1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
base / numerics / safe_conversions_impl.h [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
// IWYU pragma: private, include "base/numerics/safe_conversions.h"
#include <stddef.h>
#include <stdint.h>
#include <concepts>
#include <limits>
#include <type_traits>
#include <utility>
#include "base/numerics/integral_constant_like.h"
namespace base::internal {
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
inline constexpr int kMaxExponent =
std::is_floating_point_v<NumericType>
? std::numeric_limits<NumericType>::max_exponent
: std::numeric_limits<NumericType>::digits + 1;
// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
inline constexpr int kIntegerBitsPlusSign =
std::numeric_limits<NumericType>::digits + std::is_signed_v<NumericType>;
// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T>
requires(std::is_arithmetic_v<T>)
constexpr bool IsValueNegative(T value) {
if constexpr (std::is_signed_v<T>) {
return value < 0;
} else {
return false;
}
}
// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
requires std::is_integral_v<T>
constexpr auto ConditionalNegate(T x, bool is_negative) {
using SignedT = std::make_signed_t<T>;
using UnsignedT = std::make_unsigned_t<T>;
return static_cast<SignedT>((static_cast<UnsignedT>(x) ^
static_cast<UnsignedT>(-SignedT(is_negative))) +
is_negative);
}
// This performs a safe, absolute value via unsigned overflow.
template <typename T>
requires std::is_integral_v<T>
constexpr auto SafeUnsignedAbs(T value) {
using UnsignedT = std::make_unsigned_t<T>;
return IsValueNegative(value)
? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value))
: static_cast<UnsignedT>(value);
}
// TODO(jschuh): Debug builds don't reliably propagate constants, so we restrict
// some accelerated runtime paths to release builds until this can be forced
// with consteval support in C++20 or C++23.
#if defined(NDEBUG)
inline constexpr bool kEnableAsmCode = true;
#else
inline constexpr bool kEnableAsmCode = false;
#endif
// Forces a crash, like a NOTREACHED(). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure {
template <typename T>
static T HandleFailure() {
#if defined(_MSC_VER)
__debugbreak();
#elif defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#else
((void)(*(volatile char*)0 = 0));
#endif
return T();
}
};
enum class IntegerRepresentation { kUnsigned, kSigned };
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum class NumericRangeRepresentation { kNotContained, kContained };
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
// Default case, used for same sign: Dst is guaranteed to contain Src only if
// its range is equal or larger.
template <typename Dst,
typename Src,
IntegerRepresentation DstSign =
std::is_signed_v<Dst> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned,
IntegerRepresentation SrcSign =
std::is_signed_v<Src> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned>
inline constexpr auto kStaticDstRangeRelationToSrcRange =
kMaxExponent<Dst> >= kMaxExponent<Src>
? NumericRangeRepresentation::kContained
: NumericRangeRepresentation::kNotContained;
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
inline constexpr auto
kStaticDstRangeRelationToSrcRange<Dst,
Src,
IntegerRepresentation::kSigned,
IntegerRepresentation::kUnsigned> =
kMaxExponent<Dst> > kMaxExponent<Src>
? NumericRangeRepresentation::kContained
: NumericRangeRepresentation::kNotContained;
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
inline constexpr auto
kStaticDstRangeRelationToSrcRange<Dst,
Src,
IntegerRepresentation::kUnsigned,
IntegerRepresentation::kSigned> =
NumericRangeRepresentation::kNotContained;
// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck {
public:
constexpr RangeCheck() = default;
constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
: is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
constexpr bool operator==(const RangeCheck& rhs) const = default;
constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
private:
// Do not change the order of these member variables. The integral conversion
// optimization depends on this exact order.
const bool is_underflow_ = false;
const bool is_overflow_ = false;
};
// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
// 1. Integral maximum is always one less than a power of two, so it must be
// truncated to fit the mantissa of the floating point. The direction of
// rounding is implementation defined, but by default it's always IEEE
// floats, which round to nearest and thus result in a value of larger
// magnitude than the integral value.
// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
// // is 4294967295u.
// 2. If the floating point value is equal to the promoted integral maximum
// value, a range check will erroneously pass.
// Example: (4294967296f <= 4294967295u) // This is true due to a precision
// // loss in rounding up to float.
// 3. When the floating point value is then converted to an integral, the
// resulting value is out of range for the target integral type and
// thus is implementation defined.
// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = std::numeric_limits<Dst>;
// Computes the mask required to make an accurate comparison between types.
static constexpr int kShift = (kMaxExponent<Src> > kMaxExponent<Dst> &&
SrcLimits::digits < DstLimits::digits)
? (DstLimits::digits - SrcLimits::digits)
: 0;
template <typename T>
requires(std::same_as<T, Dst> &&
((std::integral<T> && kShift < DstLimits::digits) ||
(std::floating_point<T> && kShift == 0)))
// Masks out the integer bits that are beyond the precision of the
// intermediate type used for comparison.
static constexpr T Adjust(T value) {
if constexpr (std::integral<T>) {
using UnsignedDst = typename std::make_unsigned_t<T>;
return static_cast<T>(
ConditionalNegate(SafeUnsignedAbs(value) &
~((UnsignedDst{1} << kShift) - UnsignedDst{1}),
IsValueNegative(value)));
} else {
return value;
}
}
static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Default case, used for same sign narrowing: The range is contained for normal
// limits.
template <typename Dst,
typename Src,
template <typename>
class Bounds,
IntegerRepresentation DstSign =
std::is_signed_v<Dst> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned,
IntegerRepresentation SrcSign =
std::is_signed_v<Src> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned,
NumericRangeRepresentation DstRange =
kStaticDstRangeRelationToSrcRange<Dst, Src>>
struct DstRangeRelationToSrcRangeImpl {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
static_cast<Dst>(value) >= DstLimits::lowest(),
static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
static_cast<Dst>(value) <= DstLimits::max());
}
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kSigned,
IntegerRepresentation::kSigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kUnsigned,
IntegerRepresentation::kUnsigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
DstLimits::lowest() == Dst{0} || value >= DstLimits::lowest(),
value <= DstLimits::max());
}
};
// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kSigned,
IntegerRepresentation::kUnsigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(DstLimits::lowest() <= Dst{0} ||
static_cast<Promotion>(value) >=
static_cast<Promotion>(DstLimits::lowest()),
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kUnsigned,
IntegerRepresentation::kSigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
bool ge_zero;
// Converting floating-point to integer will discard fractional part, so
// values in (-1.0, -0.0) will truncate to 0 and fit in Dst.
if constexpr (std::is_floating_point_v<Src>) {
ge_zero = value > Src{-1};
} else {
ge_zero = value >= Src{0};
}
return RangeCheck(
ge_zero && (DstLimits::lowest() == 0 ||
static_cast<Dst>(value) >= DstLimits::lowest()),
static_cast<Promotion>(SrcLimits::max()) <=
static_cast<Promotion>(DstLimits::max()) ||
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Simple wrapper for statically checking if a type's range is contained.
template <typename Dst, typename Src>
inline constexpr bool kIsTypeInRangeForNumericType =
kStaticDstRangeRelationToSrcRange<Dst, Src> ==
NumericRangeRepresentation::kContained;
template <typename Dst,
template <typename> class Bounds = std::numeric_limits,
typename Src>
requires(std::is_arithmetic_v<Src> && std::is_arithmetic_v<Dst> &&
Bounds<Dst>::lowest() < Bounds<Dst>::max())
constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSignImpl;
#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
template <> \
struct IntegerForDigitsAndSignImpl<kIntegerBitsPlusSign<I>, \
std::is_signed_v<I>> { \
using type = I; \
}
INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN
template <size_t Size, bool IsSigned>
using IntegerForDigitsAndSign =
IntegerForDigitsAndSignImpl<Size, IsSigned>::type;
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(kIntegerBitsPlusSign<intmax_t> == 64,
"Max integer size not supported for this toolchain.");
template <typename Integer, bool IsSigned = std::is_signed_v<Integer>>
using TwiceWiderInteger =
IntegerForDigitsAndSign<kIntegerBitsPlusSign<Integer> * 2, IsSigned>;
// Determines the type that can represent the largest positive value.
template <typename Lhs, typename Rhs>
using MaxExponentPromotion =
std::conditional_t<(kMaxExponent<Lhs> > kMaxExponent<Rhs>), Lhs, Rhs>;
// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs, typename Rhs>
using LowestValuePromotion = std::conditional_t<
std::is_signed_v<Lhs>
? (!std::is_signed_v<Rhs> || kMaxExponent<Lhs> > kMaxExponent<Rhs>)
: (!std::is_signed_v<Rhs> && kMaxExponent<Lhs> < kMaxExponent<Rhs>),
Lhs,
Rhs>;
// Determines the type that is best able to represent an arithmetic result.
