1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
base / system / sys_info_win.cc [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/system/sys_info.h"
#include <windows.h>
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <bit>
#include <limits>
#include <type_traits>
#include <vector>
#include "base/check.h"
#include "base/files/file_path.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/process/process_metrics.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/sys_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/win/registry.h"
#include "base/win/windows_version.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
namespace {
// Returns the power efficiency levels of physical cores or empty vector on
// failure. The BYTE value of the element is the relative efficiency rank among
// all physical cores, where 0 is the most efficient, 1 is the second most
// efficient, and so on.
std::vector<BYTE> GetCoreEfficiencyClasses() {
const DWORD kReservedSize =
sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) * 64;
absl::InlinedVector<BYTE, kReservedSize> buffer;
buffer.resize(kReservedSize);
DWORD byte_length = kReservedSize;
if (!GetLogicalProcessorInformationEx(
RelationProcessorCore,
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*>(
buffer.data()),
&byte_length)) {
DPCHECK(GetLastError() == ERROR_INSUFFICIENT_BUFFER);
buffer.resize(byte_length);
if (!GetLogicalProcessorInformationEx(
RelationProcessorCore,
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*>(
buffer.data()),
&byte_length)) {
return {};
}
}
std::vector<BYTE> efficiency_classes;
BYTE* byte_ptr = buffer.data();
while (byte_ptr < buffer.data() + byte_length) {
const auto* structure_ptr =
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*>(byte_ptr);
DCHECK_EQ(structure_ptr->Relationship, RelationProcessorCore);
DCHECK_LE(&structure_ptr->Processor.EfficiencyClass +
sizeof(structure_ptr->Processor.EfficiencyClass),
buffer.data() + byte_length);
efficiency_classes.push_back(structure_ptr->Processor.EfficiencyClass);
DCHECK_GE(
structure_ptr->Size,
offsetof(std::remove_pointer_t<decltype(structure_ptr)>, Processor) +
sizeof(structure_ptr->Processor));
byte_ptr = byte_ptr + structure_ptr->Size;
}
return efficiency_classes;
}
// Returns the physical cores to logical processor mapping masks by using the
// Windows API GetLogicalProcessorInformation(), or an empty vector on failure.
// When succeeded, the vector would be of same size to the number of physical
// cores, while each element is the bitmask of the logical processors that the
// physical core has.
std::vector<uint64_t> GetCoreProcessorMasks() {
const DWORD kReservedSize = 64;
absl::InlinedVector<SYSTEM_LOGICAL_PROCESSOR_INFORMATION, kReservedSize>
buffer;
buffer.resize(kReservedSize);
DWORD byte_length = sizeof(buffer[0]) * kReservedSize;
const BOOL result =
GetLogicalProcessorInformation(buffer.data(), &byte_length);
DWORD element_count = byte_length / sizeof(buffer[0]);
DCHECK_EQ(byte_length % sizeof(buffer[0]), 0u);
if (!result) {
DPCHECK(GetLastError() == ERROR_INSUFFICIENT_BUFFER);
buffer.resize(element_count);
if (!GetLogicalProcessorInformation(buffer.data(), &byte_length)) {
return {};
}
}
std::vector<uint64_t> processor_masks;
for (DWORD i = 0; i < element_count; i++) {
if (buffer[i].Relationship == RelationProcessorCore) {
processor_masks.push_back(buffer[i].ProcessorMask);
}
}
return processor_masks;
}
uint64_t AmountOfMemory(DWORDLONG MEMORYSTATUSEX::*memory_field) {
MEMORYSTATUSEX memory_info;
memory_info.dwLength = sizeof(memory_info);
if (!GlobalMemoryStatusEx(&memory_info)) {
NOTREACHED();
}
return memory_info.*memory_field;
}
bool GetDiskSpaceInfo(const base::FilePath& path,
int64_t* available_bytes,
int64_t* total_bytes) {
ULARGE_INTEGER available;
ULARGE_INTEGER total;
ULARGE_INTEGER free;
if (!GetDiskFreeSpaceExW(path.value().c_str(), &available, &total, &free))
return false;
if (available_bytes) {
*available_bytes = static_cast<int64_t>(available.QuadPart);
if (*available_bytes < 0)
*available_bytes = std::numeric_limits<int64_t>::max();
}
if (total_bytes) {
*total_bytes = static_cast<int64_t>(total.QuadPart);
if (*total_bytes < 0)
*total_bytes = std::numeric_limits<int64_t>::max();
}
return true;
}
} // namespace
namespace base {
// static
int SysInfo::NumberOfProcessors() {
return win::OSInfo::GetInstance()->processors();
}
// static
int SysInfo::NumberOfEfficientProcessorsImpl() {
std::vector<BYTE> efficiency_classes = GetCoreEfficiencyClasses();
