1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
base / synchronization / waitable_event_apple.cc [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/synchronization/waitable_event.h"
#include <mach/mach.h>
#include <sys/event.h>
#include <limits>
#include <memory>
#include "base/apple/mach_logging.h"
#include "base/files/scoped_file.h"
#include "base/notreached.h"
#include "base/posix/eintr_wrapper.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/time/time.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
namespace base {
WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
InitialState initial_state)
: policy_(reset_policy) {
mach_port_options_t options{};
options.flags = MPO_INSERT_SEND_RIGHT;
options.mpl.mpl_qlimit = 1;
mach_port_t name;
kern_return_t kr =
mach_port_construct(mach_task_self(), &options, /*context=*/0, &name);
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_construct";
receive_right_ = new ReceiveRight(name);
send_right_.reset(name);
if (initial_state == InitialState::SIGNALED) {
Signal();
}
}
void WaitableEvent::Reset() {
PeekPort(receive_right_->Name(), true);
}
void WaitableEvent::SignalImpl() {
mach_msg_empty_send_t msg{};
msg.header.msgh_bits = MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_COPY_SEND);
msg.header.msgh_size = sizeof(&msg);
msg.header.msgh_remote_port = send_right_.get();
// If the event is already signaled, this will time out because the queue
// has a length of one.
kern_return_t kr =
mach_msg(&msg.header, MACH_SEND_MSG | MACH_SEND_TIMEOUT, sizeof(msg),
/*rcv_size=*/0, /*rcv_name=*/MACH_PORT_NULL, /*timeout=*/0,
/*notify=*/MACH_PORT_NULL);
MACH_CHECK(kr == KERN_SUCCESS || kr == MACH_SEND_TIMED_OUT, kr) << "mach_msg";
}
bool WaitableEvent::IsSignaled() const {
return PeekPort(receive_right_->Name(), policy_ == ResetPolicy::AUTOMATIC);
}
bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
mach_msg_empty_rcv_t msg{};
msg.header.msgh_local_port = receive_right_->Name();
mach_msg_option_t options = MACH_RCV_MSG;
if (!wait_delta.is_max()) {
options |= MACH_RCV_TIMEOUT | MACH_RCV_INTERRUPT;
}
mach_msg_size_t rcv_size = sizeof(msg);
if (policy_ == ResetPolicy::MANUAL) {
// To avoid dequeuing the message, receive with a size of 0 and set
// MACH_RCV_LARGE to keep the message in the queue.
options |= MACH_RCV_LARGE;
rcv_size = 0;
}
// TimeTicks takes care of overflow but we special case is_max() nonetheless
// to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
// the increment step of the for loop if the condition variable returns
// early). Ref: https://crbug.com/910524#c7
const TimeTicks end_time =
wait_delta.is_max() ? TimeTicks::Max()
: subtle::TimeTicksNowIgnoringOverride() + wait_delta;
// Fake |kr| value to bootstrap the for loop.
kern_return_t kr = MACH_RCV_INTERRUPTED;
for (mach_msg_timeout_t timeout =
wait_delta.is_max() ? MACH_MSG_TIMEOUT_NONE
: saturated_cast<mach_msg_timeout_t>(
wait_delta.InMillisecondsRoundedUp());
// If the thread is interrupted during mach_msg(), the system call will
// be restarted. However, the libsyscall wrapper does not adjust the
// timeout by the amount of time already waited. Using MACH_RCV_INTERRUPT
// will instead return from mach_msg(), so that the call can be retried
// with an adjusted timeout.
kr == MACH_RCV_INTERRUPTED;
timeout = end_time.is_max()
? MACH_MSG_TIMEOUT_NONE
: std::max(mach_msg_timeout_t{0},
saturated_cast<mach_msg_timeout_t>(
(end_time -
subtle::TimeTicksNowIgnoringOverride())
.InMillisecondsRoundedUp()))) {
kr = mach_msg(&msg.header, options, /*send_size=*/0, rcv_size,
receive_right_->Name(), timeout, /*notify=*/MACH_PORT_NULL);
}
if (kr == KERN_SUCCESS) {
return true;
} else if (rcv_size == 0 && kr == MACH_RCV_TOO_LARGE) {
return true;
} else {
MACH_CHECK(kr == MACH_RCV_TIMED_OUT, kr) << "mach_msg";
return false;
}
}
// static
size_t WaitableEvent::WaitManyImpl(WaitableEvent** raw_waitables,
size_t count) {
// On macOS 10.11+, using Mach port sets may cause system instability, per
// https://crbug.com/756102. On macOS 10.12+, a kqueue can be used
// instead to work around that.
