1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
base / profiler / chrome_unwinder_android_32.cc [blame]
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/profiler/chrome_unwinder_android_32.h"
#include <algorithm>
#include "base/check_op.h"
#include "base/memory/aligned_memory.h"
#include "base/notreached.h"
#include "base/numerics/checked_math.h"
#include "base/profiler/chrome_unwind_info_android_32.h"
namespace base {
namespace {
uintptr_t* GetRegisterPointer(RegisterContext* context,
uint8_t register_index) {
DCHECK_LE(register_index, 15);
static unsigned long RegisterContext::*const registers[16] = {
&RegisterContext::arm_r0, &RegisterContext::arm_r1,
&RegisterContext::arm_r2, &RegisterContext::arm_r3,
&RegisterContext::arm_r4, &RegisterContext::arm_r5,
&RegisterContext::arm_r6, &RegisterContext::arm_r7,
&RegisterContext::arm_r8, &RegisterContext::arm_r9,
&RegisterContext::arm_r10, &RegisterContext::arm_fp,
&RegisterContext::arm_ip, &RegisterContext::arm_sp,
&RegisterContext::arm_lr, &RegisterContext::arm_pc,
};
return reinterpret_cast<uintptr_t*>(&(context->*registers[register_index]));
}
// Pops the value on the top of stack out and assign it to target register.
// This is equivalent to arm instruction `Pop r[n]` where n = `register_index`.
// Returns whether the pop is successful.
bool PopRegister(RegisterContext* context, uint8_t register_index) {
const uintptr_t sp = RegisterContextStackPointer(context);
const uintptr_t stacktop_value = *reinterpret_cast<uintptr_t*>(sp);
const auto new_sp = CheckedNumeric<uintptr_t>(sp) + sizeof(uintptr_t);
const bool success =
new_sp.AssignIfValid(&RegisterContextStackPointer(context));
if (success) {
*GetRegisterPointer(context, register_index) = stacktop_value;
}
return success;
}
// Decodes the given bytes as an ULEB128 format number and advances the bytes
// pointer by the size of ULEB128.
//
// This function assumes the given bytes are in valid ULEB128
// format and the decoded number should not overflow `uintptr_t` type.
uintptr_t DecodeULEB128(const uint8_t*& bytes) {
uintptr_t value = 0;
unsigned shift = 0;
do {
DCHECK_LE(shift, sizeof(uintptr_t) * 8); // ULEB128 must not overflow.
value += (*bytes & 0x7fu) << shift;
shift += 7;
} while (*bytes++ & 0x80);
return value;
}
uint8_t GetTopBits(uint8_t byte, unsigned bits) {
DCHECK_LE(bits, 8u);
return byte >> (8 - bits);
}
} // namespace
ChromeUnwinderAndroid32::ChromeUnwinderAndroid32(
const ChromeUnwindInfoAndroid32& unwind_info,
uintptr_t chrome_module_base_address,
uintptr_t text_section_start_address)
: unwind_info_(unwind_info),
chrome_module_base_address_(chrome_module_base_address),
text_section_start_address_(text_section_start_address) {
DCHECK_GT(text_section_start_address_, chrome_module_base_address_);
}
bool ChromeUnwinderAndroid32::CanUnwindFrom(const Frame& current_frame) const {
return current_frame.module &&
current_frame.module->GetBaseAddress() == chrome_module_base_address_;
}
UnwindResult ChromeUnwinderAndroid32::TryUnwind(
UnwinderStateCapture* capture_state,
RegisterContext* thread_context,
uintptr_t stack_top,
std::vector<Frame>* stack) {
DCHECK(CanUnwindFrom(stack->back()));
uintptr_t frame_initial_sp = RegisterContextStackPointer(thread_context);
const uintptr_t unwind_initial_pc =
RegisterContextInstructionPointer(thread_context);
do {
const uintptr_t pc = RegisterContextInstructionPointer(thread_context);
const uintptr_t instruction_byte_offset_from_text_section_start =
pc - text_section_start_address_;
const std::optional<FunctionOffsetTableIndex> function_offset_table_index =
GetFunctionTableIndexFromInstructionOffset(
unwind_info_.page_table, unwind_info_.function_table,
