1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267

base / strings / utf_offset_string_conversions.cc [blame]

// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/strings/utf_offset_string_conversions.h"

#include <stdint.h>

#include <algorithm>
#include <memory>
#include <string_view>

#include "base/check_op.h"
#include "base/strings/utf_string_conversion_utils.h"

namespace base {

OffsetAdjuster::Adjustment::Adjustment(size_t original_offset,
                                       size_t original_length,
                                       size_t output_length)
    : original_offset(original_offset),
      original_length(original_length),
      output_length(output_length) {
}

// static
void OffsetAdjuster::AdjustOffsets(const Adjustments& adjustments,
                                   std::vector<size_t>* offsets_for_adjustment,
                                   size_t limit) {
  DCHECK(offsets_for_adjustment);
  for (auto& i : *offsets_for_adjustment)
    AdjustOffset(adjustments, &i, limit);
}

// static
void OffsetAdjuster::AdjustOffset(const Adjustments& adjustments,
                                  size_t* offset,
                                  size_t limit) {
  DCHECK(offset);
  if (*offset == std::u16string::npos)
    return;
  size_t original_lengths = 0;
  size_t output_lengths = 0;
  for (const auto& i : adjustments) {
    if (*offset <= i.original_offset)
      break;
    if (*offset < (i.original_offset + i.original_length)) {
      *offset = std::u16string::npos;
      return;
    }
    original_lengths += i.original_length;
    output_lengths += i.output_length;
  }
  *offset += output_lengths - original_lengths;

  if (*offset > limit)
    *offset = std::u16string::npos;
}

// static
void OffsetAdjuster::UnadjustOffsets(
    const Adjustments& adjustments,
    std::vector<size_t>* offsets_for_unadjustment) {
  if (!offsets_for_unadjustment || adjustments.empty())
    return;
  for (auto& i : *offsets_for_unadjustment)
    UnadjustOffset(adjustments, &i);
}

// static
void OffsetAdjuster::UnadjustOffset(const Adjustments& adjustments,
                                    size_t* offset) {
  if (*offset == std::u16string::npos)
    return;
  size_t original_lengths = 0;
  size_t output_lengths = 0;
  for (const auto& i : adjustments) {
    if (*offset + original_lengths - output_lengths <= i.original_offset)
      break;
    original_lengths += i.original_length;
    output_lengths += i.output_length;
    if ((*offset + original_lengths - output_lengths) <
        (i.original_offset + i.original_length)) {
      *offset = std::u16string::npos;
      return;
    }
  }
  *offset += original_lengths - output_lengths;
}

// static
void OffsetAdjuster::MergeSequentialAdjustments(
    const Adjustments& first_adjustments,
    Adjustments* adjustments_on_adjusted_string) {
  auto adjusted_iter = adjustments_on_adjusted_string->begin();
  auto first_iter = first_adjustments.begin();
  // Simultaneously iterate over all |adjustments_on_adjusted_string| and
  // |first_adjustments|, pushing adjustments at the end of
  // |adjustments_builder| as we go.  |shift| keeps track of the current number
  // of characters collapsed by |first_adjustments| up to this point.
  // |currently_collapsing| keeps track of the number of characters collapsed by
  // |first_adjustments| into the current |adjusted_iter|'s length.  These are
  // characters that will change |shift| as soon as we're done processing the
  // current |adjusted_iter|; they are not yet reflected in |shift|.
  size_t shift = 0;
  size_t currently_collapsing = 0;
  // While we *could* update |adjustments_on_adjusted_string| in place by
  // inserting new adjustments into the middle, we would be repeatedly calling
  // |std::vector::insert|. That would cost O(n) time per insert, relative to
  // distance from end of the string.  By instead allocating
  // |adjustments_builder| and calling |std::vector::push_back|, we only pay
  // amortized constant time per push. We are trading space for time.
  Adjustments adjustments_builder;
  while (adjusted_iter != adjustments_on_adjusted_string->end()) {
    if ((first_iter == first_adjustments.end()) ||
        ((adjusted_iter->original_offset + shift +
          adjusted_iter->original_length) <= first_iter->original_offset)) {
      // Entire |adjusted_iter| (accounting for its shift and including its
      // whole original length) comes before |first_iter|.
      //
      // Correct the offset at |adjusted_iter| and move onto the next
      // adjustment that needs revising.
      adjusted_iter->original_offset += shift;
      shift += currently_collapsing;
      currently_collapsing = 0;
      adjustments_builder.push_back(*adjusted_iter);
      ++adjusted_iter;
    } else if ((adjusted_iter->original_offset + shift) >
               first_iter->original_offset) {
      // |first_iter| comes before the |adjusted_iter| (as adjusted by |shift|).

