1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
base / sampling_heap_profiler / poisson_allocation_sampler.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/sampling_heap_profiler/poisson_allocation_sampler.h"
#include <algorithm>
#include <atomic>
#include <cmath>
#include <memory>
#include <utility>
#include "base/allocator/dispatcher/reentry_guard.h"
#include "base/allocator/dispatcher/tls.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/no_destructor.h"
#include "base/rand_util.h"
#include "base/ranges/algorithm.h"
#include "build/build_config.h"
namespace base {
namespace {
using ::base::allocator::dispatcher::ReentryGuard;
const size_t kDefaultSamplingIntervalBytes = 128 * 1024;
const intptr_t kAccumulatedBytesOffset = 1 << 29;
// Controls if sample intervals should not be randomized. Used for testing.
bool g_deterministic = false;
// Pointer to the current |LockFreeAddressHashSet|.
constinit std::atomic<LockFreeAddressHashSet*> g_sampled_addresses_set{nullptr};
// Sampling interval parameter, the mean value for intervals between samples.
constinit std::atomic_size_t g_sampling_interval{kDefaultSamplingIntervalBytes};
struct ThreadLocalData {
// Accumulated bytes towards sample.
intptr_t accumulated_bytes = 0;
// Used as a workaround to avoid bias from muted samples. See
// ScopedMuteThreadSamples for more details.
intptr_t accumulated_bytes_snapshot = 0;
// PoissonAllocationSampler performs allocations while handling a
// notification. The guard protects against recursions originating from these.
bool internal_reentry_guard = false;
// A boolean used to distinguish first allocation on a thread:
// false - first allocation on the thread;
// true - otherwise.
// Since accumulated_bytes is initialized with zero the very first
// allocation on a thread would always trigger the sample, thus skewing the
// profile towards such allocations. To mitigate that we use the flag to
// ensure the first allocation is properly accounted.
bool sampling_interval_initialized = false;
};
ThreadLocalData* GetThreadLocalData() {
#if USE_LOCAL_TLS_EMULATION()
// If available, use ThreadLocalStorage to bypass dependencies introduced by
// Clang's implementation of thread_local.
static base::NoDestructor<
base::allocator::dispatcher::ThreadLocalStorage<ThreadLocalData>>
thread_local_data("poisson_allocation_sampler");
return thread_local_data->GetThreadLocalData();
#else
// Notes on TLS usage:
//
// * There's no safe way to use TLS in malloc() as both C++ thread_local and
// pthread do not pose any guarantees on whether they allocate or not.
// * We think that we can safely use thread_local w/o re-entrancy guard
// because the compiler will use "tls static access model" for static builds
// of Chrome [https://www.uclibc.org/docs/tls.pdf].
// But there's no guarantee that this will stay true, and in practice
// it seems to have problems on macOS/Android. These platforms do allocate
// on the very first access to a thread_local on each thread.
// * Directly using/warming-up platform TLS seems to work on all platforms,
// but is also not guaranteed to stay true. We make use of it for reentrancy
// guards on macOS/Android.
// * We cannot use Windows Tls[GS]etValue API as it modifies the result of
// GetLastError.
//
// Android thread_local seems to be using __emutls_get_address from libgcc:
// https://github.com/gcc-mirror/gcc/blob/master/libgcc/emutls.c
// macOS version is based on _tlv_get_addr from dyld:
// https://opensource.apple.com/source/dyld/dyld-635.2/src/threadLocalHelpers.s.auto.html
thread_local ThreadLocalData thread_local_data;
return &thread_local_data;
#endif
}
} // namespace
PoissonAllocationSamplerStats::PoissonAllocationSamplerStats(
size_t address_cache_hits,
size_t address_cache_misses,
size_t address_cache_max_size,
float address_cache_max_load_factor,
std::vector<size_t> address_cache_bucket_lengths)
: address_cache_hits(address_cache_hits),
address_cache_misses(address_cache_misses),
address_cache_max_size(address_cache_max_size),
address_cache_max_load_factor(address_cache_max_load_factor),
address_cache_bucket_lengths(std::move(address_cache_bucket_lengths)) {}
PoissonAllocationSamplerStats::~PoissonAllocationSamplerStats() = default;
PoissonAllocationSamplerStats::PoissonAllocationSamplerStats(
const PoissonAllocationSamplerStats&) = default;
PoissonAllocationSamplerStats& PoissonAllocationSamplerStats::operator=(
const PoissonAllocationSamplerStats&) = default;
PoissonAllocationSampler::ScopedMuteThreadSamples::ScopedMuteThreadSamples() {
ThreadLocalData* const thread_local_data = GetThreadLocalData();
DCHECK(!thread_local_data->internal_reentry_guard);
thread_local_data->internal_reentry_guard = true;
// We mute thread samples immediately after taking a sample, which is when we
// reset g_tls_accumulated_bytes. This breaks the random sampling requirement
// of the poisson process, and causes us to systematically overcount all other
// allocations. That's because muted allocations rarely trigger a sample
// [which would cause them to be ignored] since they occur right after
// g_tls_accumulated_bytes is reset.
