // Only possible candidates for maximum are stored:
  // values form a non-increasing sequence.
  std::vector<T> values_;
  // Circular buffer storing when numbers in `values_` were added.
  std::vector<size_t> added_at_;
  // Begin of the circular buffers above.
  size_t begin_idx_ = 0;
  // Last occupied position.
  size_t last_idx_;
  // How many elements are stored in the circular buffers above.
  size_t size_ = 0;
  // Template parameter comparator.
  const Comparator compare_;
};

// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullExtremumImpl {
  explicit NullExtremumImpl(size_t) {}
  ~NullExtremumImpl() = default;
  void AddSample(const T&, size_t) {}
  void Reset() {}
};

// Class to hold the moving window.
// It's used to calculate replaced element for Mean/Deviation calculations.
template <typename T>
class MovingWindowBase {
 public:
  explicit MovingWindowBase(size_t window_size) : values_(window_size) {}

  ~MovingWindowBase() = default;

  void AddSample(const T& sample) {
    values_[cur_idx_] = sample;
    ++cur_idx_;
    if (cur_idx_ == values_.size()) {
      cur_idx_ = 0;
    }
  }

  // Is the window filled integer amount of times.
  bool IsLastIdx() const { return cur_idx_ + 1 == values_.size(); }

  void Reset() {
    cur_idx_ = 0;
    std::fill(values_.begin(), values_.end(), T());
  }

  T GetValue() const { return values_[cur_idx_]; }

  T operator[](size_t idx) const { return values_[idx]; }

  size_t Size() const { return values_.size(); }

  // What index will be overwritten by a new element;
  size_t CurIdx() const { return cur_idx_; }

 private:
  // Circular buffer.
  std::vector<T> values_;
  // Where the buffer begins.
  size_t cur_idx_ = 0;
};

// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullWindowImpl {
  explicit NullWindowImpl(size_t) {}
  ~NullWindowImpl() = default;
  void AddSample(const T& sample) {}
  bool IsLastIdx() const { return false; }
  void Reset() {}
  T GetValue() const { return T(); }
};

// Performs division allowing the class to work with more types.
// General template.
template <typename SumType, typename ReturnType>
struct DivideInternal {
  static ReturnType Compute(const SumType& sum, const size_t count) {
    return static_cast<ReturnType>(sum) / static_cast<ReturnType>(count);
  }
};

// Class to calculate moving mean.
template <typename T, typename SumType, bool IsFloating>
class MovingMeanBase {
 public:
  explicit MovingMeanBase(size_t window_size) : sum_() {}

  ~MovingMeanBase() = default;

  void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
    sum_ += sample - replaced_value;
  }

  template <typename ReturnType = SumType>
  ReturnType Mean(const size_t count) const {
    if (count == 0) {
      return ReturnType();
    }
    return DivideInternal<SumType, ReturnType>::Compute(sum_, count);
  }
  void Reset() { sum_ = SumType(); }

  SumType Sum() const { return sum_; }

 private:
  SumType sum_;
};

// Class to calculate moving mean.
// Variant for float types with running sum to avoid rounding errors
// accumulation.
template <typename T, typename SumType>
class MovingMeanBase<T, SumType, true> {
 public:
  explicit MovingMeanBase(size_t window_size) : sum_(), running_sum_() {}

  ~MovingMeanBase() = default;

  void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
    running_sum_ += sample;
    if (is_last_idx) {
      // Replace sum with running sum to avoid rounding errors accumulation.
      sum_ = running_sum_;
      running_sum_ = SumType();
    } else {
      sum_ += sample - replaced_value;
    }
  }

  template <typename ReturnType = SumType>
  ReturnType Mean(const size_t count) const {
    if (count == 0) {
      return ReturnType();
    }
    return DivideInternal<SumType, ReturnType>::Compute(sum_, count);
  }

  void Reset() { sum_ = running_sum_ = SumType(); }

  SumType Sum() const { return sum_; }

 private:
  SumType sum_;
  SumType running_sum_;
};

// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullMeanImpl {
  explicit NullMeanImpl(size_t window_size) {}
  ~NullMeanImpl() = default;

  void AddSample(const T& sample, const T&, bool) {}

  void Reset() {}
};

// Computs main Deviation fromula, allowing the class to work with more types.
// Deviation is equal to mean of squared values minus squared mean value.
// General template.
template <typename SumType, typename ReturnType>
struct DeivationInternal {
  static ReturnType Compute(const SumType& sum_squares,
                            const SumType& square_of_sum,
                            const size_t count) {
    return static_cast<ReturnType>(
        std::sqrt((static_cast<double>(sum_squares) -
                   static_cast<double>(square_of_sum) / count) /
                  count));
  }
};

// Class to compute square of the number.
// General template
template <typename T, typename SquareType>
struct SquareInternal {
  static SquareType Compute(const T& sample) {
    return static_cast<SquareType>(sample) * sample;
  }
};

// Class to calculate moving deviation.
template <typename T, typename SumType, bool IsFloating>
class MovingDeviationBase {
 public:
  explicit MovingDeviationBase(size_t window_size) : sum_sq_() {}
  ~MovingDeviationBase() = default;
  void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
    sum_sq_ += SquareInternal<T, SumType>::Compute(sample) -
               SquareInternal<T, SumType>::Compute(replaced_value);
  }

  template <typename ReturnType, typename U>
  ReturnType Deviation(const size_t count, const U& sum) const {
    if (count == 0) {
      return ReturnType();
    }
    return DeivationInternal<SumType, ReturnType>::Compute(
        sum_sq_, SquareInternal<U, SumType>::Compute(sum), count);
  }
  void Reset() { sum_sq_ = SumType(); }

 private:
  SumType sum_sq_;
};

// Class to calculate moving deviation.
// Variant for float types with running sum to avoid rounding errors
// accumulation.
template <typename T, typename SumType>
class MovingDeviationBase<T, SumType, true> {
 public:
  explicit MovingDeviationBase(size_t window_size)
      : sum_sq_(), running_sum_() {}
  ~MovingDeviationBase() = default;
  void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
    SumType square = SquareInternal<T, SumType>::Compute(sample);
    running_sum_ += square;
    if (is_last_idx) {
      // Replace sum with running sum to avoid rounding errors accumulation.
      sum_sq_ = running_sum_;
      running_sum_ = SumType();
    } else {
      sum_sq_ += square - SquareInternal<T, SumType>::Compute(replaced_value);
    }
  }

  template <typename ReturnType, typename U>
  ReturnType Deviation(const size_t count, const U& sum) const {
    if (count == 0) {
      return ReturnType();
    }
    return DeivationInternal<SumType, ReturnType>::Compute(
        sum_sq_, SquareInternal<U, SumType>::Compute(sum), count);
  }
  void Reset() { running_sum_ = sum_sq_ = SumType(); }

 private:
  SumType sum_sq_;
  SumType running_sum_;
};

// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullDeviationImpl {
 public:
  explicit NullDeviationImpl(size_t window_size) {}
  ~NullDeviationImpl() = default;
  void AddSample(const T&, const T&, bool) {}
  void Reset() {}
};

// Template helpers.

// Gets all enabled features in one struct.
template <typename... Features>
struct EnabledFeatures : public Features... {};

template <typename T>
concept has_member_min = requires { T::has_min; };

template <typename T>
concept has_member_max = requires { T::has_max; };

template <typename T>
concept has_member_mean = requires { T::has_mean; };

template <typename T>
concept has_member_deviation = requires { T::has_deviation; };

template <typename T>
concept has_member_iteration = requires { T::has_iteration; };

// Gets the type of the member if present.
// Can't just use decltype, because the member might be absent.
template <typename T>
struct get_type_mean {
  using type = void;
};
template <typename T>
  requires has_member_mean<T>
struct get_type_mean<T> {
  using type = decltype(T::has_mean);
};
template <typename T>
using mean_t = typename get_type_mean<T>::type;

template <typename T>
struct get_type_deviation {
  using type = void;
};
template <typename T>
  requires has_member_deviation<T>
struct get_type_deviation<T> {
  using type = decltype(T::has_deviation);
};
template <typename T>
using deviation_t = typename get_type_deviation<T>::type;

