1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482

base / sampling_heap_profiler / poisson_allocation_sampler.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/sampling_heap_profiler/poisson_allocation_sampler.h"

#include <algorithm>
#include <atomic>
#include <cmath>
#include <memory>
#include <utility>

#include "base/allocator/dispatcher/reentry_guard.h"
#include "base/allocator/dispatcher/tls.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/no_destructor.h"
#include "base/rand_util.h"
#include "base/ranges/algorithm.h"
#include "build/build_config.h"

namespace base {

namespace {

using ::base::allocator::dispatcher::ReentryGuard;

const size_t kDefaultSamplingIntervalBytes = 128 * 1024;

const intptr_t kAccumulatedBytesOffset = 1 << 29;

// Controls if sample intervals should not be randomized. Used for testing.
bool g_deterministic = false;

// Pointer to the current |LockFreeAddressHashSet|.
constinit std::atomic<LockFreeAddressHashSet*> g_sampled_addresses_set{nullptr};

// Sampling interval parameter, the mean value for intervals between samples.
constinit std::atomic_size_t g_sampling_interval{kDefaultSamplingIntervalBytes};

struct ThreadLocalData {
  // Accumulated bytes towards sample.
  intptr_t accumulated_bytes = 0;
  // Used as a workaround to avoid bias from muted samples. See
  // ScopedMuteThreadSamples for more details.
  intptr_t accumulated_bytes_snapshot = 0;
  // PoissonAllocationSampler performs allocations while handling a
  // notification. The guard protects against recursions originating from these.
  bool internal_reentry_guard = false;
  // A boolean used to distinguish first allocation on a thread:
  //   false - first allocation on the thread;
  //   true  - otherwise.
  // Since accumulated_bytes is initialized with zero the very first
  // allocation on a thread would always trigger the sample, thus skewing the
  // profile towards such allocations. To mitigate that we use the flag to
  // ensure the first allocation is properly accounted.
  bool sampling_interval_initialized = false;
};

ThreadLocalData* GetThreadLocalData() {
#if USE_LOCAL_TLS_EMULATION()
  // If available, use ThreadLocalStorage to bypass dependencies introduced by
  // Clang's implementation of thread_local.
  static base::NoDestructor<
      base::allocator::dispatcher::ThreadLocalStorage<ThreadLocalData>>
      thread_local_data("poisson_allocation_sampler");
  return thread_local_data->GetThreadLocalData();
#else
  // Notes on TLS usage:
  //
  // * There's no safe way to use TLS in malloc() as both C++ thread_local and
  //   pthread do not pose any guarantees on whether they allocate or not.
  // * We think that we can safely use thread_local w/o re-entrancy guard
  //   because the compiler will use "tls static access model" for static builds
  //   of Chrome [https://www.uclibc.org/docs/tls.pdf].
  //   But there's no guarantee that this will stay true, and in practice
  //   it seems to have problems on macOS/Android. These platforms do allocate
  //   on the very first access to a thread_local on each thread.
  // * Directly using/warming-up platform TLS seems to work on all platforms,
  //   but is also not guaranteed to stay true. We make use of it for reentrancy
  //   guards on macOS/Android.
  // * We cannot use Windows Tls[GS]etValue API as it modifies the result of
  //   GetLastError.
  //
  // Android thread_local seems to be using __emutls_get_address from libgcc:
  // https://github.com/gcc-mirror/gcc/blob/master/libgcc/emutls.c
  // macOS version is based on _tlv_get_addr from dyld:
  // https://opensource.apple.com/source/dyld/dyld-635.2/src/threadLocalHelpers.s.auto.html
  thread_local ThreadLocalData thread_local_data;
  return &thread_local_data;
#endif
}