if (efficiency_classes.empty())
return 0;
auto [min_efficiency_class_it, max_efficiency_class_it] =
std::minmax_element(efficiency_classes.begin(), efficiency_classes.end());
if (*min_efficiency_class_it == *max_efficiency_class_it)
return 0;
std::vector<uint64_t> processor_masks = GetCoreProcessorMasks();
if (processor_masks.empty())
return 0;
DCHECK_EQ(efficiency_classes.size(), processor_masks.size());
int num_of_efficient_processors = 0;
for (size_t i = 0; i < efficiency_classes.size(); i++) {
if (efficiency_classes[i] == *min_efficiency_class_it) {
num_of_efficient_processors += std::popcount(processor_masks[i]);
}
}
return num_of_efficient_processors;
}
// static
uint64_t SysInfo::AmountOfPhysicalMemoryImpl() {
return AmountOfMemory(&MEMORYSTATUSEX::ullTotalPhys);
}
// static
uint64_t SysInfo::AmountOfAvailablePhysicalMemoryImpl() {
SystemMemoryInfoKB info;
if (!GetSystemMemoryInfo(&info))
return 0;
return checked_cast<uint64_t>(info.avail_phys) * 1024;
}
// static
uint64_t SysInfo::AmountOfVirtualMemory() {
return AmountOfMemory(&MEMORYSTATUSEX::ullTotalVirtual);
}
// static
int64_t SysInfo::AmountOfFreeDiskSpace(const FilePath& path) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int64_t available;
if (!GetDiskSpaceInfo(path, &available, nullptr))
return -1;
return available;
}
// static
int64_t SysInfo::AmountOfTotalDiskSpace(const FilePath& path) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int64_t total;
if (!GetDiskSpaceInfo(path, nullptr, &total))
return -1;
return total;
}
std::string SysInfo::OperatingSystemName() {
return "Windows NT";
}
// static
std::string SysInfo::OperatingSystemVersion() {
win::OSInfo* os_info = win::OSInfo::GetInstance();
win::OSInfo::VersionNumber version_number = os_info->version_number();
std::string version(StringPrintf("%d.%d.%d", version_number.major,
version_number.minor, version_number.build));
win::OSInfo::ServicePack service_pack = os_info->service_pack();
if (service_pack.major != 0) {
version += StringPrintf(" SP%d", service_pack.major);
if (service_pack.minor != 0)
version += StringPrintf(".%d", service_pack.minor);
}
return version;
}
// TODO: Implement OperatingSystemVersionComplete, which would include
// patchlevel/service pack number.
// See chrome/browser/feedback/feedback_util.h, FeedbackUtil::SetOSVersion.
// static
std::string SysInfo::OperatingSystemArchitecture() {
win::OSInfo::WindowsArchitecture arch = win::OSInfo::GetArchitecture();
switch (arch) {
case win::OSInfo::X86_ARCHITECTURE:
return "x86";
case win::OSInfo::X64_ARCHITECTURE:
return "x86_64";
case win::OSInfo::IA64_ARCHITECTURE:
return "ia64";
case win::OSInfo::ARM64_ARCHITECTURE:
return "arm64";
default:
return "";
}
}
// static
std::string SysInfo::CPUModelName() {
return win::OSInfo::GetInstance()->processor_model_name();
}
// static
size_t SysInfo::VMAllocationGranularity() {
return win::OSInfo::GetInstance()->allocation_granularity();
}
// static
void SysInfo::OperatingSystemVersionNumbers(int32_t* major_version,
int32_t* minor_version,
int32_t* bugfix_version) {
win::OSInfo* os_info = win::OSInfo::GetInstance();
*major_version = static_cast<int32_t>(os_info->version_number().major);
*minor_version = static_cast<int32_t>(os_info->version_number().minor);
*bugfix_version = 0;
}
// static
std::string ReadHardwareInfoFromRegistry(const wchar_t* reg_value_name) {
// On some systems or VMs, the system information and some of the below
// locations may be missing info. Attempt to find the info from the below
// registry keys in the order provided.
static const wchar_t* const kSystemInfoRegKeyPaths[] = {
L"HARDWARE\\DESCRIPTION\\System\\BIOS",
L"SYSTEM\\CurrentControlSet\\Control\\SystemInformation",
L"SYSTEM\\HardwareConfig\\Current",
};
std::wstring value;
for (const wchar_t* system_info_reg_key_path : kSystemInfoRegKeyPaths) {
base::win::RegKey system_information_key;
if (system_information_key.Open(HKEY_LOCAL_MACHINE,
system_info_reg_key_path,
KEY_READ) == ERROR_SUCCESS) {
if ((system_information_key.ReadValue(reg_value_name, &value) ==
ERROR_SUCCESS) &&
!value.empty()) {
break;
}
}
}
return base::SysWideToUTF8(value);
}
// static
SysInfo::HardwareInfo SysInfo::GetHardwareInfoSync() {
HardwareInfo info = {ReadHardwareInfoFromRegistry(L"SystemManufacturer"),
SysInfo::HardwareModelName()};
return info;
}
// static
std::string SysInfo::HardwareModelName() {
return ReadHardwareInfoFromRegistry(L"SystemProductName");
}
} // namespace base