// Performs division allowing the class to work with more types.
// Specific template for TimeDelta.
template <>
struct DivideInternal<TimeDelta, TimeDelta> {
  static TimeDelta Compute(const TimeDelta& sum, const size_t count) {
    return sum / count;
  }
};

// Computs main Deviation fromula, allowing the class to work with more types.
// Deviation is equal to mean of squared values minus squared mean value.
// Specific template for TimeDelta.
template <>
struct DeivationInternal<double, TimeDelta> {
  static TimeDelta Compute(const double sum_squares,
                           const double square_of_sum,
                           const size_t count) {
    return Seconds(std::sqrt((sum_squares - square_of_sum / count) / count));
  }
};

// Class to compute square of the number.
// Specific template for TimeDelta.
template <>
struct SquareInternal<TimeDelta, double> {
  static double Compute(const TimeDelta& sample) {
    return sample.InSecondsF() * sample.InSecondsF();
  }
};

}  // namespace internal

// Implementation of the main class.
template <typename T, typename... Features>
class MovingWindow {
 public:
  // List of all requested features.
  using EnabledFeatures = internal::EnabledFeatures<Features...>;

  explicit MovingWindow(size_t window_size)
      : min_impl_(window_size),
        max_impl_(window_size),
        mean_impl_(window_size),
        deviation_impl_(window_size),
        window_impl_(window_size) {}

  // Adds sample to the window.
  void AddSample(const T& sample) {
    ++total_added_;
    min_impl_.AddSample(sample, total_added_);
    max_impl_.AddSample(sample, total_added_);
    mean_impl_.AddSample(sample, window_impl_.GetValue(),
                         window_impl_.IsLastIdx());
    deviation_impl_.AddSample(sample, window_impl_.GetValue(),
                              window_impl_.IsLastIdx());
    window_impl_.AddSample(sample);
  }

  // Returns amount of elementes so far in the stream (might be bigger than the
  // window size).
  size_t Count() const { return total_added_; }

  // Calculates min in the window.
  T Min() const
    requires internal::has_member_min<EnabledFeatures>
  {
    return min_impl_.Value();
  }

  // Calculates max in the window.
  T Max() const
    requires internal::has_member_max<EnabledFeatures>
  {
    return max_impl_.Value();
  }

  // Calculates mean in the window.
  // `ReturnType` can be used to adjust the type of the calculated mean value;
  // if not specified, uses `T` by default.
  template <typename ReturnType = T>
    requires internal::has_member_mean<EnabledFeatures>
  ReturnType Mean() const {
    return mean_impl_.template Mean<ReturnType>(
        std::min(total_added_, window_impl_.Size()));
  }

  // Calculates deviation in the window.
  // `ReturnType` can be used to adjust the type of the calculated deviation
  // value; if not specified, uses `T` by default.
  template <typename ReturnType = T>
    requires internal::has_member_deviation<EnabledFeatures>
  ReturnType Deviation() const {
    const size_t count = std::min(total_added_, window_impl_.Size());
    return deviation_impl_.template Deviation<ReturnType>(count,
                                                          mean_impl_.Sum());
  }

  // Resets the state to an empty window.
  void Reset() {
    min_impl_.Reset();
    max_impl_.Reset();
    mean_impl_.Reset();
    deviation_impl_.Reset();
    window_impl_.Reset();
    total_added_ = 0;
  }