// Default case, used when the side with the max exponent is big enough.
template <typename Lhs,
typename Rhs = Lhs,
bool is_intmax_type =
std::is_integral_v<MaxExponentPromotion<Lhs, Rhs>> &&
kIntegerBitsPlusSign<MaxExponentPromotion<Lhs, Rhs>> ==
kIntegerBitsPlusSign<intmax_t>,
bool is_max_exponent =
kStaticDstRangeRelationToSrcRange<MaxExponentPromotion<Lhs, Rhs>,
Lhs> ==
NumericRangeRepresentation::kContained &&
kStaticDstRangeRelationToSrcRange<MaxExponentPromotion<Lhs, Rhs>,
Rhs> ==
NumericRangeRepresentation::kContained>
struct BigEnoughPromotionImpl {
using type = MaxExponentPromotion<Lhs, Rhs>;
static constexpr bool kContained = true;
};
// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotionImpl<Lhs, Rhs, false, false> {
using type =
TwiceWiderInteger<MaxExponentPromotion<Lhs, Rhs>,
std::is_signed_v<Lhs> || std::is_signed_v<Rhs>>;
static constexpr bool kContained = true;
};
// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotionImpl<Lhs, Rhs, true, false> {
using type = MaxExponentPromotion<Lhs, Rhs>;
static constexpr bool kContained = false;
};
template <typename Lhs, typename Rhs>
using BigEnoughPromotion = BigEnoughPromotionImpl<Lhs, Rhs>::type;
template <typename Lhs, typename Rhs>
inline constexpr bool kIsBigEnoughPromotionContained =
BigEnoughPromotionImpl<Lhs, Rhs>::kContained;
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
inline constexpr bool kIsIntegerArithmeticSafe =
!std::is_floating_point_v<T> && !std::is_floating_point_v<Lhs> &&
!std::is_floating_point_v<Rhs> &&
std::is_signed_v<T> >= std::is_signed_v<Lhs> &&
kIntegerBitsPlusSign<T> >=
(2 * kIntegerBitsPlusSign<Lhs>)&&std::is_signed_v<T> >=
std::is_signed_v<Rhs> &&
kIntegerBitsPlusSign<T> >= (2 * kIntegerBitsPlusSign<Rhs>);
// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotionImpl {
using type = BigEnoughPromotion<Lhs, Rhs>;
static constexpr bool kContained = false;
};
template <typename Lhs, typename Rhs>
requires(kIsIntegerArithmeticSafe<
std::conditional_t<std::is_signed_v<Lhs> || std::is_signed_v<Rhs>,
intmax_t,
uintmax_t>,
MaxExponentPromotion<Lhs, Rhs>>)
struct FastIntegerArithmeticPromotionImpl<Lhs, Rhs> {
using type =
TwiceWiderInteger<MaxExponentPromotion<Lhs, Rhs>,
std::is_signed_v<Lhs> || std::is_signed_v<Rhs>>;
static_assert(kIsIntegerArithmeticSafe<type, Lhs, Rhs>);
static constexpr bool kContained = true;
};
template <typename Lhs, typename Rhs>
using FastIntegerArithmeticPromotion =
FastIntegerArithmeticPromotionImpl<Lhs, Rhs>::type;
template <typename Lhs, typename Rhs>
inline constexpr bool kIsFastIntegerArithmeticPromotionContained =
FastIntegerArithmeticPromotionImpl<Lhs, Rhs>::kContained;
template <typename T>
struct ArithmeticOrIntegralConstant {
using type = T;
};
template <typename T>
requires IntegralConstantLike<T>
struct ArithmeticOrIntegralConstant<T> {
using type = T::value_type;
};
// Extracts the underlying type from an enum.
template <typename T>
using ArithmeticOrUnderlyingEnum =
typename std::conditional_t<std::is_enum_v<T>,
std::underlying_type<T>,
ArithmeticOrIntegralConstant<T>>::type;
// The following are helper templates used in the CheckedNumeric class.