}  // namespace

PoissonAllocationSamplerStats::PoissonAllocationSamplerStats(
    size_t address_cache_hits,
    size_t address_cache_misses,
    size_t address_cache_max_size,
    float address_cache_max_load_factor,
    std::vector<size_t> address_cache_bucket_lengths)
    : address_cache_hits(address_cache_hits),
      address_cache_misses(address_cache_misses),
      address_cache_max_size(address_cache_max_size),
      address_cache_max_load_factor(address_cache_max_load_factor),
      address_cache_bucket_lengths(std::move(address_cache_bucket_lengths)) {}

PoissonAllocationSamplerStats::~PoissonAllocationSamplerStats() = default;

PoissonAllocationSamplerStats::PoissonAllocationSamplerStats(
    const PoissonAllocationSamplerStats&) = default;

PoissonAllocationSamplerStats& PoissonAllocationSamplerStats::operator=(
    const PoissonAllocationSamplerStats&) = default;

PoissonAllocationSampler::ScopedMuteThreadSamples::ScopedMuteThreadSamples() {
  ThreadLocalData* const thread_local_data = GetThreadLocalData();

  DCHECK(!thread_local_data->internal_reentry_guard);
  thread_local_data->internal_reentry_guard = true;

  // We mute thread samples immediately after taking a sample, which is when we
  // reset g_tls_accumulated_bytes. This breaks the random sampling requirement
  // of the poisson process, and causes us to systematically overcount all other
  // allocations. That's because muted allocations rarely trigger a sample
  // [which would cause them to be ignored] since they occur right after
  // g_tls_accumulated_bytes is reset.
  //
  // To counteract this, we drop g_tls_accumulated_bytes by a large, fixed
  // amount to lower the probability that a sample is taken to close to 0. Then
  // we reset it after we're done muting thread samples.
  thread_local_data->accumulated_bytes_snapshot =
      thread_local_data->accumulated_bytes;
  thread_local_data->accumulated_bytes -= kAccumulatedBytesOffset;
}

PoissonAllocationSampler::ScopedMuteThreadSamples::~ScopedMuteThreadSamples() {
  ThreadLocalData* const thread_local_data = GetThreadLocalData();
  DCHECK(thread_local_data->internal_reentry_guard);
  thread_local_data->internal_reentry_guard = false;
  thread_local_data->accumulated_bytes =
      thread_local_data->accumulated_bytes_snapshot;
}

// static
bool PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted() {
  ThreadLocalData* const thread_local_data = GetThreadLocalData();
  return thread_local_data->internal_reentry_guard;
}

PoissonAllocationSampler::ScopedSuppressRandomnessForTesting::
    ScopedSuppressRandomnessForTesting() {
  DCHECK(!g_deterministic);
  g_deterministic = true;
  // The accumulated_bytes may contain a random value from previous
  // test runs, which would make the behaviour of the next call to
  // RecordAlloc unpredictable.
  ThreadLocalData* const thread_local_data = GetThreadLocalData();
  thread_local_data->accumulated_bytes = 0;
}

PoissonAllocationSampler::ScopedSuppressRandomnessForTesting::
    ~ScopedSuppressRandomnessForTesting() {
  DCHECK(g_deterministic);
  g_deterministic = false;
}

// static
bool PoissonAllocationSampler::ScopedSuppressRandomnessForTesting::
    IsSuppressed() {
  return g_deterministic;
}

PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::
    ScopedMuteHookedSamplesForTesting() {
  SetProfilingStateFlag(ProfilingStateFlag::kHookedSamplesMutedForTesting);

  // Reset the accumulated bytes to 0 on this thread.
  ThreadLocalData* const thread_local_data = GetThreadLocalData();
  accumulated_bytes_snapshot_ = thread_local_data->accumulated_bytes;
  thread_local_data->accumulated_bytes = 0;
}

PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::
    ~ScopedMuteHookedSamplesForTesting() {
  // Restore the accumulated bytes.
  ThreadLocalData* const thread_local_data = GetThreadLocalData();
  thread_local_data->accumulated_bytes = accumulated_bytes_snapshot_;
  ResetProfilingStateFlag(ProfilingStateFlag::kHookedSamplesMutedForTesting);
}

PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::
    ScopedMuteHookedSamplesForTesting(ScopedMuteHookedSamplesForTesting&&) =
        default;

PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting&
PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting::operator=(
    ScopedMuteHookedSamplesForTesting&&) = default;

// static
constinit std::atomic<PoissonAllocationSampler::ProfilingStateFlagMask>
    PoissonAllocationSampler::profiling_state_{0};

PoissonAllocationSampler::PoissonAllocationSampler() {
  Init();
  auto* sampled_addresses = new LockFreeAddressHashSet(64, mutex_);
  g_sampled_addresses_set.store(sampled_addresses, std::memory_order_release);
}

// static
void PoissonAllocationSampler::Init() {
  [[maybe_unused]] static bool init_once = [] {
    // Touch thread local data on initialization to enforce proper setup of
    // underlying storage system.
    GetThreadLocalData();
    ReentryGuard::InitTLSSlot();
    return true;
  }();
}

void PoissonAllocationSampler::SetSamplingInterval(
    size_t sampling_interval_bytes) {
  // TODO(alph): Reset the sample being collected if running.
  g_sampling_interval.store(sampling_interval_bytes, std::memory_order_relaxed);
}

size_t PoissonAllocationSampler::SamplingInterval() const {
  return g_sampling_interval.load(std::memory_order_relaxed);
}

PoissonAllocationSamplerStats PoissonAllocationSampler::GetAndResetStats() {
  AutoLock lock(mutex_);
  return PoissonAllocationSamplerStats(
      address_cache_hits_.exchange(0, std::memory_order_relaxed),
      address_cache_misses_.exchange(0, std::memory_order_relaxed),
      std::exchange(address_cache_max_size_, 0),
      std::exchange(address_cache_max_load_factor_, 0.0),
      sampled_addresses_set().GetBucketLengths());
}

// static
size_t PoissonAllocationSampler::GetNextSampleInterval(size_t interval) {
  if (g_deterministic) [[unlikely]] {
    return interval;
  }

  // We sample with a Poisson process, with constant average sampling
  // interval. This follows the exponential probability distribution with
  // parameter λ = 1/interval where |interval| is the average number of bytes
  // between samples.
  // Let u be a uniformly distributed random number (0,1], then
  // next_sample = -ln(u) / λ
  // RandDouble returns numbers [0,1). We use 1-RandDouble to correct it to
  // avoid a possible floating point exception from taking the log of 0.
  // The allocator shim uses the PoissonAllocationSampler, hence avoid
  // allocation to avoid infinite recursion.
  double uniform = internal::RandDoubleAvoidAllocation();
  double value = -log(1 - uniform) * interval;
  size_t min_value = sizeof(intptr_t);
  // We limit the upper bound of a sample interval to make sure we don't have
  // huge gaps in the sampling stream. Probability of the upper bound gets hit
  // is exp(-20) ~ 2e-9, so it should not skew the distribution.
  size_t max_value = interval * 20;
  if (value < min_value) [[unlikely]] {
    return min_value;
  }
  if (value > max_value) [[unlikely]] {
    return max_value;
  }
  return static_cast<size_t>(value);
}

void PoissonAllocationSampler::DoRecordAllocation(
    const ProfilingStateFlagMask state,
    void* address,
    size_t size,
    base::allocator::dispatcher::AllocationSubsystem type,
    const char* context) {
  ThreadLocalData* const thread_local_data = GetThreadLocalData();

  thread_local_data->accumulated_bytes += size;
  intptr_t accumulated_bytes = thread_local_data->accumulated_bytes;
  if (accumulated_bytes < 0) [[likely]] {
    return;
  }

  if (!(state & ProfilingStateFlag::kIsRunning)) [[unlikely]] {
    // Sampling was in fact disabled when the hook was called. Reset the state
    // of the sampler. We do this check off the fast-path, because it's quite a
    // rare state when the sampler is stopped after it's started. (The most
    // common caller of PoissonAllocationSampler starts it and leaves it running
    // for the rest of the Chrome session.)
    thread_local_data->sampling_interval_initialized = false;
    thread_local_data->accumulated_bytes = 0;
    return;
  }