//
// To counteract this, we drop g_tls_accumulated_bytes by a large, fixed
// amount to lower the probability that a sample is taken to close to 0. Then
// we reset it after we're done muting thread samples.
thread_local_data->accumulated_bytes_snapshot =
thread_local_data->accumulated_bytes;
thread_local_data->accumulated_bytes -= kAccumulatedBytesOffset;
}
PoissonAllocationSampler::ScopedMuteThreadSamples::~ScopedMuteThreadSamples() {
ThreadLocalData* const thread_local_data = GetThreadLocalData();
DCHECK(thread_local_data->internal_reentry_guard);
thread_local_data->internal_reentry_guard = false;
thread_local_data->accumulated_bytes =
thread_local_data->accumulated_bytes_snapshot;
}
// static
bool PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted() {
ThreadLocalData* const thread_local_data = GetThreadLocalData();
return thread_local_data->internal_reentry_guard;
}
PoissonAllocationSampler::ScopedSuppressRandomnessForTesting::
ScopedSuppressRandomnessForTesting() {
DCHECK(!g_deterministic);
g_deterministic = true;
// The accumulated_bytes may contain a random value from previous
// test runs, which would make the behaviour of the next call to
// RecordAlloc unpredictable.
ThreadLocalData* const thread_local_data = GetThreadLocalData();
thread_local_data->accumulated_bytes = 0;
}
PoissonAllocationSampler::ScopedSuppressRandomnessForTesting::
~ScopedSuppressRandomnessForTesting() {
DCHECK(g_deterministic);
g_deterministic = false;
}
// static
bool PoissonAllocationSampler::ScopedSuppressRandomnessForTesting::
IsSuppressed() {
return g_deterministic;
}
PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::
ScopedMuteHookedSamplesForTesting() {
SetProfilingStateFlag(ProfilingStateFlag::kHookedSamplesMutedForTesting);
// Reset the accumulated bytes to 0 on this thread.
ThreadLocalData* const thread_local_data = GetThreadLocalData();
accumulated_bytes_snapshot_ = thread_local_data->accumulated_bytes;
thread_local_data->accumulated_bytes = 0;
}
PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::
~ScopedMuteHookedSamplesForTesting() {
// Restore the accumulated bytes.
ThreadLocalData* const thread_local_data = GetThreadLocalData();
thread_local_data->accumulated_bytes = accumulated_bytes_snapshot_;
ResetProfilingStateFlag(ProfilingStateFlag::kHookedSamplesMutedForTesting);
}
PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::
ScopedMuteHookedSamplesForTesting(ScopedMuteHookedSamplesForTesting&&) =
default;
PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting&
PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::operator=(
ScopedMuteHookedSamplesForTesting&&) = default;
// static
constinit std::atomic<PoissonAllocationSampler::ProfilingStateFlagMask>
PoissonAllocationSampler::profiling_state_{0};
PoissonAllocationSampler::PoissonAllocationSampler() {
Init();
auto* sampled_addresses = new LockFreeAddressHashSet(64, mutex_);
g_sampled_addresses_set.store(sampled_addresses, std::memory_order_release);
}
// static
void PoissonAllocationSampler::Init() {
[[maybe_unused]] static bool init_once = [] {
// Touch thread local data on initialization to enforce proper setup of
// underlying storage system.
GetThreadLocalData();
ReentryGuard::InitTLSSlot();
return true;
}();
}
void PoissonAllocationSampler::SetSamplingInterval(
size_t sampling_interval_bytes) {
// TODO(alph): Reset the sample being collected if running.
g_sampling_interval.store(sampling_interval_bytes, std::memory_order_relaxed);
}
size_t PoissonAllocationSampler::SamplingInterval() const {
return g_sampling_interval.load(std::memory_order_relaxed);
}
PoissonAllocationSamplerStats PoissonAllocationSampler::GetAndResetStats() {
AutoLock lock(mutex_);
return PoissonAllocationSamplerStats(
address_cache_hits_.exchange(0, std::memory_order_relaxed),
address_cache_misses_.exchange(0, std::memory_order_relaxed),
std::exchange(address_cache_max_size_, 0),
std::exchange(address_cache_max_load_factor_, 0.0),
sampled_addresses_set().GetBucketLengths());
}
// static
size_t PoissonAllocationSampler::GetNextSampleInterval(size_t interval) {
if (g_deterministic) [[unlikely]] {
return interval;
}
// We sample with a Poisson process, with constant average sampling
// interval. This follows the exponential probability distribution with
// parameter λ = 1/interval where |interval| is the average number of bytes
// between samples.
