1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
base / numerics / clamped_math_impl.h [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
#define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
// IWYU pragma: private, include "base/numerics/clamped_math.h"
#include <concepts>
#include <limits>
#include <type_traits>
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h" // IWYU pragma: export
namespace base {
namespace internal {
template <typename T>
requires(std::signed_integral<T>)
constexpr T SaturatedNegWrapper(T value) {
return std::is_constant_evaluated() || !ClampedNegFastOp<T>::is_supported
? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
? NegateWrapper(value)
: std::numeric_limits<T>::max())
: ClampedNegFastOp<T>::Do(value);
}
template <typename T>
requires(std::unsigned_integral<T>)
constexpr T SaturatedNegWrapper(T value) {
return T(0);
}
template <typename T>
requires(std::floating_point<T>)
constexpr T SaturatedNegWrapper(T value) {
return -value;
}
template <typename T>
requires(std::integral<T>)
constexpr T SaturatedAbsWrapper(T value) {
// The calculation below is a static identity for unsigned types, but for
// signed integer types it provides a non-branching, saturated absolute value.
// This works because SafeUnsignedAbs() returns an unsigned type, which can
// represent the absolute value of all negative numbers of an equal-width
// integer type. The call to IsValueNegative() then detects overflow in the
// special case of numeric_limits<T>::min(), by evaluating the bit pattern as
// a signed integer value. If it is the overflow case, we end up subtracting
// one from the unsigned result, thus saturating to numeric_limits<T>::max().
return static_cast<T>(
SafeUnsignedAbs(value) -
IsValueNegative<T>(static_cast<T>(SafeUnsignedAbs(value))));
}
template <typename T>
requires(std::floating_point<T>)
constexpr T SaturatedAbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <typename T, typename U>
struct ClampedAddOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedAddOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
requires(std::same_as<V, result_type> || kIsTypeInRangeForNumericType<U, V>)
static constexpr V Do(T x, U y) {
if (!std::is_constant_evaluated() && ClampedAddFastOp<T, U>::is_supported) {
return ClampedAddFastOp<T, U>::template Do<V>(x, y);
}
const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
V result = {};
if (CheckedAddOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedSubOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedSubOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
requires(std::same_as<V, result_type> || kIsTypeInRangeForNumericType<U, V>)
static constexpr V Do(T x, U y) {
if (!std::is_constant_evaluated() && ClampedSubFastOp<T, U>::is_supported) {
return ClampedSubFastOp<T, U>::template Do<V>(x, y);
}
const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
V result = {};
if (CheckedSubOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedMulOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedMulOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
if (!std::is_constant_evaluated() && ClampedMulFastOp<T, U>::is_supported) {
return ClampedMulFastOp<T, U>::template Do<V>(x, y);
}
V result = {};
const V saturated =
CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
if (CheckedMulOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedDivOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedDivOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
if ((CheckedDivOp<T, U>::Do(x, y, &result))) [[likely]] {
return result;
}
// Saturation goes to max, min, or NaN (if x is zero).
return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
: SaturationDefaultLimits<V>::NaN();
}
};
template <typename T, typename U>
struct ClampedModOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedModOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
if (CheckedModOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return x;
}
};
template <typename T, typename U>
struct ClampedLshOp {};
// Left shift. Non-zero values saturate in the direction of the sign. A zero
// shifted by any value always results in zero.
template <typename T, typename U>
requires(std::integral<T> && std::unsigned_integral<U>)
struct ClampedLshOp<T, U> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
if (shift < std::numeric_limits<T>::digits) [[likely]] {
// Shift as unsigned to avoid undefined behavior.
V result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
if (result >> shift == x) [[likely]] {
return result;
}
}
return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
}
};
template <typename T, typename U>
struct ClampedRshOp {};
// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
template <typename T, typename U>
requires(std::integral<T> && std::unsigned_integral<U>)
struct ClampedRshOp<T, U> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
// Signed right shift is odd, because it saturates to -1 or 0.
const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
if (shift < kIntegerBitsPlusSign<T>) [[likely]] {
return saturated_cast<V>(x >> shift);
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedAndOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedAndOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) & static_cast<result_type>(y);
}
};
template <typename T, typename U>
struct ClampedOrOp {};
// For simplicity we promote to unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedOrOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) | static_cast<result_type>(y);
}
};
template <typename T, typename U>
struct ClampedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedXorOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) ^ static_cast<result_type>(y);
}
};
template <typename T, typename U>
struct ClampedMaxOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct ClampedMaxOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
template <typename T, typename U>
struct ClampedMinOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct ClampedMinOp<T, U> {
using result_type = LowestValuePromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
requires(std::floating_point<T> || std::floating_point<U>) \
struct Clamped##NAME##Op<T, U> { \
using result_type = MaxExponentPromotion<T, U>; \
template <typename V = result_type> \
static constexpr V Do(T x, U y) { \
return saturated_cast<V>(x OP y); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_