1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
base / strings / utf_string_conversions.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/strings/utf_string_conversions.h"
#include <limits.h>
#include <stdint.h>
#include <concepts>
#include <ostream>
#include <string_view>
#include <type_traits>
#include "base/strings/string_util.h"
#include "base/strings/utf_ostream_operators.h"
#include "base/strings/utf_string_conversion_utils.h"
#include "base/third_party/icu/icu_utf.h"
#include "build/build_config.h"
namespace base {
namespace {
constexpr base_icu::UChar32 kErrorCodePoint = 0xFFFD;
// Size coefficient ----------------------------------------------------------
// The maximum number of codeunits in the destination encoding corresponding to
// one codeunit in the source encoding.
template <typename SrcChar, typename DestChar>
struct SizeCoefficient {
static_assert(sizeof(SrcChar) < sizeof(DestChar),
"Default case: from a smaller encoding to the bigger one");
// ASCII symbols are encoded by one codeunit in all encodings.
static constexpr int value = 1;
};
template <>
struct SizeCoefficient<char16_t, char> {
// One UTF-16 codeunit corresponds to at most 3 codeunits in UTF-8.
static constexpr int value = 3;
};
#if defined(WCHAR_T_IS_32_BIT)
template <>
struct SizeCoefficient<wchar_t, char> {
// UTF-8 uses at most 4 codeunits per character.
static constexpr int value = 4;
};
template <>
struct SizeCoefficient<wchar_t, char16_t> {
// UTF-16 uses at most 2 codeunits per character.
static constexpr int value = 2;
};
#endif // defined(WCHAR_T_IS_32_BIT)
template <typename SrcChar, typename DestChar>
constexpr int size_coefficient_v =
SizeCoefficient<std::decay_t<SrcChar>, std::decay_t<DestChar>>::value;
// UnicodeAppendUnsafe --------------------------------------------------------
// Function overloads that write code_point to the output string. Output string
// has to have enough space for the codepoint.
// Convenience typedef that checks whether the passed in type is integral (i.e.
// bool, char, int or their extended versions) and is of the correct size.
template <typename Char, size_t N>
concept BitsAre = std::integral<Char> && CHAR_BIT * sizeof(Char) == N;
template <typename Char>
requires(BitsAre<Char, 8>)
void UnicodeAppendUnsafe(Char* out,
size_t* size,
base_icu::UChar32 code_point) {
CBU8_APPEND_UNSAFE(reinterpret_cast<uint8_t*>(out), *size, code_point);
}
template <typename Char>
requires(BitsAre<Char, 16>)
void UnicodeAppendUnsafe(Char* out,
size_t* size,
base_icu::UChar32 code_point) {
CBU16_APPEND_UNSAFE(out, *size, code_point);
}
template <typename Char>
requires(BitsAre<Char, 32>)
void UnicodeAppendUnsafe(Char* out,
size_t* size,
base_icu::UChar32 code_point) {
out[(*size)++] = static_cast<Char>(code_point);
}
// DoUTFConversion ------------------------------------------------------------
// Main driver of UTFConversion specialized for different Src encodings.
// dest has to have enough room for the converted text.
template <typename DestChar>
bool DoUTFConversion(const char* src,
size_t src_len,
DestChar* dest,
size_t* dest_len) {
bool success = true;
for (size_t i = 0; i < src_len;) {
base_icu::UChar32 code_point;
CBU8_NEXT(reinterpret_cast<const uint8_t*>(src), i, src_len, code_point);
if (!IsValidCodepoint(code_point)) {
success = false;
code_point = kErrorCodePoint;
}
UnicodeAppendUnsafe(dest, dest_len, code_point);
}
return success;
}
template <typename DestChar>
bool DoUTFConversion(const char16_t* src,
size_t src_len,
DestChar* dest,
size_t* dest_len) {
bool success = true;
auto ConvertSingleChar = [&success](char16_t in) -> base_icu::UChar32 {
if (!CBU16_IS_SINGLE(in) || !IsValidCodepoint(in)) {
success = false;
return kErrorCodePoint;
}
return in;
};
size_t i = 0;
// Always have another symbol in order to avoid checking boundaries in the
// middle of the surrogate pair.
while (i + 1 < src_len) {
base_icu::UChar32 code_point;
if (CBU16_IS_LEAD(src[i]) && CBU16_IS_TRAIL(src[i + 1])) {
code_point = CBU16_GET_SUPPLEMENTARY(src[i], src[i + 1]);
if (!IsValidCodepoint(code_point)) {
code_point = kErrorCodePoint;
success = false;
}
i += 2;
} else {
code_point = ConvertSingleChar(src[i]);
++i;
}
UnicodeAppendUnsafe(dest, dest_len, code_point);
}
if (i < src_len) {
UnicodeAppendUnsafe(dest, dest_len, ConvertSingleChar(src[i]));
}
return success;
}
#if defined(WCHAR_T_IS_32_BIT)
template <typename DestChar>
bool DoUTFConversion(const wchar_t* src,
size_t src_len,
DestChar* dest,
size_t* dest_len) {
bool success = true;
for (size_t i = 0; i < src_len; ++i) {
auto code_point = static_cast<base_icu::UChar32>(src[i]);
if (!IsValidCodepoint(code_point)) {
success = false;
code_point = kErrorCodePoint;
}
UnicodeAppendUnsafe(dest, dest_len, code_point);
}
return success;
}
#endif // defined(WCHAR_T_IS_32_BIT)
// UTFConversion --------------------------------------------------------------
// Function template for generating all UTF conversions.
