1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
base / numerics / safe_math_shared_impl.h [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
// IWYU pragma: private
#include <concepts>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#include "build/build_config.h"
#if defined(__asmjs__) || defined(__wasm__)
// Optimized safe math instructions are incompatible with asmjs.
#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
// Where available use builtin math overflow support on Clang and GCC.
#elif !defined(__native_client__) && \
((defined(__clang__) && \
((__clang_major__ > 3) || \
(__clang_major__ == 3 && __clang_minor__ >= 4))) || \
(defined(__GNUC__) && __GNUC__ >= 5))
#include "base/numerics/safe_math_clang_gcc_impl.h" // IWYU pragma: export
#define BASE_HAS_OPTIMIZED_SAFE_MATH (1)
#else
#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
#endif
namespace base {
namespace internal {
// These are the non-functioning boilerplate implementations of the optimized
// safe math routines.
#if !BASE_HAS_OPTIMIZED_SAFE_MATH
template <typename T, typename U>
struct CheckedAddFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct CheckedSubFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct CheckedMulFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct ClampedAddFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedSubFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedMulFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T>
struct ClampedNegFastOp {
static const bool is_supported = false;
static constexpr T Do(T) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<T>();
}
};
#endif // BASE_HAS_OPTIMIZED_SAFE_MATH
#undef BASE_HAS_OPTIMIZED_SAFE_MATH
// This is used for UnsignedAbs, where we need to support floating-point
// template instantiations even though we don't actually support the operations.
// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
// so the float versions will not compile.
template <typename Numeric>
struct UnsignedOrFloatForSize;
template <typename Numeric>
requires(std::integral<Numeric>)
struct UnsignedOrFloatForSize<Numeric> {
using type = typename std::make_unsigned<Numeric>::type;
};
template <typename Numeric>
requires(std::floating_point<Numeric>)
struct UnsignedOrFloatForSize<Numeric> {
using type = Numeric;
};
// Wrap the unary operations to allow SFINAE when instantiating integrals versus
// floating points. These don't perform any overflow checking. Rather, they
// exhibit well-defined overflow semantics and rely on the caller to detect
// if an overflow occurred.
template <typename T>
requires(std::integral<T>)
constexpr T NegateWrapper(T value) {
using UnsignedT = typename std::make_unsigned<T>::type;
// This will compile to a NEG on Intel, and is normal negation on ARM.
return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
}
template <typename T>
requires(std::floating_point<T>)
constexpr T NegateWrapper(T value) {
return -value;
}
template <typename T>
requires(std::integral<T>)
constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
return ~value;
}
template <typename T>
requires(std::integral<T>)
constexpr T AbsWrapper(T value) {
return static_cast<T>(SafeUnsignedAbs(value));
}
template <typename T>
requires(std::floating_point<T>)
constexpr T AbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <template <typename, typename> class M,
typename L,
typename R,
typename Math = M<UnderlyingType<L>, UnderlyingType<R>>>
requires requires { typename Math::result_type; }
struct MathWrapper {
using math = Math;
using type = typename math::result_type;
};
// The following macros are just boilerplate for the standard arithmetic
// operator overloads and variadic function templates. A macro isn't the nicest
// solution, but it beats rewriting these over and over again.
#define BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) \
template <typename L, typename R, typename... Args> \
constexpr auto CL_ABBR##OP_NAME(L lhs, R rhs, Args... args) { \
return CL_ABBR##MathOp<CLASS##OP_NAME##Op, L, R, Args...>(lhs, rhs, \
args...); \
}
#define BASE_NUMERIC_ARITHMETIC_OPERATORS(CLASS, CL_ABBR, OP_NAME, OP, CMP_OP) \
/* Binary arithmetic operator for all CLASS##Numeric operations. */ \
template <typename L, typename R> \
requires(Is##CLASS##Op<L, R>) \
constexpr CLASS##Numeric< \
typename MathWrapper<CLASS##OP_NAME##Op, L, R>::type> \
operator OP(L lhs, R rhs) { \
return decltype(lhs OP rhs)::template MathOp<CLASS##OP_NAME##Op>(lhs, \
rhs); \
} \
/* Assignment arithmetic operator implementation from CLASS##Numeric. */ \
template <typename L> \
requires std::is_arithmetic_v<L> \
template <typename R> \
constexpr CLASS##Numeric<L>& CLASS##Numeric<L>::operator CMP_OP(R rhs) { \
return MathOp<CLASS##OP_NAME##Op>(rhs); \
} \
/* Variadic arithmetic functions that return CLASS##Numeric. */ \
BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME)
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_