// Let u be a uniformly distributed random number (0,1], then
// next_sample = -ln(u) / λ
// RandDouble returns numbers [0,1). We use 1-RandDouble to correct it to
// avoid a possible floating point exception from taking the log of 0.
// The allocator shim uses the PoissonAllocationSampler, hence avoid
// allocation to avoid infinite recursion.
double uniform = internal::RandDoubleAvoidAllocation();
double value = -log(1 - uniform) * interval;
size_t min_value = sizeof(intptr_t);
// We limit the upper bound of a sample interval to make sure we don't have
// huge gaps in the sampling stream. Probability of the upper bound gets hit
// is exp(-20) ~ 2e-9, so it should not skew the distribution.
size_t max_value = interval * 20;
if (value < min_value) [[unlikely]] {
return min_value;
}
if (value > max_value) [[unlikely]] {
return max_value;
}
return static_cast<size_t>(value);
}
void PoissonAllocationSampler::DoRecordAllocation(
const ProfilingStateFlagMask state,
void* address,
size_t size,
base::allocator::dispatcher::AllocationSubsystem type,
const char* context) {
ThreadLocalData* const thread_local_data = GetThreadLocalData();
thread_local_data->accumulated_bytes += size;
intptr_t accumulated_bytes = thread_local_data->accumulated_bytes;
if (accumulated_bytes < 0) [[likely]] {
return;
}
if (!(state & ProfilingStateFlag::kIsRunning)) [[unlikely]] {
// Sampling was in fact disabled when the hook was called. Reset the state
// of the sampler. We do this check off the fast-path, because it's quite a
// rare state when the sampler is stopped after it's started. (The most
// common caller of PoissonAllocationSampler starts it and leaves it running
// for the rest of the Chrome session.)
thread_local_data->sampling_interval_initialized = false;
thread_local_data->accumulated_bytes = 0;
return;
}
// Failed allocation? Skip the sample.
if (!address) [[unlikely]] {
return;
}
size_t mean_interval = g_sampling_interval.load(std::memory_order_relaxed);
if (!thread_local_data->sampling_interval_initialized) [[unlikely]] {
thread_local_data->sampling_interval_initialized = true;
// This is the very first allocation on the thread. It always makes it
// passing the condition at |RecordAlloc|, because accumulated_bytes
// is initialized with zero due to TLS semantics.
// Generate proper sampling interval instance and make sure the allocation
// has indeed crossed the threshold before counting it as a sample.
accumulated_bytes -= GetNextSampleInterval(mean_interval);
if (accumulated_bytes < 0) {
thread_local_data->accumulated_bytes = accumulated_bytes;
return;
}
}
// This cast is safe because this function is only called with a positive
// value of `accumulated_bytes`.
size_t samples = static_cast<size_t>(accumulated_bytes) / mean_interval;
accumulated_bytes %= mean_interval;
do {
accumulated_bytes -= GetNextSampleInterval(mean_interval);
++samples;
} while (accumulated_bytes >= 0);
thread_local_data->accumulated_bytes = accumulated_bytes;
if (ScopedMuteThreadSamples::IsMuted()) [[unlikely]] {
return;
}
ScopedMuteThreadSamples no_reentrancy_scope;
std::vector<SamplesObserver*> observers_copy;
{
AutoLock lock(mutex_);
// TODO(alph): Sometimes RecordAlloc is called twice in a row without
// a RecordFree in between. Investigate it.
if (sampled_addresses_set().Contains(address)) {
return;
}
sampled_addresses_set().Insert(address);
BalanceAddressesHashSet();
// Record the load factor after balancing gets a chance to reduce it.
// Balancing won't change the size.
address_cache_max_size_ =
std::max(address_cache_max_size_, sampled_addresses_set().size());
address_cache_max_load_factor_ = std::max(
address_cache_max_load_factor_, sampled_addresses_set().load_factor());
observers_copy = observers_;
}
size_t total_allocated = mean_interval * samples;
for (base::PoissonAllocationSampler::SamplesObserver* observer :
observers_copy) {
observer->SampleAdded(address, size, total_allocated, type, context);
}
}
void PoissonAllocationSampler::DoRecordFree(void* address) {
// There is a rare case on macOS and Android when the very first thread_local
// access in ScopedMuteThreadSamples constructor may allocate and
// thus reenter DoRecordAlloc. However the call chain won't build up further
// as RecordAlloc accesses are guarded with pthread TLS-based ReentryGuard.