template <typename InputString, typename DestString>
bool UTFConversion(const InputString& src_str, DestString* dest_str) {
if (IsStringASCII(src_str)) {
dest_str->assign(src_str.begin(), src_str.end());
return true;
}
dest_str->resize(src_str.length() *
size_coefficient_v<typename InputString::value_type,
typename DestString::value_type>);
// Empty string is ASCII => it OK to call operator[].
auto* dest = &(*dest_str)[0];
// ICU requires 32 bit numbers.
size_t src_len = src_str.length();
size_t dest_len = 0;
bool res = DoUTFConversion(src_str.data(), src_len, dest, &dest_len);
dest_str->resize(dest_len);
dest_str->shrink_to_fit();
return res;
}
} // namespace
// UTF16 <-> UTF8 --------------------------------------------------------------
bool UTF8ToUTF16(const char* src, size_t src_len, std::u16string* output) {
return UTFConversion(std::string_view(src, src_len), output);
}
std::u16string UTF8ToUTF16(std::string_view utf8) {
std::u16string ret;
// Ignore the success flag of this call, it will do the best it can for
// invalid input, which is what we want here.
UTF8ToUTF16(utf8.data(), utf8.size(), &ret);
return ret;
}
bool UTF16ToUTF8(const char16_t* src, size_t src_len, std::string* output) {
return UTFConversion(std::u16string_view(src, src_len), output);
}
std::string UTF16ToUTF8(std::u16string_view utf16) {
std::string ret;
// Ignore the success flag of this call, it will do the best it can for
// invalid input, which is what we want here.
UTF16ToUTF8(utf16.data(), utf16.length(), &ret);
return ret;
}
// UTF-16 <-> Wide -------------------------------------------------------------
#if defined(WCHAR_T_IS_16_BIT)
// When wide == UTF-16 the conversions are a NOP.
bool WideToUTF16(const wchar_t* src, size_t src_len, std::u16string* output) {
output->assign(src, src + src_len);
return true;
}
std::u16string WideToUTF16(std::wstring_view wide) {
return std::u16string(wide.begin(), wide.end());
}
bool UTF16ToWide(const char16_t* src, size_t src_len, std::wstring* output) {
output->assign(src, src + src_len);
return true;
}
std::wstring UTF16ToWide(std::u16string_view utf16) {
return std::wstring(utf16.begin(), utf16.end());
}
#elif defined(WCHAR_T_IS_32_BIT)
bool WideToUTF16(const wchar_t* src, size_t src_len, std::u16string* output) {
return UTFConversion(std::wstring_view(src, src_len), output);
}
std::u16string WideToUTF16(std::wstring_view wide) {
std::u16string ret;
// Ignore the success flag of this call, it will do the best it can for
// invalid input, which is what we want here.
WideToUTF16(wide.data(), wide.length(), &ret);
return ret;
}
bool UTF16ToWide(const char16_t* src, size_t src_len, std::wstring* output) {
return UTFConversion(std::u16string_view(src, src_len), output);
}
std::wstring UTF16ToWide(std::u16string_view utf16) {
std::wstring ret;
// Ignore the success flag of this call, it will do the best it can for
// invalid input, which is what we want here.
UTF16ToWide(utf16.data(), utf16.length(), &ret);
return ret;
}
#endif // defined(WCHAR_T_IS_32_BIT)
// UTF-8 <-> Wide --------------------------------------------------------------
// UTF8ToWide is the same code, regardless of whether wide is 16 or 32 bits
bool UTF8ToWide(const char* src, size_t src_len, std::wstring* output) {
return UTFConversion(std::string_view(src, src_len), output);
}
std::wstring UTF8ToWide(std::string_view utf8) {
std::wstring ret;
// Ignore the success flag of this call, it will do the best it can for
// invalid input, which is what we want here.
UTF8ToWide(utf8.data(), utf8.length(), &ret);
return ret;
}
#if defined(WCHAR_T_IS_16_BIT)
// Easy case since we can use the "utf" versions we already wrote above.
bool WideToUTF8(const wchar_t* src, size_t src_len, std::string* output) {
return UTF16ToUTF8(as_u16cstr(src), src_len, output);
}
std::string WideToUTF8(std::wstring_view wide) {
return UTF16ToUTF8(std::u16string_view(as_u16cstr(wide), wide.size()));
}
#elif defined(WCHAR_T_IS_32_BIT)
bool WideToUTF8(const wchar_t* src, size_t src_len, std::string* output) {
return UTFConversion(std::wstring_view(src, src_len), output);
}
std::string WideToUTF8(std::wstring_view wide) {
std::string ret;
// Ignore the success flag of this call, it will do the best it can for
// invalid input, which is what we want here.
WideToUTF8(wide.data(), wide.length(), &ret);
return ret;
}
#endif // defined(WCHAR_T_IS_32_BIT)
std::u16string ASCIIToUTF16(std::string_view ascii) {
DCHECK(IsStringASCII(ascii)) << ascii;
return std::u16string(ascii.begin(), ascii.end());
}
std::string UTF16ToASCII(std::u16string_view utf16) {
DCHECK(IsStringASCII(utf16)) << UTF16ToUTF8(utf16);
return std::string(utf16.begin(), utf16.end());
}
#if defined(WCHAR_T_IS_16_BIT)
std::wstring ASCIIToWide(std::string_view ascii) {
DCHECK(IsStringASCII(ascii)) << ascii;
return std::wstring(ascii.begin(), ascii.end());
}
std::string WideToASCII(std::wstring_view wide) {
DCHECK(IsStringASCII(wide)) << wide;
return std::string(wide.begin(), wide.end());
}
#endif // defined(WCHAR_T_IS_16_BIT)
} // namespace base