      // It's not possible for the adjustments to overlap.  (It shouldn't
      // be possible that we have an |adjusted_iter->original_offset| that,
      // when adjusted by the computed |shift|, is in the middle of
      // |first_iter|'s output's length.  After all, that would mean the
      // current adjustment_on_adjusted_string somehow points to an offset
      // that was supposed to have been eliminated by the first set of
      // adjustments.)
      DCHECK_LE(first_iter->original_offset + first_iter->output_length,
                adjusted_iter->original_offset + shift);

      // Add the |first_iter| to the full set of adjustments.
      shift += first_iter->original_length - first_iter->output_length;
      adjustments_builder.push_back(*first_iter);
      ++first_iter;
    } else {
      // The first adjustment adjusted something that then got further adjusted
      // by the second set of adjustments.  In other words, |first_iter| points
      // to something in the range covered by |adjusted_iter|'s length (after
      // accounting for |shift|).  Precisely,
      //   adjusted_iter->original_offset + shift
      //   <=
      //   first_iter->original_offset
      //   <=
      //   adjusted_iter->original_offset + shift +
      //       adjusted_iter->original_length
      // Modify the current |adjusted_iter| to include whatever collapsing
      // happened in |first_iter|, then advance to the next |first_adjustments|
      // because we dealt with the current one.

      // This function does not know how to deal with a string that expands and
      // then gets modified, only strings that collapse and then get modified.
      DCHECK_GT(first_iter->original_length, first_iter->output_length);
      const size_t collapse =
          first_iter->original_length - first_iter->output_length;
      adjusted_iter->original_length += collapse;
      currently_collapsing += collapse;
      ++first_iter;
    }
  }
  DCHECK_EQ(0u, currently_collapsing);
  if (first_iter != first_adjustments.end()) {
    // Only first adjustments are left.  These do not need to be modified.
    // (Their offsets are already correct with respect to the original string.)
    // Append them all.
    DCHECK(adjusted_iter == adjustments_on_adjusted_string->end());
    adjustments_builder.insert(adjustments_builder.end(), first_iter,
                               first_adjustments.end());
  }
  *adjustments_on_adjusted_string = std::move(adjustments_builder);
}

// Converts the given source Unicode character type to the given destination
// Unicode character type as a STL string. The given input buffer and size
// determine the source, and the given output STL string will be replaced by
// the result.  If non-NULL, |adjustments| is set to reflect the all the
// alterations to the string that are not one-character-to-one-character.
// It will always be sorted by increasing offset.
template<typename SrcChar, typename DestStdString>
bool ConvertUnicode(const SrcChar* src,
                    size_t src_len,
                    DestStdString* output,
                    OffsetAdjuster::Adjustments* adjustments) {
  if (adjustments)
    adjustments->clear();
  bool success = true;
  for (size_t i = 0; i < src_len; i++) {
    base_icu::UChar32 code_point;
    size_t original_i = i;
    size_t chars_written = 0;
    if (ReadUnicodeCharacter(src, src_len, &i, &code_point)) {
      chars_written = WriteUnicodeCharacter(code_point, output);
    } else {
      chars_written = WriteUnicodeCharacter(0xFFFD, output);
      success = false;
    }

    // Only bother writing an adjustment if this modification changed the
    // length of this character.
    // NOTE: ReadUnicodeCharacter() adjusts |i| to point _at_ the last
    // character read, not after it (so that incrementing it in the loop
    // increment will place it at the right location), so we need to account
    // for that in determining the amount that was read.
    if (adjustments && ((i - original_i + 1) != chars_written)) {
      adjustments->push_back(OffsetAdjuster::Adjustment(
          original_i, i - original_i + 1, chars_written));
    }
  }
  return success;
}

bool UTF8ToUTF16WithAdjustments(
    const char* src,
    size_t src_len,
    std::u16string* output,
    base::OffsetAdjuster::Adjustments* adjustments) {
  PrepareForUTF16Or32Output(src, src_len, output);
  return ConvertUnicode(src, src_len, output, adjustments);
}

std::u16string UTF8ToUTF16WithAdjustments(
    std::string_view utf8,
    base::OffsetAdjuster::Adjustments* adjustments) {
  std::u16string result;
  UTF8ToUTF16WithAdjustments(utf8.data(), utf8.length(), &result, adjustments);
  return result;
}

std::u16string UTF8ToUTF16AndAdjustOffsets(
    std::string_view utf8,
    std::vector<size_t>* offsets_for_adjustment) {
  for (size_t& offset : *offsets_for_adjustment) {
    if (offset > utf8.length())
      offset = std::u16string::npos;
  }
  OffsetAdjuster::Adjustments adjustments;
  std::u16string result = UTF8ToUTF16WithAdjustments(utf8, &adjustments);
  OffsetAdjuster::AdjustOffsets(adjustments, offsets_for_adjustment);
  return result;
}

std::string UTF16ToUTF8AndAdjustOffsets(
    std::u16string_view utf16,
    std::vector<size_t>* offsets_for_adjustment) {
  for (size_t& offset : *offsets_for_adjustment) {
    if (offset > utf16.length())
      offset = std::u16string::npos;
  }
  std::string result;
  PrepareForUTF8Output(utf16.data(), utf16.length(), &result);
  OffsetAdjuster::Adjustments adjustments;
  ConvertUnicode(utf16.data(), utf16.length(), &result, &adjustments);
  OffsetAdjuster::AdjustOffsets(adjustments, offsets_for_adjustment);
  return result;
}

}  // namespace base