1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
base / system / sys_info_posix.cc [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/system/sys_info.h"
#include <errno.h>
#include <sched.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <algorithm>
#include "base/check.h"
#include "base/files/file_util.h"
#include "base/lazy_instance.h"
#include "base/notimplemented.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/system/sys_info_internal.h"
#include "base/threading/scoped_blocking_call.h"
#include "build/build_config.h"
#if BUILDFLAG(IS_ANDROID)
#include <sys/vfs.h>
#define statvfs statfs // Android uses a statvfs-like statfs struct and call.
#else
#include <sys/statvfs.h>
#endif
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
#include <linux/magic.h>
#include <sys/vfs.h>
#endif
#if BUILDFLAG(IS_MAC)
#include <optional>
#endif
namespace {
uint64_t AmountOfVirtualMemory() {
struct rlimit limit;
int result = getrlimit(RLIMIT_DATA, &limit);
if (result != 0) {
NOTREACHED();
}
return limit.rlim_cur == RLIM_INFINITY ? 0 : limit.rlim_cur;
}
base::LazyInstance<
base::internal::LazySysInfoValue<uint64_t, AmountOfVirtualMemory>>::Leaky
g_lazy_virtual_memory = LAZY_INSTANCE_INITIALIZER;
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
bool IsStatsZeroIfUnlimited(const base::FilePath& path) {
struct statfs stats;
if (HANDLE_EINTR(statfs(path.value().c_str(), &stats)) != 0)
return false;
// This static_cast is here because various libcs disagree about the size
// and signedness of statfs::f_type. In particular, glibc has it as either a
// signed long or a signed int depending on platform, and other libcs
// (following the statfs(2) man page) use unsigned int instead. To avoid
// either an unsigned -> signed cast, or a narrowing cast, we always upcast
// statfs::f_type to unsigned long. :(
switch (static_cast<unsigned long>(stats.f_type)) {
case TMPFS_MAGIC:
case HUGETLBFS_MAGIC:
case RAMFS_MAGIC:
return true;
}
return false;
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
bool GetDiskSpaceInfo(const base::FilePath& path,
int64_t* available_bytes,
int64_t* total_bytes) {
struct statvfs stats;
if (HANDLE_EINTR(statvfs(path.value().c_str(), &stats)) != 0)
return false;
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
const bool zero_size_means_unlimited =
stats.f_blocks == 0 && IsStatsZeroIfUnlimited(path);
#else
const bool zero_size_means_unlimited = false;
#endif
if (available_bytes) {
*available_bytes =
zero_size_means_unlimited
? std::numeric_limits<int64_t>::max()
: base::saturated_cast<int64_t>(stats.f_bavail * stats.f_frsize);
}
if (total_bytes) {
*total_bytes =
zero_size_means_unlimited
? std::numeric_limits<int64_t>::max()
: base::saturated_cast<int64_t>(stats.f_blocks * stats.f_frsize);
}
return true;
}
} // namespace
namespace base {
#if !BUILDFLAG(IS_OPENBSD)
// static
int SysInfo::NumberOfProcessors() {
#if BUILDFLAG(IS_MAC)
std::optional<int> number_of_physical_cores =
internal::NumberOfProcessorsWhenCpuSecurityMitigationEnabled();
if (number_of_physical_cores.has_value()) {
return number_of_physical_cores.value();
}
#endif // BUILDFLAG(IS_MAC)
// This value is cached to avoid computing this value in the sandbox, which
// doesn't work on some platforms. The Mac-specific code above is not
// included because changing the value at runtime is the best way to unittest
// its behavior.
static int cached_num_cpus = [] {
// sysconf returns the number of "logical" (not "physical") processors on
// both Mac and Linux. So we get the number of max available "logical"
// processors.
//
// Note that the number of "currently online" processors may be fewer than
// the returned value of NumberOfProcessors(). On some platforms, the kernel
// may make some processors offline intermittently, to save power when
// system loading is low.
//
// One common use case that needs to know the processor count is to create
// optimal number of threads for optimization. It should make plan according
// to the number of "max available" processors instead of "currently online"
// ones. The kernel should be smart enough to make all processors online
// when it has sufficient number of threads waiting to run.
long res = sysconf(_SC_NPROCESSORS_CONF);
if (res == -1) {
// `res` can be -1 if this function is invoked under the sandbox, which
// should never happen.
