1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
base / numerics / checked_math_impl.h [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_
#define BASE_NUMERICS_CHECKED_MATH_IMPL_H_
// IWYU pragma: private, include "base/numerics/checked_math.h"
#include <stdint.h>
#include <cmath>
#include <concepts>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h" // IWYU pragma: export
namespace base {
namespace internal {
template <typename T>
constexpr bool CheckedAddImpl(T x, T y, T* result) {
static_assert(std::integral<T>, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = static_cast<UnsignedDst>(x);
const UnsignedDst uy = static_cast<UnsignedDst>(y);
const UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
// Addition is valid if the sign of (x + y) is equal to either that of x or
// that of y.
if (std::is_signed_v<T>
? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) < 0
: uresult < uy) { // Unsigned is either valid or underflow.
return false;
}
*result = static_cast<T>(uresult);
return true;
}
template <typename T, typename U>
struct CheckedAddOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedAddOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if constexpr (CheckedAddFastOp<T, U>::is_supported)
return CheckedAddFastOp<T, U>::Do(x, y, result);
// Double the underlying type up to a full machine word.
using FastPromotion = FastIntegerArithmeticPromotion<T, U>;
using Promotion =
std::conditional_t<(kIntegerBitsPlusSign<FastPromotion> >
kIntegerBitsPlusSign<intptr_t>),
BigEnoughPromotion<T, U>, FastPromotion>;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) [[unlikely]] {
return false;
}
Promotion presult = {};
bool is_valid = true;
if constexpr (kIsIntegerArithmeticSafe<Promotion, T, U>) {
presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
} else {
is_valid = CheckedAddImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
if (!is_valid || !IsValueInRangeForNumericType<V>(presult))
return false;
*result = static_cast<V>(presult);
return true;
}
};
template <typename T>
constexpr bool CheckedSubImpl(T x, T y, T* result) {
static_assert(std::integral<T>, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = static_cast<UnsignedDst>(x);
const UnsignedDst uy = static_cast<UnsignedDst>(y);
const UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
// the same sign.
if (std::is_signed_v<T>
? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) < 0
: x < y) {
return false;
}
*result = static_cast<T>(uresult);
return true;
}
template <typename T, typename U>
struct CheckedSubOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedSubOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if constexpr (CheckedSubFastOp<T, U>::is_supported)
return CheckedSubFastOp<T, U>::Do(x, y, result);
// Double the underlying type up to a full machine word.
using FastPromotion = FastIntegerArithmeticPromotion<T, U>;
using Promotion =
std::conditional_t<(kIntegerBitsPlusSign<FastPromotion> >
kIntegerBitsPlusSign<intptr_t>),
BigEnoughPromotion<T, U>, FastPromotion>;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) [[unlikely]] {
return false;
}
Promotion presult = {};
bool is_valid = true;
if constexpr (kIsIntegerArithmeticSafe<Promotion, T, U>) {
presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
} else {
is_valid = CheckedSubImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
if (!is_valid || !IsValueInRangeForNumericType<V>(presult))
return false;
*result = static_cast<V>(presult);
return true;
}
};
template <typename T>
constexpr bool CheckedMulImpl(T x, T y, T* result) {
static_assert(std::integral<T>, "Type must be integral");
// Since the value of x*y is potentially undefined if we have a signed type,
// we compute it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = SafeUnsignedAbs(x);
const UnsignedDst uy = SafeUnsignedAbs(y);
const UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
const bool is_negative =
std::is_signed_v<T> && static_cast<SignedDst>(x ^ y) < 0;
// We have a fast out for unsigned identity or zero on the second operand.
