1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724

base / numerics / safe_conversions_impl.h [blame]

// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_

// IWYU pragma: private, include "base/numerics/safe_conversions.h"

#include <stddef.h>
#include <stdint.h>

#include <concepts>
#include <limits>
#include <type_traits>
#include <utility>

#include "base/numerics/integral_constant_like.h"

namespace base::internal {

// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
inline constexpr int kMaxExponent =
    std::is_floating_point_v<NumericType>
        ? std::numeric_limits<NumericType>::max_exponent
        : std::numeric_limits<NumericType>::digits + 1;

// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
inline constexpr int kIntegerBitsPlusSign =
    std::numeric_limits<NumericType>::digits + std::is_signed_v<NumericType>;

// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T>
  requires(std::is_arithmetic_v<T>)
constexpr bool IsValueNegative(T value) {
  if constexpr (std::is_signed_v<T>) {
    return value < 0;
  } else {
    return false;
  }
}

// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
  requires std::is_integral_v<T>
constexpr auto ConditionalNegate(T x, bool is_negative) {
  using SignedT = std::make_signed_t<T>;
  using UnsignedT = std::make_unsigned_t<T>;
  return static_cast<SignedT>((static_cast<UnsignedT>(x) ^
                               static_cast<UnsignedT>(-SignedT(is_negative))) +
                              is_negative);
}

// This performs a safe, absolute value via unsigned overflow.
template <typename T>
  requires std::is_integral_v<T>
constexpr auto SafeUnsignedAbs(T value) {
  using UnsignedT = std::make_unsigned_t<T>;
  return IsValueNegative(value)
             ? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value))
             : static_cast<UnsignedT>(value);
}

// TODO(jschuh): Debug builds don't reliably propagate constants, so we restrict
// some accelerated runtime paths to release builds until this can be forced
// with consteval support in C++20 or C++23.
#if defined(NDEBUG)
inline constexpr bool kEnableAsmCode = true;
#else
inline constexpr bool kEnableAsmCode = false;
#endif

// Forces a crash, like a NOTREACHED(). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure {
  template <typename T>
  static T HandleFailure() {
#if defined(_MSC_VER)
    __debugbreak();
#elif defined(__GNUC__) || defined(__clang__)
    __builtin_trap();
#else
    ((void)(*(volatile char*)0 = 0));
#endif
    return T();
  }
};

enum class IntegerRepresentation { kUnsigned, kSigned };

// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum class NumericRangeRepresentation { kNotContained, kContained };

// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.

// Default case, used for same sign: Dst is guaranteed to contain Src only if
// its range is equal or larger.
template <typename Dst,
          typename Src,
          IntegerRepresentation DstSign =
              std::is_signed_v<Dst> ? IntegerRepresentation::kSigned
                                    : IntegerRepresentation::kUnsigned,
          IntegerRepresentation SrcSign =
              std::is_signed_v<Src> ? IntegerRepresentation::kSigned
                                    : IntegerRepresentation::kUnsigned>
inline constexpr auto kStaticDstRangeRelationToSrcRange =
    kMaxExponent<Dst> >= kMaxExponent<Src>
        ? NumericRangeRepresentation::kContained
        : NumericRangeRepresentation::kNotContained;

// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
inline constexpr auto
    kStaticDstRangeRelationToSrcRange<Dst,
                                      Src,
                                      IntegerRepresentation::kSigned,
                                      IntegerRepresentation::kUnsigned> =
        kMaxExponent<Dst> > kMaxExponent<Src>
            ? NumericRangeRepresentation::kContained
            : NumericRangeRepresentation::kNotContained;

// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
inline constexpr auto
    kStaticDstRangeRelationToSrcRange<Dst,
                                      Src,
                                      IntegerRepresentation::kUnsigned,
                                      IntegerRepresentation::kSigned> =
        NumericRangeRepresentation::kNotContained;

// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck {
 public:
  constexpr RangeCheck() = default;
  constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
      : is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}

  constexpr bool operator==(const RangeCheck& rhs) const = default;

  constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
  constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
  constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
  constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
  constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
  constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }

 private:
  // Do not change the order of these member variables. The integral conversion
  // optimization depends on this exact order.
  const bool is_underflow_ = false;
  const bool is_overflow_ = false;
};

// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
//   1. Integral maximum is always one less than a power of two, so it must be
//      truncated to fit the mantissa of the floating point. The direction of
//      rounding is implementation defined, but by default it's always IEEE
//      floats, which round to nearest and thus result in a value of larger
//      magnitude than the integral value.
//      Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
//                                   // is 4294967295u.
//   2. If the floating point value is equal to the promoted integral maximum
//      value, a range check will erroneously pass.
//      Example: (4294967296f <= 4294967295u) // This is true due to a precision
//                                            // loss in rounding up to float.
//   3. When the floating point value is then converted to an integral, the
//      resulting value is out of range for the target integral type and
//      thus is implementation defined.
//      Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange {
  using SrcLimits = std::numeric_limits<Src>;
  using DstLimits = std::numeric_limits<Dst>;

  // Computes the mask required to make an accurate comparison between types.
  static constexpr int kShift = (kMaxExponent<Src> > kMaxExponent<Dst> &&
                                 SrcLimits::digits < DstLimits::digits)
                                    ? (DstLimits::digits - SrcLimits::digits)
                                    : 0;

  template <typename T>
    requires(std::same_as<T, Dst> &&
             ((std::integral<T> && kShift < DstLimits::digits) ||
              (std::floating_point<T> && kShift == 0)))
  // Masks out the integer bits that are beyond the precision of the
  // intermediate type used for comparison.
  static constexpr T Adjust(T value) {
    if constexpr (std::integral<T>) {
      using UnsignedDst = typename std::make_unsigned_t<T>;
      return static_cast<T>(
          ConditionalNegate(SafeUnsignedAbs(value) &
                                ~((UnsignedDst{1} << kShift) - UnsignedDst{1}),
                            IsValueNegative(value)));
    } else {
      return value;
    }
  }

  static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
  static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};

// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.

// Default case, used for same sign narrowing: The range is contained for normal
// limits.
template <typename Dst,
          typename Src,
          template <typename>
          class Bounds,
          IntegerRepresentation DstSign =
              std::is_signed_v<Dst> ? IntegerRepresentation::kSigned
                                    : IntegerRepresentation::kUnsigned,
          IntegerRepresentation SrcSign =
              std::is_signed_v<Src> ? IntegerRepresentation::kSigned
                                    : IntegerRepresentation::kUnsigned,
          NumericRangeRepresentation DstRange =
              kStaticDstRangeRelationToSrcRange<Dst, Src>>
struct DstRangeRelationToSrcRangeImpl {
  static constexpr RangeCheck Check(Src value) {
    using SrcLimits = std::numeric_limits<Src>;
    using DstLimits = NarrowingRange<Dst, Src, Bounds>;
    return RangeCheck(
        static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
            static_cast<Dst>(value) >= DstLimits::lowest(),
        static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
            static_cast<Dst>(value) <= DstLimits::max());
  }
};

// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
    Dst,
    Src,
    Bounds,
    IntegerRepresentation::kSigned,
    IntegerRepresentation::kSigned,
    NumericRangeRepresentation::kNotContained> {
  static constexpr RangeCheck Check(Src value) {
    using DstLimits = NarrowingRange<Dst, Src, Bounds>;
    return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
  }
};

// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
    Dst,
    Src,
    Bounds,
    IntegerRepresentation::kUnsigned,
    IntegerRepresentation::kUnsigned,
    NumericRangeRepresentation::kNotContained> {
  static constexpr RangeCheck Check(Src value) {
    using DstLimits = NarrowingRange<Dst, Src, Bounds>;
    return RangeCheck(
        DstLimits::lowest() == Dst{0} || value >= DstLimits::lowest(),
        value <= DstLimits::max());
  }
};

// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
    Dst,
    Src,
    Bounds,
    IntegerRepresentation::kSigned,
    IntegerRepresentation::kUnsigned,
    NumericRangeRepresentation::kNotContained> {
  static constexpr RangeCheck Check(Src value) {
    using DstLimits = NarrowingRange<Dst, Src, Bounds>;
    using Promotion = decltype(Src() + Dst());
    return RangeCheck(DstLimits::lowest() <= Dst{0} ||
                          static_cast<Promotion>(value) >=
                              static_cast<Promotion>(DstLimits::lowest()),
                      static_cast<Promotion>(value) <=
                          static_cast<Promotion>(DstLimits::max()));
  }
};

// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
    Dst,
    Src,
    Bounds,
    IntegerRepresentation::kUnsigned,
    IntegerRepresentation::kSigned,
    NumericRangeRepresentation::kNotContained> {
  static constexpr RangeCheck Check(Src value) {
    using SrcLimits = std::numeric_limits<Src>;
    using DstLimits = NarrowingRange<Dst, Src, Bounds>;
    using Promotion = decltype(Src() + Dst());
    bool ge_zero;
    // Converting floating-point to integer will discard fractional part, so
    // values in (-1.0, -0.0) will truncate to 0 and fit in Dst.
    if constexpr (std::is_floating_point_v<Src>) {
      ge_zero = value > Src{-1};
    } else {
      ge_zero = value >= Src{0};
    }
    return RangeCheck(
        ge_zero && (DstLimits::lowest() == 0 ||
                    static_cast<Dst>(value) >= DstLimits::lowest()),
        static_cast<Promotion>(SrcLimits::max()) <=
                static_cast<Promotion>(DstLimits::max()) ||
            static_cast<Promotion>(value) <=
                static_cast<Promotion>(DstLimits::max()));
  }
};

// Simple wrapper for statically checking if a type's range is contained.
template <typename Dst, typename Src>
inline constexpr bool kIsTypeInRangeForNumericType =
    kStaticDstRangeRelationToSrcRange<Dst, Src> ==
    NumericRangeRepresentation::kContained;

template <typename Dst,
          template <typename> class Bounds = std::numeric_limits,
          typename Src>
  requires(std::is_arithmetic_v<Src> && std::is_arithmetic_v<Dst> &&
           Bounds<Dst>::lowest() < Bounds<Dst>::max())
constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
  return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}

// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSignImpl;

#define INTEGER_FOR_DIGITS_AND_SIGN(I)                        \
  template <>                                                 \
  struct IntegerForDigitsAndSignImpl<kIntegerBitsPlusSign<I>, \
                                     std::is_signed_v<I>> {   \
    using type = I;                                           \
  }

INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN

template <size_t Size, bool IsSigned>
using IntegerForDigitsAndSign =
    IntegerForDigitsAndSignImpl<Size, IsSigned>::type;

// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(kIntegerBitsPlusSign<intmax_t> == 64,
              "Max integer size not supported for this toolchain.");

template <typename Integer, bool IsSigned = std::is_signed_v<Integer>>
using TwiceWiderInteger =
    IntegerForDigitsAndSign<kIntegerBitsPlusSign<Integer> * 2, IsSigned>;

// Determines the type that can represent the largest positive value.
template <typename Lhs, typename Rhs>
using MaxExponentPromotion =
    std::conditional_t<(kMaxExponent<Lhs> > kMaxExponent<Rhs>), Lhs, Rhs>;

// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs, typename Rhs>
using LowestValuePromotion = std::conditional_t<
    std::is_signed_v<Lhs>
        ? (!std::is_signed_v<Rhs> || kMaxExponent<Lhs> > kMaxExponent<Rhs>)
        : (!std::is_signed_v<Rhs> && kMaxExponent<Lhs> < kMaxExponent<Rhs>),
    Lhs,
    Rhs>;

// Determines the type that is best able to represent an arithmetic result.