  // Failed allocation? Skip the sample.
  if (!address) [[unlikely]] {
    return;
  }

  size_t mean_interval = g_sampling_interval.load(std::memory_order_relaxed);
  if (!thread_local_data->sampling_interval_initialized) [[unlikely]] {
    thread_local_data->sampling_interval_initialized = true;
    // This is the very first allocation on the thread. It always makes it
    // passing the condition at |RecordAlloc|, because accumulated_bytes
    // is initialized with zero due to TLS semantics.
    // Generate proper sampling interval instance and make sure the allocation
    // has indeed crossed the threshold before counting it as a sample.
    accumulated_bytes -= GetNextSampleInterval(mean_interval);
    if (accumulated_bytes < 0) {
      thread_local_data->accumulated_bytes = accumulated_bytes;
      return;
    }
  }

  // This cast is safe because this function is only called with a positive
  // value of `accumulated_bytes`.
  size_t samples = static_cast<size_t>(accumulated_bytes) / mean_interval;
  accumulated_bytes %= mean_interval;

  do {
    accumulated_bytes -= GetNextSampleInterval(mean_interval);
    ++samples;
  } while (accumulated_bytes >= 0);

  thread_local_data->accumulated_bytes = accumulated_bytes;

  if (ScopedMuteThreadSamples::IsMuted()) [[unlikely]] {
    return;
  }

  ScopedMuteThreadSamples no_reentrancy_scope;
  std::vector<SamplesObserver*> observers_copy;
  {
    AutoLock lock(mutex_);

    // TODO(alph): Sometimes RecordAlloc is called twice in a row without
    // a RecordFree in between. Investigate it.
    if (sampled_addresses_set().Contains(address)) {
      return;
    }
    sampled_addresses_set().Insert(address);
    BalanceAddressesHashSet();
    // Record the load factor after balancing gets a chance to reduce it.
    // Balancing won't change the size.
    address_cache_max_size_ =
        std::max(address_cache_max_size_, sampled_addresses_set().size());
    address_cache_max_load_factor_ = std::max(
        address_cache_max_load_factor_, sampled_addresses_set().load_factor());
    observers_copy = observers_;
  }

  size_t total_allocated = mean_interval * samples;
  for (base::PoissonAllocationSampler::SamplesObserver* observer :
       observers_copy) {
    observer->SampleAdded(address, size, total_allocated, type, context);
  }
}

void PoissonAllocationSampler::DoRecordFree(void* address) {
  // There is a rare case on macOS and Android when the very first thread_local
  // access in ScopedMuteThreadSamples constructor may allocate and
  // thus reenter DoRecordAlloc. However the call chain won't build up further
  // as RecordAlloc accesses are guarded with pthread TLS-based ReentryGuard.
  ScopedMuteThreadSamples no_reentrancy_scope;
  std::vector<SamplesObserver*> observers_copy;
  {
    AutoLock lock(mutex_);
    observers_copy = observers_;
    sampled_addresses_set().Remove(address);
  }
  for (base::PoissonAllocationSampler::SamplesObserver* observer :
       observers_copy) {
    observer->SampleRemoved(address);
  }
}

void PoissonAllocationSampler::BalanceAddressesHashSet() {
  // Check if the load_factor of the current addresses hash set becomes higher
  // than 1, allocate a new twice larger one, copy all the data,
  // and switch to using it.
  // During the copy process no other writes are made to both sets
  // as it's behind the lock.
  // All the readers continue to use the old one until the atomic switch
  // process takes place.
  LockFreeAddressHashSet& current_set = sampled_addresses_set();
  if (current_set.load_factor() < 1) {
    return;
  }
  auto new_set = std::make_unique<LockFreeAddressHashSet>(
      current_set.buckets_count() * 2, mutex_);
  new_set->Copy(current_set);
  // Atomically switch all the new readers to the new set.
  g_sampled_addresses_set.store(new_set.release(), std::memory_order_release);
  // We leak the older set because we still have to keep all the old maps alive
  // as there might be reader threads that have already obtained the map,
  // but haven't yet managed to access it.
}