// After that it's an unsigned overflow check on the absolute value, with
// a +1 bound for a negative result.
if (uy > UnsignedDst(!std::is_signed_v<T> || is_negative) &&
ux > (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy) {
return false;
}
*result = static_cast<T>(is_negative ? 0 - uresult : uresult);
return true;
}
template <typename T, typename U>
struct CheckedMulOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedMulOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if constexpr (CheckedMulFastOp<T, U>::is_supported)
return CheckedMulFastOp<T, U>::Do(x, y, result);
using Promotion = FastIntegerArithmeticPromotion<T, U>;
// Verify the destination type can hold the result (always true for 0).
if ((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x && y) [[unlikely]] {
return false;
}
Promotion presult = {};
bool is_valid = true;
if constexpr (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
// The fast op may be available with the promoted type.
// The casts here are safe because of the "value in range" conditional
// above.
is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(
static_cast<Promotion>(x), static_cast<Promotion>(y), &presult);
} else if constexpr (kIsIntegerArithmeticSafe<Promotion, T, U>) {
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
} else {
is_valid = CheckedMulImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
if (!is_valid || !IsValueInRangeForNumericType<V>(presult))
return false;
*result = static_cast<V>(presult);
return true;
}
};
// Division just requires a check for a zero denominator or an invalid negation
// on signed min/-1.
template <typename T, typename U>
struct CheckedDivOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedDivOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if (!y) [[unlikely]] {
return false;
}
// The overflow check can be compiled away if we don't have the exact
// combination of types needed to trigger this case.
using Promotion = BigEnoughPromotion<T, U>;
if (std::is_signed_v<T> && std::is_signed_v<U> &&
kIsTypeInRangeForNumericType<T, Promotion> &&
static_cast<Promotion>(x) == std::numeric_limits<Promotion>::lowest() &&
y == static_cast<U>(-1)) [[unlikely]] {
return false;
}
// This branch always compiles away if the above branch wasn't removed.
if ((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x) [[unlikely]] {
return false;
}
const Promotion presult = Promotion(x) / Promotion(y);
if (!IsValueInRangeForNumericType<V>(presult))
return false;
*result = static_cast<V>(presult);
return true;
}
};
template <typename T, typename U>
struct CheckedModOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedModOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if (!y) [[unlikely]] {
return false;
}
using Promotion = BigEnoughPromotion<T, U>;
if (std::is_signed_v<T> && std::is_signed_v<U> &&
kIsTypeInRangeForNumericType<T, Promotion> &&
static_cast<Promotion>(x) == std::numeric_limits<Promotion>::lowest() &&
y == static_cast<U>(-1)) [[unlikely]] {
*result = 0;
return true;
}
const Promotion presult =
static_cast<Promotion>(x) % static_cast<Promotion>(y);
if (!IsValueInRangeForNumericType<V>(presult))
return false;
*result = static_cast<Promotion>(presult);
return true;
}
};
template <typename T, typename U>
struct CheckedLshOp {};
// Left shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Shifts of negative values
// are undefined. Otherwise it is defined when the result fits.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedLshOp<T, U> {
using result_type = T;
template <typename V>
static constexpr bool Do(T x, U shift, V* result) {
// Disallow negative numbers and verify the shift is in bounds.
if (!IsValueNegative(x) &&
as_unsigned(shift) < as_unsigned(std::numeric_limits<T>::digits))
[[likely]] {
// Shift as unsigned to avoid undefined behavior.
*result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
return *result >> shift == x;
}
// Handle the legal corner-case of a full-width signed shift of zero.
if (!std::is_signed_v<T> || x ||
as_unsigned(shift) != as_unsigned(std::numeric_limits<T>::digits)) {
return false;
}
*result = 0;
return true;
}
};
template <typename T, typename U>
struct CheckedRshOp {};
// Right shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Otherwise, it is always defined,
// but a right shift of a negative value is implementation-dependent.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedRshOp<T, U> {
using result_type = T;
template <typename V>
static constexpr bool Do(T x, U shift, V* result) {
// Use sign conversion to push negative values out of range.