// Default case, used when the side with the max exponent is big enough.
template <typename Lhs,
          typename Rhs = Lhs,
          bool is_intmax_type =
              std::is_integral_v<MaxExponentPromotion<Lhs, Rhs>> &&
              kIntegerBitsPlusSign<MaxExponentPromotion<Lhs, Rhs>> ==
                  kIntegerBitsPlusSign<intmax_t>,
          bool is_max_exponent =
              kStaticDstRangeRelationToSrcRange<MaxExponentPromotion<Lhs, Rhs>,
                                                Lhs> ==
                  NumericRangeRepresentation::kContained &&
              kStaticDstRangeRelationToSrcRange<MaxExponentPromotion<Lhs, Rhs>,
                                                Rhs> ==
                  NumericRangeRepresentation::kContained>
struct BigEnoughPromotionImpl {
  using type = MaxExponentPromotion<Lhs, Rhs>;
  static constexpr bool kContained = true;
};

// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotionImpl<Lhs, Rhs, false, false> {
  using type =
      TwiceWiderInteger<MaxExponentPromotion<Lhs, Rhs>,
                        std::is_signed_v<Lhs> || std::is_signed_v<Rhs>>;
  static constexpr bool kContained = true;
};

// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotionImpl<Lhs, Rhs, true, false> {
  using type = MaxExponentPromotion<Lhs, Rhs>;
  static constexpr bool kContained = false;
};

template <typename Lhs, typename Rhs>
using BigEnoughPromotion = BigEnoughPromotionImpl<Lhs, Rhs>::type;

template <typename Lhs, typename Rhs>
inline constexpr bool kIsBigEnoughPromotionContained =
    BigEnoughPromotionImpl<Lhs, Rhs>::kContained;

// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
inline constexpr bool kIsIntegerArithmeticSafe =
    !std::is_floating_point_v<T> && !std::is_floating_point_v<Lhs> &&
    !std::is_floating_point_v<Rhs> &&
    std::is_signed_v<T> >= std::is_signed_v<Lhs> &&
    kIntegerBitsPlusSign<T> >=
        (2 * kIntegerBitsPlusSign<Lhs>)&&std::is_signed_v<T> >=
        std::is_signed_v<Rhs> &&
    kIntegerBitsPlusSign<T> >= (2 * kIntegerBitsPlusSign<Rhs>);

// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotionImpl {
  using type = BigEnoughPromotion<Lhs, Rhs>;
  static constexpr bool kContained = false;
};

template <typename Lhs, typename Rhs>
  requires(kIsIntegerArithmeticSafe<
           std::conditional_t<std::is_signed_v<Lhs> || std::is_signed_v<Rhs>,
                              intmax_t,
                              uintmax_t>,
           MaxExponentPromotion<Lhs, Rhs>>)
struct FastIntegerArithmeticPromotionImpl<Lhs, Rhs> {
  using type =
      TwiceWiderInteger<MaxExponentPromotion<Lhs, Rhs>,
                        std::is_signed_v<Lhs> || std::is_signed_v<Rhs>>;
  static_assert(kIsIntegerArithmeticSafe<type, Lhs, Rhs>);
  static constexpr bool kContained = true;
};

template <typename Lhs, typename Rhs>
using FastIntegerArithmeticPromotion =
    FastIntegerArithmeticPromotionImpl<Lhs, Rhs>::type;

template <typename Lhs, typename Rhs>
inline constexpr bool kIsFastIntegerArithmeticPromotionContained =
    FastIntegerArithmeticPromotionImpl<Lhs, Rhs>::kContained;

template <typename T>
struct ArithmeticOrIntegralConstant {
  using type = T;
};

template <typename T>
  requires IntegralConstantLike<T>
struct ArithmeticOrIntegralConstant<T> {
  using type = T::value_type;
};

