1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441

base / rand_util_unittest.cc [blame]

// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#include "base/rand_util.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <vector>

#include "base/containers/span.h"
#include "base/logging.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {

namespace {

const int kIntMin = std::numeric_limits<int>::min();
const int kIntMax = std::numeric_limits<int>::max();

}  // namespace

TEST(RandUtilTest, RandInt) {
  EXPECT_EQ(base::RandInt(0, 0), 0);
  EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
  EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);

  // Check that the DCHECKS in RandInt() don't fire due to internal overflow.
  // There was a 50% chance of that happening, so calling it 40 times means
  // the chances of this passing by accident are tiny (9e-13).
  for (int i = 0; i < 40; ++i)
    base::RandInt(kIntMin, kIntMax);
}

TEST(RandUtilTest, RandDouble) {
  // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
  volatile double number = base::RandDouble();
  EXPECT_GT(1.0, number);
  EXPECT_LE(0.0, number);
}

TEST(RandUtilTest, RandFloat) {
  // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
  volatile float number = base::RandFloat();
  EXPECT_GT(1.f, number);
  EXPECT_LE(0.f, number);
}

TEST(RandUtilTest, RandTimeDelta) {
  {
    const auto delta =
        base::RandTimeDelta(-base::Seconds(2), -base::Seconds(1));
    EXPECT_GE(delta, -base::Seconds(2));
    EXPECT_LT(delta, -base::Seconds(1));
  }

  {
    const auto delta = base::RandTimeDelta(-base::Seconds(2), base::Seconds(2));
    EXPECT_GE(delta, -base::Seconds(2));
    EXPECT_LT(delta, base::Seconds(2));
  }

  {
    const auto delta = base::RandTimeDelta(base::Seconds(1), base::Seconds(2));
    EXPECT_GE(delta, base::Seconds(1));
    EXPECT_LT(delta, base::Seconds(2));
  }
}

TEST(RandUtilTest, RandTimeDeltaUpTo) {
  const auto delta = base::RandTimeDeltaUpTo(base::Seconds(2));
  EXPECT_FALSE(delta.is_negative());
  EXPECT_LT(delta, base::Seconds(2));
}

TEST(RandUtilTest, BitsToOpenEndedUnitInterval) {
  // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
  volatile double all_zeros = BitsToOpenEndedUnitInterval(0x0);
  EXPECT_EQ(0.0, all_zeros);

  // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
  volatile double smallest_nonzero = BitsToOpenEndedUnitInterval(0x1);
  EXPECT_LT(0.0, smallest_nonzero);

  for (uint64_t i = 0x2; i < 0x10; ++i) {
    // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
    volatile double number = BitsToOpenEndedUnitInterval(i);
    EXPECT_EQ(i * smallest_nonzero, number);
  }

  // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
  volatile double all_ones = BitsToOpenEndedUnitInterval(UINT64_MAX);
  EXPECT_GT(1.0, all_ones);
}

TEST(RandUtilTest, BitsToOpenEndedUnitIntervalF) {
  // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
  volatile float all_zeros = BitsToOpenEndedUnitIntervalF(0x0);
  EXPECT_EQ(0.f, all_zeros);

  // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
  volatile float smallest_nonzero = BitsToOpenEndedUnitIntervalF(0x1);
  EXPECT_LT(0.f, smallest_nonzero);

  for (uint64_t i = 0x2; i < 0x10; ++i) {
    // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
    volatile float number = BitsToOpenEndedUnitIntervalF(i);
    EXPECT_EQ(i * smallest_nonzero, number);
  }

  // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
  volatile float all_ones = BitsToOpenEndedUnitIntervalF(UINT64_MAX);
  EXPECT_GT(1.f, all_ones);
}

TEST(RandUtilTest, RandBytes) {
  const size_t buffer_size = 50;
  uint8_t buffer[buffer_size];
  memset(buffer, 0, buffer_size);
  base::RandBytes(buffer);
  std::sort(buffer, buffer + buffer_size);
  // Probability of occurrence of less than 25 unique bytes in 50 random bytes
  // is below 10^-25.
  EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
}

// Verify that calling base::RandBytes with an empty buffer doesn't fail.
TEST(RandUtilTest, RandBytes0) {
  base::RandBytes(span<uint8_t>());
}

TEST(RandUtilTest, RandBytesAsVector) {
  std::vector<uint8_t> random_vec = base::RandBytesAsVector(0);
  EXPECT_TRUE(random_vec.empty());
  random_vec = base::RandBytesAsVector(1);
  EXPECT_EQ(1U, random_vec.size());
  random_vec = base::RandBytesAsVector(145);
  EXPECT_EQ(145U, random_vec.size());
  char accumulator = 0;
  for (auto i : random_vec) {
    accumulator |= i;
  }
  // In theory this test can fail, but it won't before the universe dies of
  // heat death.
  EXPECT_NE(0, accumulator);
}