if (as_unsigned(shift) >= kIntegerBitsPlusSign<T>) [[unlikely]] {
return false;
}
const T tmp = x >> shift;
if (!IsValueInRangeForNumericType<V>(tmp))
return false;
*result = static_cast<V>(tmp);
return true;
}
};
template <typename T, typename U>
struct CheckedAndOp {};
// For simplicity we support only unsigned integer results.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedAndOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp =
static_cast<result_type>(x) & static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp))
return false;
*result = static_cast<V>(tmp);
return true;
}
};
template <typename T, typename U>
struct CheckedOrOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedOrOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp =
static_cast<result_type>(x) | static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp))
return false;
*result = static_cast<V>(tmp);
return true;
}
};
template <typename T, typename U>
struct CheckedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedXorOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp =
static_cast<result_type>(x) ^ static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp))
return false;
*result = static_cast<V>(tmp);
return true;
}
};
// Max doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U>
struct CheckedMaxOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct CheckedMaxOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp = IsGreater<T, U>::Test(x, y)
? static_cast<result_type>(x)
: static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp))
return false;
*result = static_cast<V>(tmp);
return true;
}
};
// Min doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U>
struct CheckedMinOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct CheckedMinOp<T, U> {
using result_type = LowestValuePromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp = IsLess<T, U>::Test(x, y)
? static_cast<result_type>(x)
: static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp))
return false;
*result = static_cast<V>(tmp);
return true;
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
requires(std::floating_point<T> || std::floating_point<U>) \
struct Checked##NAME##Op<T, U> { \
using result_type = MaxExponentPromotion<T, U>; \
template <typename V> \
static constexpr bool Do(T x, U y, V* result) { \
const result_type presult = x OP y; \
if (!IsValueInRangeForNumericType<V>(presult)) \
return false; \
*result = static_cast<V>(presult); \
return true; \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation {
NUMERIC_INTEGER,
NUMERIC_FLOATING,
NUMERIC_UNKNOWN
};
template <typename NumericType>
struct GetNumericRepresentation {
static const NumericRepresentation value =
std::integral<NumericType>
? NUMERIC_INTEGER
: (std::floating_point<NumericType> ? NUMERIC_FLOATING
: NUMERIC_UNKNOWN);
};
template <typename T,
NumericRepresentation type = GetNumericRepresentation<T>::value>
class CheckedNumericState {};
// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER> {
public:
template <typename Src = int>
constexpr explicit CheckedNumericState(Src value = 0, bool is_valid = true)
: is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {
static_assert(std::is_arithmetic_v<Src>, "Argument must be numeric.");
}
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: CheckedNumericState(rhs.value(), rhs.is_valid()) {}
constexpr bool is_valid() const { return is_valid_; }
constexpr T value() const { return value_; }
private:
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrZero(Src value, bool is_valid) {
return (std::integral<UnderlyingType<Src>> || is_valid)
? static_cast<T>(value)
: 0;
}
// is_valid_ precedes value_ because member initializers in the constructors
// are evaluated in field order, and is_valid_ must be read when initializing
// value_.
bool is_valid_;
T value_;
};
// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING> {
public:
template <typename Src = double>
constexpr explicit CheckedNumericState(Src value = 0.0, bool is_valid = true)
: value_(WellDefinedConversionOrNaN(
value,
is_valid && IsValueInRangeForNumericType<T>(value))) {}
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: CheckedNumericState(rhs.value(), rhs.is_valid()) {}
constexpr bool is_valid() const {
// Written this way because std::isfinite is not constexpr before C++23.
// TODO(C++23): Use `std::isfinite()` unconditionally.
return std::is_constant_evaluated()
? value_ <= std::numeric_limits<T>::max() &&
value_ >= std::numeric_limits<T>::lowest()
: std::isfinite(value_);
}
constexpr T value() const { return value_; }
private:
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrNaN(Src value, bool is_valid) {
return (kStaticDstRangeRelationToSrcRange<T, UnderlyingType<Src>> ==
NumericRangeRepresentation::kContained ||
is_valid)
? static_cast<T>(value)
: std::numeric_limits<T>::quiet_NaN();
}
T value_;
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CHECKED_MATH_IMPL_H_