1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
base / synchronization / cancelable_event_unittest.cc [blame]
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/synchronization/cancelable_event.h"
#include <stdint.h>
#include <atomic>
#include <memory>
#include <tuple>
#include <vector>
#include "base/barrier_closure.h"
#include "base/functional/callback.h"
#include "base/logging.h"
#include "base/numerics/clamped_math.h"
#include "base/rand_util.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/test/bind.h"
#include "base/test/test_timeouts.h"
#include "base/test/test_waitable_event.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/platform_test.h"
namespace base {
namespace {
class CancelableEventTest : public testing::Test {
protected:
raw_ptr<Thread> CreateThreadWithTask(RepeatingClosure& thread_task) {
std::unique_ptr<Thread> thread = std::make_unique<Thread>(
StringPrintf("CancelTestThread%d", threadcounter++));
thread->Start();
thread->task_runner()->PostTask(FROM_HERE, thread_task);
threads_.push_back(std::move(thread));
return threads_.back().get();
}
int threadcounter = 0;
WaitableEvent shutdown_event_;
std::vector<std::unique_ptr<Thread>> threads_;
};
} // namespace
TEST_F(CancelableEventTest, TimedWaitFail) {
CancelableEvent event;
RepeatingClosure task = BindLambdaForTesting([&]() {
TimeTicks start_time = TimeTicks::Now();
EXPECT_FALSE(event.TimedWait(TestTimeouts::tiny_timeout()));
EXPECT_GE(TimeTicks::Now() - start_time, TestTimeouts::tiny_timeout());
});
this->CreateThreadWithTask(task)->FlushForTesting();
}
TEST_F(CancelableEventTest, TimedWaitSuccess) {
CancelableEvent event;
RepeatingClosure task = BindLambdaForTesting(
[&]() { EXPECT_TRUE(event.TimedWait(TestTimeouts::tiny_timeout())); });
event.Signal();
this->CreateThreadWithTask(task)->FlushForTesting();
}
// These are the platforms on which a functional CancelableEvent is implemented.
#if BUILDFLAG(IS_WIN) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_LINUX) || \
BUILDFLAG(IS_ANDROID)
TEST_F(CancelableEventTest, CancelSucceedsWhenNoWaiterAndWaitTimesOut) {
CancelableEvent event;
event.Signal();
EXPECT_TRUE(event.Cancel());
EXPECT_FALSE(event.TimedWait(base::TimeDelta()));
}
TEST_F(CancelableEventTest, BothCancelFailureAndSucceedOccurWithOneWaiter) {
bool cancel_failed = false;
bool cancel_succeeded = false;
for (int i = 0; i < 100; ++i) {
CancelableEvent event;
TestWaitableEvent thread_running;
auto task = BindLambdaForTesting([&]() {
thread_running.Signal();
event.Wait();
});
auto thread = CreateThreadWithTask(task);
if (!cancel_failed) {
thread_running.Wait();
}
event.Signal();
#if BUILDFLAG(IS_POSIX)
// Posix implementations of Semaphores seem to be much less greedy in waking
// up threads currently waiting on the event - give the thread a few
// milliseconds to wake up and acquire the semaphore before us.
if (cancel_succeeded) {
PlatformThread::Sleep(Milliseconds(8));
}
#endif
if (event.Cancel()) {
cancel_succeeded = true;
event.Signal();
} else {
cancel_failed = true;
}
thread->FlushForTesting();
if (cancel_failed && cancel_succeeded) {
break;
}
}
EXPECT_TRUE(cancel_failed);
EXPECT_TRUE(cancel_succeeded);
}
TEST_F(CancelableEventTest, BothCancelFailureAndSucceedOccurUnderContention) {
// The following block is responsible for creating CPU contention - it creates
// 16 threads which run for the duration of the test, crunching CPU. None of
// the data here is used in any meaningful way in the rest of the test. beyond
// setting `busywork_threads_should_quit` to signal exit.
std::atomic_bool busywork_threads_should_quit = false;
// The arena lives for the duration of the test, and so must have test-wide
// scope, however it is only accessed by the busywork threads, and not by the
// rest of the test.
const int kNumThreads = 16;
std::atomic_char busywork_arena[kNumThreads];
{
TestWaitableEvent threads_running;
RepeatingClosure threads_running_barrier = BarrierClosure(
kNumThreads,
BindOnce(&TestWaitableEvent::Signal, Unretained(&threads_running)));
for (int i = 0; i < kNumThreads; ++i) {
auto task = BindLambdaForTesting([&]() {
threads_running_barrier.Run();
while (!busywork_threads_should_quit.load(std::memory_order_acquire)) {
// Busy loop. Only done to burn CPU.
uint64_t counter = 1;
for (auto& slot : busywork_arena) {
counter += slot + 1;
slot.store(static_cast<char>((counter & 0xf) + 1),
std::memory_order_release);
}
}
});
CreateThreadWithTask(task);
}
threads_running.Wait();
}
// Used to adjust race timings to favor the case which has not yet been seen
// (cancel fail/success).
internal::ClampedNumeric<unsigned int> wait_ms = 0;
bool succeeded = false;
bool failed = false;
for (int i = 0; i < 10 && (!failed || !succeeded); ++i) {
CancelableEvent event;
TestWaitableEvent thread_running;
std::atomic_bool thread_done = false;
auto task = BindLambdaForTesting([&]() {
thread_running.Signal();
EXPECT_TRUE(event.TimedWait(TestTimeouts::test_launcher_timeout()));
thread_done = true;
});
auto thread = CreateThreadWithTask(task);
PlatformThread::Sleep(Milliseconds(wait_ms));
event.Signal();
PlatformThread::Sleep(Milliseconds(wait_ms));
if (event.Cancel()) {
succeeded = true;
event.Signal();
wait_ms += 100;
} else {
failed = true;
wait_ms -= 50;
}
thread->FlushForTesting();
EXPECT_TRUE(thread_done);
}
busywork_threads_should_quit.store(true, std::memory_order_release);
for (auto& thread : threads_) {
thread->FlushForTesting();
}
EXPECT_TRUE(succeeded);
EXPECT_TRUE(failed);
}
#else
TEST_F(CancelableEventTest, CancelFailsOnUnsupportedPlatforms) {
CancelableEvent event;
event.Signal();
EXPECT_FALSE(event.Cancel());
EXPECT_TRUE(event.TimedWait(base::TimeDelta()));
}
#endif
} // namespace base