TEST(RandUtilTest, RandBytesAsString) {
  std::string random_string = base::RandBytesAsString(1);
  EXPECT_EQ(1U, random_string.size());
  random_string = base::RandBytesAsString(145);
  EXPECT_EQ(145U, random_string.size());
  char accumulator = 0;
  for (auto i : random_string)
    accumulator |= i;
  // In theory this test can fail, but it won't before the universe dies of
  // heat death.
  EXPECT_NE(0, accumulator);
}

// Make sure that it is still appropriate to use RandGenerator in conjunction
// with std::random_shuffle().
TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
  EXPECT_EQ(base::RandGenerator(1), 0U);
  EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
            std::numeric_limits<int64_t>::max());
}

TEST(RandUtilTest, RandGeneratorIsUniform) {
  // Verify that RandGenerator has a uniform distribution. This is a
  // regression test that consistently failed when RandGenerator was
  // implemented this way:
  //
  //   return base::RandUint64() % max;
  //
  // A degenerate case for such an implementation is e.g. a top of
  // range that is 2/3rds of the way to MAX_UINT64, in which case the
  // bottom half of the range would be twice as likely to occur as the
  // top half. A bit of calculus care of jar@ shows that the largest
  // measurable delta is when the top of the range is 3/4ths of the
  // way, so that's what we use in the test.
  constexpr uint64_t kTopOfRange =
      (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
  constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2);
  constexpr double kAllowedVariance = kExpectedAverage / 50.0;  // +/- 2%
  constexpr int kMinAttempts = 1000;
  constexpr int kMaxAttempts = 1000000;

  double cumulative_average = 0.0;
  int count = 0;
  while (count < kMaxAttempts) {
    uint64_t value = base::RandGenerator(kTopOfRange);
    cumulative_average = (count * cumulative_average + value) / (count + 1);

    // Don't quit too quickly for things to start converging, or we may have
    // a false positive.
    if (count > kMinAttempts &&
        kExpectedAverage - kAllowedVariance < cumulative_average &&
        cumulative_average < kExpectedAverage + kAllowedVariance) {
      break;
    }

    ++count;
  }

  ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage
                                 << ", average ended at " << cumulative_average;
}

TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
  // This tests to see that our underlying random generator is good
  // enough, for some value of good enough.
  uint64_t kAllZeros = 0ULL;
  uint64_t kAllOnes = ~kAllZeros;
  uint64_t found_ones = kAllZeros;
  uint64_t found_zeros = kAllOnes;

  for (size_t i = 0; i < 1000; ++i) {
    uint64_t value = base::RandUint64();
    found_ones |= value;
    found_zeros &= value;

    if (found_zeros == kAllZeros && found_ones == kAllOnes)
      return;
  }

  FAIL() << "Didn't achieve all bit values in maximum number of tries.";
}

TEST(RandUtilTest, RandBytesLonger) {
  // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
  // handle longer requests than that.
  std::string random_string0 = base::RandBytesAsString(255);
  EXPECT_EQ(255u, random_string0.size());
  std::string random_string1 = base::RandBytesAsString(1023);
  EXPECT_EQ(1023u, random_string1.size());
  std::string random_string2 = base::RandBytesAsString(4097);
  EXPECT_EQ(4097u, random_string2.size());
}

// Benchmark test for RandBytes().  Disabled since it's intentionally slow and
// does not test anything that isn't already tested by the existing RandBytes()
// tests.
TEST(RandUtilTest, DISABLED_RandBytesPerf) {
  // Benchmark the performance of |kTestIterations| of RandBytes() using a
  // buffer size of |kTestBufferSize|.
  const int kTestIterations = 10;
  const size_t kTestBufferSize = 1 * 1024 * 1024;

  std::array<uint8_t, kTestBufferSize> buffer;
  const base::TimeTicks now = base::TimeTicks::Now();
  for (int i = 0; i < kTestIterations; ++i) {
    base::RandBytes(buffer);
  }
  const base::TimeTicks end = base::TimeTicks::Now();

  LOG(INFO) << "RandBytes(" << kTestBufferSize
            << ") took: " << (end - now).InMicroseconds() << "µs";
}

TEST(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits) {
  // This tests to see that our underlying random generator is good
  // enough, for some value of good enough.
  uint64_t kAllZeros = 0ULL;
  uint64_t kAllOnes = ~kAllZeros;
  uint64_t found_ones = kAllZeros;
  uint64_t found_zeros = kAllOnes;

  InsecureRandomGenerator generator;

  for (size_t i = 0; i < 1000; ++i) {
    uint64_t value = generator.RandUint64();
    found_ones |= value;
    found_zeros &= value;

    if (found_zeros == kAllZeros && found_ones == kAllOnes)
      return;
  }

  FAIL() << "Didn't achieve all bit values in maximum number of tries.";
}

namespace {

constexpr double kXp1Percent = -2.33;
constexpr double kXp99Percent = 2.33;

double ChiSquaredCriticalValue(double nu, double x_p) {
  // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1,
  // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)).
  return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.;
}

int ExtractBits(uint64_t value, int from_bit, int num_bits) {
  return (value >> from_bit) & ((1 << num_bits) - 1);
}