instruction_byte_offset_from_text_section_start);
if (!function_offset_table_index) {
return UnwindResult::kAborted;
}
const uint32_t current_unwind_instruction_index =
GetFirstUnwindInstructionIndexFromFunctionOffsetTableEntry(
&unwind_info_
.function_offset_table[function_offset_table_index
->function_offset_table_byte_index],
function_offset_table_index
->instruction_offset_from_function_start);
const uint8_t* current_unwind_instruction =
&unwind_info_
.unwind_instruction_table[current_unwind_instruction_index];
UnwindInstructionResult instruction_result;
bool pc_was_updated = false;
do {
instruction_result = ExecuteUnwindInstruction(
current_unwind_instruction, pc_was_updated, thread_context);
const uintptr_t sp = RegisterContextStackPointer(thread_context);
if (sp > stack_top || sp < frame_initial_sp ||
!IsAligned(sp, sizeof(uintptr_t))) {
return UnwindResult::kAborted;
}
} while (instruction_result ==
UnwindInstructionResult::kInstructionPending);
if (instruction_result == UnwindInstructionResult::kAborted) {
return UnwindResult::kAborted;
}
DCHECK_EQ(instruction_result, UnwindInstructionResult::kCompleted);
const uintptr_t new_sp = RegisterContextStackPointer(thread_context);
// Validate SP is properly aligned across frames.
// See
// https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/using-the-stack-in-aarch32-and-aarch64
// for SP alignment rules.
if (!IsAligned(new_sp, 2 * sizeof(uintptr_t))) {
return UnwindResult::kAborted;
}
// Validate that SP does not decrease across frames.
const bool is_leaf_frame = stack->size() == 1;
// Each frame unwind is expected to only pop from stack memory, which will
// cause sp to increase.
// Non-Leaf frames are expected to at least pop lr off stack, so sp is
// expected to strictly increase for non-leaf frames.
if (new_sp <= (is_leaf_frame ? frame_initial_sp - 1 : frame_initial_sp)) {
return UnwindResult::kAborted;
}
// For leaf functions, if SP does not change, PC must change, otherwise,
// the overall execution state will be the same before/after the frame
// unwind.
if (is_leaf_frame && new_sp == frame_initial_sp &&
RegisterContextInstructionPointer(thread_context) ==
unwind_initial_pc) {
return UnwindResult::kAborted;
}
frame_initial_sp = new_sp;
stack->emplace_back(RegisterContextInstructionPointer(thread_context),
module_cache()->GetModuleForAddress(
RegisterContextInstructionPointer(thread_context)));
} while (CanUnwindFrom(stack->back()));
return UnwindResult::kUnrecognizedFrame;
}
UnwindInstructionResult ExecuteUnwindInstruction(
const uint8_t*& instruction,
bool& pc_was_updated,
RegisterContext* thread_context) {
if (GetTopBits(*instruction, 2) == 0b00) {
// 00xxxxxx
// vsp = vsp + (xxxxxx << 2) + 4. Covers range 0x04-0x100 inclusive.
const uintptr_t offset = ((*instruction++ & 0b00111111u) << 2) + 4;
const auto new_sp =
CheckedNumeric<uintptr_t>(RegisterContextStackPointer(thread_context)) +
offset;
if (!new_sp.AssignIfValid(&RegisterContextStackPointer(thread_context))) {
return UnwindInstructionResult::kAborted;
}
} else if (GetTopBits(*instruction, 2) == 0b01) {
// 01xxxxxx
// vsp = vsp - (xxxxxx << 2) - 4. Covers range 0x04-0x100 inclusive.
const uintptr_t offset = ((*instruction++ & 0b00111111u) << 2) + 4;
const auto new_sp =
CheckedNumeric<uintptr_t>(RegisterContextStackPointer(thread_context)) -
offset;
if (!new_sp.AssignIfValid(&RegisterContextStackPointer(thread_context))) {
return UnwindInstructionResult::kAborted;
}
} else if (GetTopBits(*instruction, 4) == 0b1001) {
// 1001nnnn (nnnn != 13,15)
// Set vsp = r[nnnn].
const uint8_t register_index = *instruction++ & 0b00001111;
DCHECK_NE(register_index, 13); // Must not set sp to sp.