template <typename T>
requires std::is_arithmetic_v<T>
class CheckedNumeric;
template <typename T>
requires std::is_arithmetic_v<T>
class ClampedNumeric;
template <typename T>
requires std::is_arithmetic_v<T>
class StrictNumeric;
// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
inline constexpr bool kIsCheckedNumeric = false;
template <typename T>
inline constexpr bool kIsCheckedNumeric<CheckedNumeric<T>> = true;
template <typename T>
concept IsCheckedNumeric = kIsCheckedNumeric<T>;
template <typename T>
inline constexpr bool kIsClampedNumeric = false;
template <typename T>
inline constexpr bool kIsClampedNumeric<ClampedNumeric<T>> = true;
template <typename T>
concept IsClampedNumeric = kIsClampedNumeric<T>;
template <typename T>
inline constexpr bool kIsStrictNumeric = false;
template <typename T>
inline constexpr bool kIsStrictNumeric<StrictNumeric<T>> = true;
template <typename T>
concept IsStrictNumeric = kIsStrictNumeric<T>;
template <typename T>
struct UnderlyingTypeImpl {
using type = ArithmeticOrUnderlyingEnum<T>;
};
template <typename T>
struct UnderlyingTypeImpl<CheckedNumeric<T>> {
using type = T;
};
template <typename T>
struct UnderlyingTypeImpl<ClampedNumeric<T>> {
using type = T;
};
template <typename T>
struct UnderlyingTypeImpl<StrictNumeric<T>> {
using type = T;
};
template <typename T>
using UnderlyingType = UnderlyingTypeImpl<T>::type;
template <typename T>
inline constexpr bool kIsNumeric = std::is_arithmetic_v<UnderlyingType<T>>;
template <typename T>
requires(IsCheckedNumeric<T> || IsClampedNumeric<T> || IsStrictNumeric<T>)
inline constexpr bool kIsNumeric<T> = true;
template <typename T>
concept IsNumeric = kIsNumeric<T>;
template <typename L, typename R>
concept IsCheckedOp = (IsCheckedNumeric<L> && IsNumeric<R>) ||
(IsCheckedNumeric<R> && IsNumeric<L>);
template <typename L, typename R>
concept IsClampedOp =
!IsCheckedOp<L, R> && ((IsClampedNumeric<L> && IsNumeric<R>) ||
(IsClampedNumeric<R> && IsNumeric<L>));
template <typename L, typename R>
concept IsStrictOp = !IsCheckedOp<L, R> && !IsClampedOp<L, R> &&
((IsStrictNumeric<L> && IsNumeric<R>) ||
(IsStrictNumeric<R> && IsNumeric<L>));
// as_signed<> returns the supplied integral value (or integral castable
// Numeric template) cast as a signed integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
template <typename Src, typename Dst = std::make_signed_t<UnderlyingType<Src>>>
requires std::integral<Dst>
constexpr auto as_signed(Src value) {
return static_cast<Dst>(value);
}
// as_unsigned<> returns the supplied integral value (or integral castable
// Numeric template) cast as an unsigned integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
template <typename Src,
typename Dst = std::make_unsigned_t<UnderlyingType<Src>>>
requires std::integral<Dst>
constexpr auto as_unsigned(Src value) {
return static_cast<Dst>(value);
}
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsLess {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) < static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsLessOrEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) <= static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsGreater {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) > static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsGreaterOrEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) >= static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) ==
DstRangeRelationToSrcRange<L>(rhs) &&
static_cast<SumT>(lhs) == static_cast<SumT>(rhs);
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsNotEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) !=
DstRangeRelationToSrcRange<L>(rhs) ||
static_cast<SumT>(lhs) != static_cast<SumT>(rhs);
}
};
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> typename C, typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
constexpr bool SafeCompare(L lhs, R rhs) {
using BigType = BigEnoughPromotion<L, R>;
return kIsBigEnoughPromotionContained<L, R>
// Force to a larger type for speed if both are contained.
? C<BigType, BigType>::Test(static_cast<BigType>(lhs),
static_cast<BigType>(rhs))
// Let the template functions figure it out for mixed types.
: C<L, R>::Test(lhs, rhs);
}
template <typename Dst, typename Src>
inline constexpr bool kIsMaxInRangeForNumericType =
IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
std::numeric_limits<Src>::max());
template <typename Dst, typename Src>
inline constexpr bool kIsMinInRangeForNumericType =
IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
std::numeric_limits<Src>::lowest());
template <typename Dst, typename Src>
inline constexpr Dst kCommonMax =
kIsMaxInRangeForNumericType<Dst, Src>
? static_cast<Dst>(std::numeric_limits<Src>::max())
: std::numeric_limits<Dst>::max();
template <typename Dst, typename Src>
inline constexpr Dst kCommonMin =
kIsMinInRangeForNumericType<Dst, Src>
? static_cast<Dst>(std::numeric_limits<Src>::lowest())
: std::numeric_limits<Dst>::lowest();
// This is a wrapper to generate return the max or min for a supplied type.
// If the argument is false, the returned value is the maximum. If true the
// returned value is the minimum.
template <typename Dst, typename Src = Dst>
constexpr Dst CommonMaxOrMin(bool is_min) {
return is_min ? kCommonMin<Dst, Src> : kCommonMax<Dst, Src>;
}
} // namespace base::internal
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_