// Performs a Chi-Squared test on a subset of |num_bits| extracted starting from
// |from_bit| in the generated value.
//
// See TAOCP, Volume 2, Section 3.3.1, and
// https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details.
//
// This is only one of the many, many random number generator test we could do,
// but they are cumbersome, as they are typically very slow, and expected to
// fail from time to time, due to their probabilistic nature.
//
// The generator we use has however been vetted with the BigCrush test suite
// from Marsaglia, so this should suffice as a smoke test that our
// implementation is wrong.
bool ChiSquaredTest(InsecureRandomGenerator& gen,
                    size_t n,
                    int from_bit,
                    int num_bits) {
  const int range = 1 << num_bits;
  CHECK_EQ(static_cast<int>(n % range), 0) << "Makes computations simpler";
  std::vector<size_t> samples(range, 0);

  // Count how many samples pf each value are found. All buckets should be
  // almost equal if the generator is suitably uniformly random.
  for (size_t i = 0; i < n; i++) {
    int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits);
    samples[sample] += 1;
  }

  // Compute the Chi-Squared statistic, which is:
  // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected}
  double chi_squared = 0.;
  double expected_count = n / range;
  for (size_t sample_count : samples) {
    double deviation = sample_count - expected_count;
    chi_squared += (deviation * deviation) / expected_count;
  }

  // The generator should produce numbers that are not too far of (chi_squared
  // lower than a given quantile), but not too close to the ideal distribution
  // either (chi_squared is too low).
  //
  // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details.
  return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) &&
         chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent);
}

}  // namespace

TEST(RandUtilTest, InsecureRandomGeneratorChiSquared) {
  constexpr int kIterations = 50;

  // Specifically test the low bits, which are usually weaker in random number
  // generators. We don't use them for the 32 bit number generation, but let's
  // make sure they are still suitable.
  for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) {
    int pass_count = 0;
    for (int i = 0; i < kIterations; i++) {
      size_t samples = 1 << 16;
      InsecureRandomGenerator gen;
      // Fix the seed to make the test non-flaky.
      gen.ReseedForTesting(kIterations + 1);
      bool pass = ChiSquaredTest(gen, samples, start_bit, 8);
      pass_count += pass;
    }

    // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98
    // * kIterations / 100. However this is asymptotic, so add a bit of leeway.
    int expected_pass_count = (kIterations * 98) / 100;
    EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100))
        << "For start_bit = " << start_bit;
  }
}

TEST(RandUtilTest, InsecureRandomGeneratorRandDouble) {
  InsecureRandomGenerator gen;

  for (int i = 0; i < 1000; i++) {
    volatile double x = gen.RandDouble();
    EXPECT_GE(x, 0.);
    EXPECT_LT(x, 1.);
  }
}

TEST(RandUtilTest, MetricsSubSampler) {
  MetricsSubSampler sub_sampler;
  int true_count = 0;
  int false_count = 0;
  for (int i = 0; i < 1000; ++i) {
    if (sub_sampler.ShouldSample(0.5)) {
      ++true_count;
    } else {
      ++false_count;
    }
  }

  // Validate that during normal operation MetricsSubSampler::ShouldSample()
  // does not always give the same result. It's technically possible to fail
  // this test during normal operation but if the sampling is realistic it
  // should happen about once every 2^999 times (the likelihood of the [1,999]
  // results being the same as [0], which can be either). This should not make
  // this test flaky in the eyes of automated testing.
  EXPECT_GT(true_count, 0);
  EXPECT_GT(false_count, 0);
}

TEST(RandUtilTest, MetricsSubSamplerTestingSupport) {
  MetricsSubSampler sub_sampler;

  // ScopedAlwaysSampleForTesting makes ShouldSample() return true with
  // any probability.
  {
    MetricsSubSampler::ScopedAlwaysSampleForTesting always_sample;
    for (int i = 0; i < 100; ++i) {
      EXPECT_TRUE(sub_sampler.ShouldSample(0));
      EXPECT_TRUE(sub_sampler.ShouldSample(0.5));
      EXPECT_TRUE(sub_sampler.ShouldSample(1));
    }
  }

  // ScopedNeverSampleForTesting makes ShouldSample() return true with
  // any probability.
  {
    MetricsSubSampler::ScopedNeverSampleForTesting always_sample;
    for (int i = 0; i < 100; ++i) {
      EXPECT_FALSE(sub_sampler.ShouldSample(0));
      EXPECT_FALSE(sub_sampler.ShouldSample(0.5));
      EXPECT_FALSE(sub_sampler.ShouldSample(1));
    }
  }
}

}  // namespace base