DCHECK_NE(register_index, 15); // Must not set sp to pc.
// Note: We shouldn't have cases that are setting caller-saved registers
// using this instruction.
DCHECK_GE(register_index, 4);
RegisterContextStackPointer(thread_context) =
*GetRegisterPointer(thread_context, register_index);
} else if (GetTopBits(*instruction, 5) == 0b10101) {
// 10101nnn
// Pop r4-r[4+nnn], r14
const uint8_t max_register_index = (*instruction++ & 0b00000111u) + 4;
for (uint8_t n = 4; n <= max_register_index; n++) {
if (!PopRegister(thread_context, n)) {
return UnwindInstructionResult::kAborted;
}
}
if (!PopRegister(thread_context, 14)) {
return UnwindInstructionResult::kAborted;
}
} else if (*instruction == 0b10000000 && *(instruction + 1) == 0) {
// 10000000 00000000
// Refuse to unwind.
instruction += 2;
return UnwindInstructionResult::kAborted;
} else if (GetTopBits(*instruction, 4) == 0b1000) {
const uint32_t register_bitmask =
((*instruction & 0xfu) << 8) + *(instruction + 1);
instruction += 2;
// 1000iiii iiiiiiii
// Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}
for (uint8_t register_index = 4; register_index < 16; register_index++) {
if (register_bitmask & (1 << (register_index - 4))) {
if (!PopRegister(thread_context, register_index)) {
return UnwindInstructionResult::kAborted;
}
}
}
// If we set pc (r15) with value on stack, we should no longer copy lr to
// pc on COMPLETE.
pc_was_updated |= register_bitmask & (1 << (15 - 4));
} else if (*instruction == 0b10110000) {
// Finish
// Code 0xb0, Finish, copies VRS[r14] to VRS[r15] and also
// indicates that no further instructions are to be processed for this
// frame.
instruction++;
// Only copy lr to pc when pc is not updated by other instructions before.
if (!pc_was_updated) {
thread_context->arm_pc = thread_context->arm_lr;
}
return UnwindInstructionResult::kCompleted;
} else if (*instruction == 0b10110010) {
// 10110010 uleb128
// vsp = vsp + 0x204 + (uleb128 << 2)
// (for vsp increments of 0x104-0x200, use 00xxxxxx twice)
instruction++;
const auto new_sp =
CheckedNumeric<uintptr_t>(RegisterContextStackPointer(thread_context)) +
(CheckedNumeric<uintptr_t>(DecodeULEB128(instruction)) << 2) + 0x204;
if (!new_sp.AssignIfValid(&RegisterContextStackPointer(thread_context))) {
return UnwindInstructionResult::kAborted;
}
} else {
NOTREACHED();
}
return UnwindInstructionResult::kInstructionPending;
}
uintptr_t GetFirstUnwindInstructionIndexFromFunctionOffsetTableEntry(
const uint8_t* function_offset_table_entry,
int instruction_offset_from_function_start) {
DCHECK_GE(instruction_offset_from_function_start, 0);
const uint8_t* current_function_offset_table_position =
function_offset_table_entry;
do {
const uintptr_t function_offset =
DecodeULEB128(current_function_offset_table_position);
const uintptr_t unwind_table_index =
DecodeULEB128(current_function_offset_table_position);
// Each function always ends at 0 offset. It is guaranteed to find an entry
// as long as the function offset table is well-structured.
if (function_offset <=
static_cast<uint32_t>(instruction_offset_from_function_start)) {
return unwind_table_index;
}
} while (true);
NOTREACHED();
}
const std::optional<FunctionOffsetTableIndex>
GetFunctionTableIndexFromInstructionOffset(
span<const uint32_t> page_start_instructions,
span<const FunctionTableEntry> function_offset_table_indices,
uint32_t instruction_byte_offset_from_text_section_start) {
DCHECK(!page_start_instructions.empty());
DCHECK(!function_offset_table_indices.empty());
// First function on first page should always start from 0 offset.