ScopedMuteThreadSamples no_reentrancy_scope;
std::vector<SamplesObserver*> observers_copy;
{
AutoLock lock(mutex_);
observers_copy = observers_;
sampled_addresses_set().Remove(address);
}
for (base::PoissonAllocationSampler::SamplesObserver* observer :
observers_copy) {
observer->SampleRemoved(address);
}
}
void PoissonAllocationSampler::BalanceAddressesHashSet() {
// Check if the load_factor of the current addresses hash set becomes higher
// than 1, allocate a new twice larger one, copy all the data,
// and switch to using it.
// During the copy process no other writes are made to both sets
// as it's behind the lock.
// All the readers continue to use the old one until the atomic switch
// process takes place.
LockFreeAddressHashSet& current_set = sampled_addresses_set();
if (current_set.load_factor() < 1) {
return;
}
auto new_set = std::make_unique<LockFreeAddressHashSet>(
current_set.buckets_count() * 2, mutex_);
new_set->Copy(current_set);
// Atomically switch all the new readers to the new set.
g_sampled_addresses_set.store(new_set.release(), std::memory_order_release);
// We leak the older set because we still have to keep all the old maps alive
// as there might be reader threads that have already obtained the map,
// but haven't yet managed to access it.
}
// static
LockFreeAddressHashSet& PoissonAllocationSampler::sampled_addresses_set() {
return *g_sampled_addresses_set.load(std::memory_order_acquire);
}
// static
PoissonAllocationSampler* PoissonAllocationSampler::Get() {
static NoDestructor<PoissonAllocationSampler> instance;
return instance.get();
}
// static
void PoissonAllocationSampler::SetProfilingStateFlag(ProfilingStateFlag flag) {
ProfilingStateFlagMask flags = flag;
if (flag == ProfilingStateFlag::kIsRunning) {
flags |= ProfilingStateFlag::kWasStarted;
}
ProfilingStateFlagMask old_state =
profiling_state_.fetch_or(flags, std::memory_order_relaxed);
DCHECK(!(old_state & flag));
}
// static
void PoissonAllocationSampler::ResetProfilingStateFlag(
ProfilingStateFlag flag) {
DCHECK_NE(flag, kWasStarted);
ProfilingStateFlagMask old_state =
profiling_state_.fetch_and(~flag, std::memory_order_relaxed);
DCHECK(old_state & flag);
}
void PoissonAllocationSampler::AddSamplesObserver(SamplesObserver* observer) {
// The following implementation (including ScopedMuteThreadSamples) will use
// `thread_local`, which may cause a reentrancy issue. So, temporarily
// disable the sampling by having a ReentryGuard.
ReentryGuard guard;
ScopedMuteThreadSamples no_reentrancy_scope;
AutoLock lock(mutex_);
DCHECK(ranges::find(observers_, observer) == observers_.end());
bool profiler_was_stopped = observers_.empty();
observers_.push_back(observer);
// Adding the observer will enable profiling. This will use
// `g_sampled_address_set` so it had better be initialized.
DCHECK(g_sampled_addresses_set.load(std::memory_order_relaxed));
// Start the profiler if this was the first observer. Setting/resetting
// kIsRunning isn't racy because it's performed based on `observers_.empty()`
// while holding `mutex_`.
if (profiler_was_stopped) {
SetProfilingStateFlag(ProfilingStateFlag::kIsRunning);
}
DCHECK(profiling_state_.load(std::memory_order_relaxed) &
ProfilingStateFlag::kIsRunning);
}
void PoissonAllocationSampler::RemoveSamplesObserver(
SamplesObserver* observer) {
// The following implementation (including ScopedMuteThreadSamples) will use
// `thread_local`, which may cause a reentrancy issue. So, temporarily
// disable the sampling by having a ReentryGuard.
ReentryGuard guard;
ScopedMuteThreadSamples no_reentrancy_scope;
AutoLock lock(mutex_);
auto it = ranges::find(observers_, observer);
CHECK(it != observers_.end(), base::NotFatalUntil::M125);
observers_.erase(it);
// Stop the profiler if there are no more observers. Setting/resetting
// kIsRunning isn't racy because it's performed based on `observers_.empty()`
// while holding `mutex_`.
DCHECK(profiling_state_.load(std::memory_order_relaxed) &
ProfilingStateFlag::kIsRunning);
if (observers_.empty()) {
ResetProfilingStateFlag(ProfilingStateFlag::kIsRunning);
}
}
} // namespace base