  // iterator implementation.
  class iterator {
   public:
    ~iterator() = default;

    const T operator*() {
      DCHECK_LT(idx_, window_impl_->Size());
      return (*window_impl_)[idx_];
    }

    iterator& operator++() {
      ++idx_;
      // Wrap around the circular buffer.
      if (idx_ == window_impl_->Size()) {
        idx_ = 0;
      }
      // The only way to arrive to the current element is to
      // come around after iterating through the whole window.
      if (idx_ == window_impl_->CurIdx()) {
        idx_ = kInvalidIndex;
      }
      return *this;
    }

    bool operator==(const iterator& other) const { return idx_ == other.idx_; }

   private:
    iterator(const internal::MovingWindowBase<T>& window, size_t idx)
        : window_impl_(window), idx_(idx) {}

    static const size_t kInvalidIndex = std::numeric_limits<size_t>::max();

    raw_ref<const internal::MovingWindowBase<T>> window_impl_;
    size_t idx_;

    friend class MovingWindow<T, Features...>;
  };

  // Begin iterator. Template to enable only if iteration feature is requested.
  iterator begin() const
    requires internal::has_member_iteration<EnabledFeatures>
  {
    if (total_added_ == 0) {
      return end();
    }
    // Before window is fully filled, the oldest element is at the index 0.
    size_t idx =
        (total_added_ < window_impl_.Size()) ? 0 : window_impl_.CurIdx();

    return iterator(window_impl_, idx);
  }

  // End iterator. Template to enable only if iteration feature is requested.
  iterator end() const
    requires internal::has_member_iteration<EnabledFeatures>
  {
    return iterator(window_impl_, iterator::kInvalidIndex);
  }

  // Size of the collection. Template to enable only if iteration feature is
  // requested.
  size_t size() const
    requires internal::has_member_iteration<EnabledFeatures>
  {
    return std::min(total_added_, window_impl_.Size());
  }

 private:
  // Member for calculating min.
  // Conditionally enabled on Min feature.
  std::conditional_t<internal::has_member_min<EnabledFeatures>,
                     internal::MovingExtremumBase<T, std::greater<>>,
                     internal::NullExtremumImpl<T>>
      min_impl_;

  // Member for calculating min.
  // Conditionally enabled on Min feature.
  std::conditional_t<internal::has_member_max<EnabledFeatures>,
                     internal::MovingExtremumBase<T, std::less<>>,
                     internal::NullExtremumImpl<T>>
      max_impl_;

  // Type for sum value in Mean implementation. Might need to reuse deviation
  // sum type, because enabling only deviation feature will also enable mean
  // member (because deviation calculation depends on mean calculation).
  using MeanSumType =
      std::conditional_t<internal::has_member_mean<EnabledFeatures>,
                         internal::mean_t<EnabledFeatures>,
                         internal::deviation_t<EnabledFeatures>>;
  // Member for calculating mean.
  // Conditionally enabled on Mean or Deviation feature (because deviation
  // calculation depends on mean calculation).
  std::conditional_t<
      internal::has_member_mean<EnabledFeatures> ||
          internal::has_member_deviation<EnabledFeatures>,
      internal::
          MovingMeanBase<T, MeanSumType, std::is_floating_point_v<MeanSumType>>,
      internal::NullMeanImpl<T>>
      mean_impl_;

  // Member for calculating deviation.
  // Conditionally enabled on Deviation feature.
  std::conditional_t<
      internal::has_member_deviation<EnabledFeatures>,
      internal::MovingDeviationBase<
          T,
          internal::deviation_t<EnabledFeatures>,
          std::is_floating_point_v<internal::deviation_t<EnabledFeatures>>>,
      internal::NullDeviationImpl<T>>
      deviation_impl_;

  // Member for storing the moving window.
  // Conditionally enabled on Mean, Deviation or Iteration feature since
  // they need the elements in the window.
  // Min and Max features store elements internally so they don't need this.
  std::conditional_t<internal::has_member_mean<EnabledFeatures> ||
                         internal::has_member_deviation<EnabledFeatures> ||
                         internal::has_member_iteration<EnabledFeatures>,
                     internal::MovingWindowBase<T>,
                     internal::NullWindowImpl<T>>
      window_impl_;
  // Total number of added elements.
  size_t total_added_ = 0;
};

}  // namespace base

#endif  // BASE_MOVING_WINDOW_H_