// Extracts the underlying type from an enum.
template <typename T>
using ArithmeticOrUnderlyingEnum =
    typename std::conditional_t<std::is_enum_v<T>,
                                std::underlying_type<T>,
                                ArithmeticOrIntegralConstant<T>>::type;

// The following are helper templates used in the CheckedNumeric class.
template <typename T>
  requires std::is_arithmetic_v<T>
class CheckedNumeric;

template <typename T>
  requires std::is_arithmetic_v<T>
class ClampedNumeric;

template <typename T>
  requires std::is_arithmetic_v<T>
class StrictNumeric;

// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
inline constexpr bool kIsCheckedNumeric = false;
template <typename T>
inline constexpr bool kIsCheckedNumeric<CheckedNumeric<T>> = true;
template <typename T>
concept IsCheckedNumeric = kIsCheckedNumeric<T>;

template <typename T>
inline constexpr bool kIsClampedNumeric = false;
template <typename T>
inline constexpr bool kIsClampedNumeric<ClampedNumeric<T>> = true;
template <typename T>
concept IsClampedNumeric = kIsClampedNumeric<T>;

template <typename T>
inline constexpr bool kIsStrictNumeric = false;
template <typename T>
inline constexpr bool kIsStrictNumeric<StrictNumeric<T>> = true;
template <typename T>
concept IsStrictNumeric = kIsStrictNumeric<T>;

template <typename T>
struct UnderlyingTypeImpl {
  using type = ArithmeticOrUnderlyingEnum<T>;
};
template <typename T>
struct UnderlyingTypeImpl<CheckedNumeric<T>> {
  using type = T;
};
template <typename T>
struct UnderlyingTypeImpl<ClampedNumeric<T>> {
  using type = T;
};
template <typename T>
struct UnderlyingTypeImpl<StrictNumeric<T>> {
  using type = T;
};
template <typename T>
using UnderlyingType = UnderlyingTypeImpl<T>::type;

template <typename T>
inline constexpr bool kIsNumeric = std::is_arithmetic_v<UnderlyingType<T>>;
template <typename T>
  requires(IsCheckedNumeric<T> || IsClampedNumeric<T> || IsStrictNumeric<T>)
inline constexpr bool kIsNumeric<T> = true;
template <typename T>
concept IsNumeric = kIsNumeric<T>;

template <typename L, typename R>
concept IsCheckedOp = (IsCheckedNumeric<L> && IsNumeric<R>) ||
                      (IsCheckedNumeric<R> && IsNumeric<L>);

template <typename L, typename R>
concept IsClampedOp =
    !IsCheckedOp<L, R> && ((IsClampedNumeric<L> && IsNumeric<R>) ||
                           (IsClampedNumeric<R> && IsNumeric<L>));

template <typename L, typename R>
concept IsStrictOp = !IsCheckedOp<L, R> && !IsClampedOp<L, R> &&
                     ((IsStrictNumeric<L> && IsNumeric<R>) ||
                      (IsStrictNumeric<R> && IsNumeric<L>));

// as_signed<> returns the supplied integral value (or integral castable
// Numeric template) cast as a signed integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
template <typename Src, typename Dst = std::make_signed_t<UnderlyingType<Src>>>
  requires std::integral<Dst>
constexpr auto as_signed(Src value) {
  return static_cast<Dst>(value);
}