NOTREACHED();
}
int num_cpus = static_cast<int>(res);
#if BUILDFLAG(IS_LINUX)
// Restrict the CPU count based on the process's CPU affinity mask, if
// available.
cpu_set_t* cpu_set = CPU_ALLOC(num_cpus);
size_t cpu_set_size = CPU_ALLOC_SIZE(num_cpus);
int ret = sched_getaffinity(0, cpu_set_size, cpu_set);
if (ret == 0) {
num_cpus = CPU_COUNT_S(cpu_set_size, cpu_set);
}
CPU_FREE(cpu_set);
#endif // BUILDFLAG(IS_LINUX)
return num_cpus;
}();
return cached_num_cpus;
}
#endif // !BUILDFLAG(IS_OPENBSD)
// static
uint64_t SysInfo::AmountOfVirtualMemory() {
return g_lazy_virtual_memory.Get().value();
}
// static
int64_t SysInfo::AmountOfFreeDiskSpace(const FilePath& path) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int64_t available;
if (!GetDiskSpaceInfo(path, &available, nullptr))
return -1;
return available;
}
// static
int64_t SysInfo::AmountOfTotalDiskSpace(const FilePath& path) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int64_t total;
if (!GetDiskSpaceInfo(path, nullptr, &total))
return -1;
return total;
}
#if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID)
// static
std::string SysInfo::OperatingSystemName() {
struct utsname info;
if (uname(&info) < 0) {
NOTREACHED();
}
return std::string(info.sysname);
}
#endif //! BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID)
#if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_CHROMEOS)
// static
std::string SysInfo::OperatingSystemVersion() {
struct utsname info;
if (uname(&info) < 0) {
NOTREACHED();
}
return std::string(info.release);
}
#endif
#if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_CHROMEOS)
// static
void SysInfo::OperatingSystemVersionNumbers(int32_t* major_version,
int32_t* minor_version,
int32_t* bugfix_version) {
struct utsname info;
if (uname(&info) < 0) {
NOTREACHED();
}
int num_read = sscanf(info.release, "%d.%d.%d", major_version, minor_version,
bugfix_version);
if (num_read < 1)
*major_version = 0;
if (num_read < 2)
*minor_version = 0;
if (num_read < 3)
*bugfix_version = 0;
}
#endif
#if !BUILDFLAG(IS_MAC) && !BUILDFLAG(IS_IOS)
// static
std::string SysInfo::OperatingSystemArchitecture() {
struct utsname info;
if (uname(&info) < 0) {
NOTREACHED();
}
std::string arch(info.machine);
if (arch == "i386" || arch == "i486" || arch == "i586" || arch == "i686") {
arch = "x86";
} else if (arch == "amd64") {
arch = "x86_64";
} else if (std::string(info.sysname) == "AIX") {
arch = "ppc64";
}
return arch;
}
#endif // !BUILDFLAG(IS_MAC) && !BUILDFLAG(IS_IOS)
// static
size_t SysInfo::VMAllocationGranularity() {
return checked_cast<size_t>(getpagesize());
}
#if !BUILDFLAG(IS_APPLE)
// static
int SysInfo::NumberOfEfficientProcessorsImpl() {
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
// Try to guess the CPU architecture and cores of each cluster by comparing
// the maximum frequencies of the available (online and offline) cores.
int num_cpus = SysInfo::NumberOfProcessors();
DCHECK_GE(num_cpus, 0);
std::vector<uint32_t> max_core_frequencies_khz(static_cast<size_t>(num_cpus),
0);
for (int core_index = 0; core_index < num_cpus; ++core_index) {
std::string content;
auto path = StringPrintf(
"/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_max_freq", core_index);
if (!ReadFileToStringNonBlocking(FilePath(path), &content))
return 0;
if (!StringToUint(
content,
&max_core_frequencies_khz[static_cast<size_t>(core_index)]))
return 0;
}
auto [min_max_core_frequencies_khz_it, max_max_core_frequencies_khz_it] =
std::minmax_element(max_core_frequencies_khz.begin(),
max_core_frequencies_khz.end());
if (*min_max_core_frequencies_khz_it == *max_max_core_frequencies_khz_it)
return 0;
return static_cast<int>(std::count(max_core_frequencies_khz.begin(),
max_core_frequencies_khz.end(),
*min_max_core_frequencies_khz_it));
#else
NOTIMPLEMENTED();
return 0;
#endif
}
#endif // !BUILDFLAG(IS_APPLE)
} // namespace base