enum WaitManyPrimitive {
KQUEUE,
PORT_SET,
};
#if BUILDFLAG(IS_IOS)
const WaitManyPrimitive kPrimitive = PORT_SET;
#else
const WaitManyPrimitive kPrimitive = KQUEUE;
#endif
if (kPrimitive == KQUEUE) {
std::vector<kevent64_s> events(count);
for (size_t i = 0; i < count; ++i) {
EV_SET64(&events[i], raw_waitables[i]->receive_right_->Name(),
EVFILT_MACHPORT, EV_ADD, 0, 0, i, 0, 0);
}
std::vector<kevent64_s> out_events(count);
ScopedFD wait_many(kqueue());
PCHECK(wait_many.is_valid()) << "kqueue";
const int count_int = checked_cast<int>(count);
int rv = HANDLE_EINTR(kevent64(wait_many.get(), events.data(), count_int,
out_events.data(), count_int, /*flags=*/0,
/*timeout=*/nullptr));
PCHECK(rv > 0) << "kevent64";
size_t triggered = std::numeric_limits<size_t>::max();
for (size_t i = 0; i < static_cast<size_t>(rv); ++i) {
// WaitMany should return the lowest index in |raw_waitables| that was
// triggered.
size_t index = static_cast<size_t>(out_events[i].udata);
triggered = std::min(triggered, index);
}
if (raw_waitables[triggered]->policy_ == ResetPolicy::AUTOMATIC) {
// The message needs to be dequeued to reset the event.
PeekPort(raw_waitables[triggered]->receive_right_->Name(),
/*dequeue=*/true);
}
return triggered;
} else {
DCHECK_EQ(kPrimitive, PORT_SET);
kern_return_t kr;
apple::ScopedMachPortSet port_set;
{
mach_port_t name;
kr =
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_PORT_SET, &name);
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate";
port_set.reset(name);
}
for (size_t i = 0; i < count; ++i) {
kr = mach_port_insert_member(mach_task_self(),
raw_waitables[i]->receive_right_->Name(),
port_set.get());
MACH_CHECK(kr == KERN_SUCCESS, kr) << "index " << i;
}
mach_msg_empty_rcv_t msg{};
// Wait on the port set. Only specify space enough for the header, to
// identify which port in the set is signaled. Otherwise, receiving from the
// port set may dequeue a message for a manual-reset event object, which
// would cause it to be reset.
kr = mach_msg(&msg.header,
MACH_RCV_MSG | MACH_RCV_LARGE | MACH_RCV_LARGE_IDENTITY,
/*send_size=*/0, sizeof(msg.header), port_set.get(),
/*timeout=*/0, /*notify=*/MACH_PORT_NULL);
MACH_CHECK(kr == MACH_RCV_TOO_LARGE, kr) << "mach_msg";
for (size_t i = 0; i < count; ++i) {
WaitableEvent* event = raw_waitables[i];
if (msg.header.msgh_local_port == event->receive_right_->Name()) {
if (event->policy_ == ResetPolicy::AUTOMATIC) {
// The message needs to be dequeued to reset the event.
PeekPort(msg.header.msgh_local_port, true);
}
return i;
}
}
NOTREACHED();
}
}
// static
bool WaitableEvent::PeekPort(mach_port_t port, bool dequeue) {
if (dequeue) {
mach_msg_empty_rcv_t msg{};
msg.header.msgh_local_port = port;
kern_return_t kr =
mach_msg(&msg.header, MACH_RCV_MSG | MACH_RCV_TIMEOUT, /*send_size=*/0,
sizeof(msg), port, /*timeout=*/0, /*notify=*/MACH_PORT_NULL);
if (kr == KERN_SUCCESS) {
return true;
} else {
MACH_CHECK(kr == MACH_RCV_TIMED_OUT, kr) << "mach_msg";
return false;
}
} else {
mach_port_seqno_t seqno = 0;
mach_msg_size_t size;
mach_msg_id_t id;
mach_msg_trailer_t trailer;
mach_msg_type_number_t trailer_size = sizeof(trailer);
kern_return_t kr = mach_port_peek(
mach_task_self(), port, MACH_RCV_TRAILER_TYPE(MACH_RCV_TRAILER_NULL),
&seqno, &size, &id, reinterpret_cast<mach_msg_trailer_info_t>(&trailer),
&trailer_size);
if (kr == KERN_SUCCESS) {
return true;
} else {
MACH_CHECK(kr == KERN_FAILURE, kr) << "mach_port_peek";
return false;
}
}
}
WaitableEvent::ReceiveRight::ReceiveRight(mach_port_t name) : right_(name) {}
WaitableEvent::ReceiveRight::~ReceiveRight() = default;
} // namespace base