// as_unsigned<> returns the supplied integral value (or integral castable
// Numeric template) cast as an unsigned integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
template <typename Src,
          typename Dst = std::make_unsigned_t<UnderlyingType<Src>>>
  requires std::integral<Dst>
constexpr auto as_unsigned(Src value) {
  return static_cast<Dst>(value);
}

template <typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsLess {
  using SumT = decltype(std::declval<L>() + std::declval<R>());
  static constexpr bool Test(L lhs, R rhs) {
    const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
    const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
    return l_range.IsUnderflow() || r_range.IsOverflow() ||
           (l_range == r_range &&
            static_cast<SumT>(lhs) < static_cast<SumT>(rhs));
  }
};

template <typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsLessOrEqual {
  using SumT = decltype(std::declval<L>() + std::declval<R>());
  static constexpr bool Test(L lhs, R rhs) {
    const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
    const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
    return l_range.IsUnderflow() || r_range.IsOverflow() ||
           (l_range == r_range &&
            static_cast<SumT>(lhs) <= static_cast<SumT>(rhs));
  }
};

template <typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsGreater {
  using SumT = decltype(std::declval<L>() + std::declval<R>());
  static constexpr bool Test(L lhs, R rhs) {
    const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
    const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
    return l_range.IsOverflow() || r_range.IsUnderflow() ||
           (l_range == r_range &&
            static_cast<SumT>(lhs) > static_cast<SumT>(rhs));
  }
};

template <typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsGreaterOrEqual {
  using SumT = decltype(std::declval<L>() + std::declval<R>());
  static constexpr bool Test(L lhs, R rhs) {
    const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
    const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
    return l_range.IsOverflow() || r_range.IsUnderflow() ||
           (l_range == r_range &&
            static_cast<SumT>(lhs) >= static_cast<SumT>(rhs));
  }
};

template <typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsEqual {
  using SumT = decltype(std::declval<L>() + std::declval<R>());
  static constexpr bool Test(L lhs, R rhs) {
    return DstRangeRelationToSrcRange<R>(lhs) ==
               DstRangeRelationToSrcRange<L>(rhs) &&
           static_cast<SumT>(lhs) == static_cast<SumT>(rhs);
  }
};

template <typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsNotEqual {
  using SumT = decltype(std::declval<L>() + std::declval<R>());
  static constexpr bool Test(L lhs, R rhs) {
    return DstRangeRelationToSrcRange<R>(lhs) !=
               DstRangeRelationToSrcRange<L>(rhs) ||
           static_cast<SumT>(lhs) != static_cast<SumT>(rhs);
  }
};

// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> typename C, typename L, typename R>
  requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
constexpr bool SafeCompare(L lhs, R rhs) {
  using BigType = BigEnoughPromotion<L, R>;
  return kIsBigEnoughPromotionContained<L, R>
             // Force to a larger type for speed if both are contained.
             ? C<BigType, BigType>::Test(static_cast<BigType>(lhs),
                                         static_cast<BigType>(rhs))
             // Let the template functions figure it out for mixed types.
             : C<L, R>::Test(lhs, rhs);
}

template <typename Dst, typename Src>
inline constexpr bool kIsMaxInRangeForNumericType =
    IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
                                     std::numeric_limits<Src>::max());

template <typename Dst, typename Src>
inline constexpr bool kIsMinInRangeForNumericType =
    IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
                                  std::numeric_limits<Src>::lowest());

template <typename Dst, typename Src>
inline constexpr Dst kCommonMax =
    kIsMaxInRangeForNumericType<Dst, Src>
        ? static_cast<Dst>(std::numeric_limits<Src>::max())
        : std::numeric_limits<Dst>::max();

template <typename Dst, typename Src>
inline constexpr Dst kCommonMin =
    kIsMinInRangeForNumericType<Dst, Src>
        ? static_cast<Dst>(std::numeric_limits<Src>::lowest())
        : std::numeric_limits<Dst>::lowest();

// This is a wrapper to generate return the max or min for a supplied type.
// If the argument is false, the returned value is the maximum. If true the
// returned value is the minimum.
template <typename Dst, typename Src = Dst>
constexpr Dst CommonMaxOrMin(bool is_min) {
  return is_min ? kCommonMin<Dst, Src> : kCommonMax<Dst, Src>;
}

}  // namespace base::internal

#endif  // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_