// static
LockFreeAddressHashSet& PoissonAllocationSampler::sampled_addresses_set() {
  return *g_sampled_addresses_set.load(std::memory_order_acquire);
}

// static
PoissonAllocationSampler* PoissonAllocationSampler::Get() {
  static NoDestructor<PoissonAllocationSampler> instance;
  return instance.get();
}

// static
void PoissonAllocationSampler::SetProfilingStateFlag(ProfilingStateFlag flag) {
  ProfilingStateFlagMask flags = flag;
  if (flag == ProfilingStateFlag::kIsRunning) {
    flags |= ProfilingStateFlag::kWasStarted;
  }
  ProfilingStateFlagMask old_state =
      profiling_state_.fetch_or(flags, std::memory_order_relaxed);
  DCHECK(!(old_state & flag));
}

// static
void PoissonAllocationSampler::ResetProfilingStateFlag(
    ProfilingStateFlag flag) {
  DCHECK_NE(flag, kWasStarted);
  ProfilingStateFlagMask old_state =
      profiling_state_.fetch_and(~flag, std::memory_order_relaxed);
  DCHECK(old_state & flag);
}

void PoissonAllocationSampler::AddSamplesObserver(SamplesObserver* observer) {
  // The following implementation (including ScopedMuteThreadSamples) will use
  // `thread_local`, which may cause a reentrancy issue.  So, temporarily
  // disable the sampling by having a ReentryGuard.
  ReentryGuard guard;

  ScopedMuteThreadSamples no_reentrancy_scope;
  AutoLock lock(mutex_);
  DCHECK(ranges::find(observers_, observer) == observers_.end());
  bool profiler_was_stopped = observers_.empty();
  observers_.push_back(observer);

  // Adding the observer will enable profiling. This will use
  // `g_sampled_address_set` so it had better be initialized.
  DCHECK(g_sampled_addresses_set.load(std::memory_order_relaxed));

  // Start the profiler if this was the first observer. Setting/resetting
  // kIsRunning isn't racy because it's performed based on `observers_.empty()`
  // while holding `mutex_`.
  if (profiler_was_stopped) {
    SetProfilingStateFlag(ProfilingStateFlag::kIsRunning);
  }
  DCHECK(profiling_state_.load(std::memory_order_relaxed) &
         ProfilingStateFlag::kIsRunning);
}

void PoissonAllocationSampler::RemoveSamplesObserver(
    SamplesObserver* observer) {
  // The following implementation (including ScopedMuteThreadSamples) will use
  // `thread_local`, which may cause a reentrancy issue.  So, temporarily
  // disable the sampling by having a ReentryGuard.
  ReentryGuard guard;

  ScopedMuteThreadSamples no_reentrancy_scope;
  AutoLock lock(mutex_);
  auto it = ranges::find(observers_, observer);
  CHECK(it != observers_.end(), base::NotFatalUntil::M125);
  observers_.erase(it);

  // Stop the profiler if there are no more observers. Setting/resetting
  // kIsRunning isn't racy because it's performed based on `observers_.empty()`
  // while holding `mutex_`.
  DCHECK(profiling_state_.load(std::memory_order_relaxed) &
         ProfilingStateFlag::kIsRunning);
  if (observers_.empty()) {
    ResetProfilingStateFlag(ProfilingStateFlag::kIsRunning);
  }
}

}  // namespace base