DCHECK_EQ(function_offset_table_indices.front()
.function_start_address_page_instruction_offset,
0ul);
const uint16_t page_number =
instruction_byte_offset_from_text_section_start >> 17;
const uint16_t page_instruction_offset =
(instruction_byte_offset_from_text_section_start >> 1) &
0xffff; // 16 bits.
// Invalid instruction_byte_offset_from_text_section_start:
// instruction_byte_offset_from_text_section_start falls after the last page.
if (page_number >= page_start_instructions.size()) {
return std::nullopt;
}
const span<const FunctionTableEntry>::iterator function_table_entry_start =
function_offset_table_indices.begin() +
checked_cast<ptrdiff_t>(page_start_instructions[page_number]);
const span<const FunctionTableEntry>::iterator function_table_entry_end =
page_number == page_start_instructions.size() - 1
? function_offset_table_indices.end()
: function_offset_table_indices.begin() +
checked_cast<ptrdiff_t>(
page_start_instructions[page_number + 1]);
// `std::upper_bound` finds first element that > target in range
// [function_table_entry_start, function_table_entry_end).
const auto first_larger_entry_location = std::upper_bound(
function_table_entry_start, function_table_entry_end,
page_instruction_offset,
[](uint16_t page_instruction_offset, const FunctionTableEntry& entry) {
return page_instruction_offset <
entry.function_start_address_page_instruction_offset;
});
// Offsets the element found by 1 to get the biggest element that <= target.
const auto entry_location = first_larger_entry_location - 1;
// When all offsets in current range > page_instruction_offset (including when
// there is no entry in current range), the `FunctionTableEntry` we are
// looking for is not within the function_offset_table_indices range we are
// inspecting, because the function is too long that it spans multiple pages.
//
// We need to locate the previous entry on function_offset_table_indices and
// find its corresponding page_table index.
//
// Example:
// +--------------------+--------------------+
// | <-----2 byte-----> | <-----2 byte-----> |
// +--------------------+--------------------+
// | Page Offset | Offset Table Index |
// +--------------------+--------------------+-----
// | 10 | XXX | |
// +--------------------+--------------------+ |
// | ... | ... |Page 0x100
// +--------------------+--------------------+ |
// | 65500 | ZZZ | |
// +--------------------+--------------------+----- Page 0x101 is empty
// | 200 | AAA | |
// +--------------------+--------------------+ |
// | ... | ... |Page 0x102
// +--------------------+--------------------+ |
// | 65535 | BBB | |
// +--------------------+--------------------+-----
//
// Example:
// For
// - page_number = 0x100, page_instruction_offset >= 65535
// - page_number = 0x101, all page_instruction_offset
// - page_number = 0x102, page_instruction_offset < 200
// We should be able to map them all to entry [65500, ZZZ] in page 0x100.
// Finds the page_number that corresponds to `entry_location`. The page
// might not be the page we are inspecting, when the function spans over
// multiple pages.
uint16_t function_start_page_number = page_number;
while (function_offset_table_indices.begin() +
checked_cast<ptrdiff_t>(
page_start_instructions[function_start_page_number]) >
entry_location) {
// First page in page table must not be empty.
DCHECK_NE(function_start_page_number, 0);
function_start_page_number--;
};
const uint32_t function_start_address_instruction_offset =
(uint32_t{function_start_page_number} << 16) +
entry_location->function_start_address_page_instruction_offset;
const int instruction_offset_from_function_start =
static_cast<int>((instruction_byte_offset_from_text_section_start >> 1) -
function_start_address_instruction_offset);
DCHECK_GE(instruction_offset_from_function_start, 0);
return FunctionOffsetTableIndex{
instruction_offset_from_function_start,
entry_location->function_offset_table_byte_index,
};
}
} // namespace base